Extension and Ag Research News

Accessibility


NDSU Offers Postharvest Tips for Later-maturing Corn

Lack of maturity could cause corn harvesting and storage problems this year.

Corn maturity is behind the five-year average in North Dakota this year, which may lead to corn being harvested with high moisture levels.

Also, frost may occur before the corn matures.

Yield potential for corn frozen during the milk stage is low. Ears are difficult to pick and shell, kernel tips may stay on the cobs and grain will be very chaffy.

“Therefore, green chopping or ensiling whole plants may be the only reasonable options,” says Ken Hellevang, North Dakota State University Extension Service engineer and a professor in NDSU’s Agricultural and Biosystems Engineering Department.

He recommends corn silage be harvested at 60 percent to 70 percent moisture. The length of cut should be about 0.5 inch, with not more than 10 percent to 15 percent being 1 inch or longer. Corn ensiled in a bunker or horizontal silo should be crowned in the center, have a wall slope of 1:6 to 1:8 and be covered with 6 mil polyethylene. To be effective, the plastic must be held down over the silo’s entire area. Temperatures in the silage above 120 degrees after four days indicate that excess air is getting into the silage.

Field drying

Test weights will be much less, probably 40 to 45 pounds per bushel, for corn frozen in the dough stage. Although corn eventually will dry to acceptable harvest moisture, drying will take at least a week longer than for mature grain. Ear molds likely will develop if warm ambient temperatures follow the frost. The only means of stopping mold growth are drying the grain or ensiling.

Standing corn in the field may dry 0.6 to 0.9 percentage point per day during warm, dry fall days with a breeze. Normally, producers can expect about .5 percent of drying per nice drying day in North Dakota early in September, but that may drop to about 0.3 to 0.4 percent during October and 0.15 to 0.2 or less in November.

Based on the equilibrium moisture content for the average monthly temperature and relative humidity, corn might be expected to dry to about 15.5 percent moisture content during September, 16 percent during October and 19 percent during November. Field drying normally is more economical until mid to late October and mechanical high-temperature drying normally is more economical after that.

High-moisture corn

Shelled corn should be at 25 percent to 30 percent moisture for anaerobic (without oxygen) high-moisture storage in silos or silo bags, Hellevang says. Any tears in the plastic bag must be repaired promptly to minimize storage losses. Whole shelled corn can be stored in oxygen-limiting silos, but a medium grind is needed for proper packing in horizontal or conventional upright silos. Wet grain exerts more pressure on the silo than corn silage, so conventional concrete stave silos may require additional hoops or the silo must not be filled completely.

Drying methods

Natural air and low-temperature drying should be completed as much as possible in October because the drying capacity is extremely poor during the colder temperatures in November. Corn above 21 percent moisture should not be dried using natural air and low-temperature drying to minimize corn spoilage during drying. Hellevang recommends an airflow rate of 1.25 cubic feet per minute per bushel (cfm/bu) to reduce drying time. Adding heat does not permit drying wetter corn and only slightly increases drying speed. The primary effect of adding heat is to reduce the corn moisture content. Natural air drying in the spring is the most energy- and cost-effective method of drying.

Shelled corn can be stored in a grain bin at moisture contents up to about 25 percent if it is kept below 30 degrees using aeration. Corn kernels above about 25 percent moisture may freeze into a clump that causes unloading problems.

Dryers will be operated more hours than usual, so examine them carefully and perform needed maintenance before harvest. Use the maximum allowable drying temperature in a high-temperature dryer to increase dryer capacity and energy efficiency. Be aware that high drying temperatures result in a lower final test weight and increased breakage susceptibility in the corn. In addition, as the drying time increases with high-moisture corn, it becomes more susceptible to browning.

Use in-storage cooling instead of in-dryer cooling to boost the capacity of high-temperature dryers. Cooling corn slowly in a bin rather than the high-temperature dryer also will reduce the potential for stress cracks in the kernels.

In-storage cooling requires a positive-pressure airflow rate of about 0.20 cfm/bu, or 12 cfm/bu-hour of fill rate. Cooling should be started as soon as corn is placed in the bin from the dryer. Dryer capacity is increased 20 percent to 40 percent and about 1 percentage point of moisture is removed during corn cooling. Condensation problems can be reduced by cooling the corn in the dryer to about 90 degrees before placing it in storage.

Dryeration will increase the dryer capacity about 50 percent to 75 percent, reduce energy used by about 25 percent and remove about 2 to 2.5 points of moisture (0.25 percent for each 10 degrees the corn is cooled). With dryeration, hot corn from the dryer is placed in a dryeration bin with a perforated floor, allowed to steep for four to six hours without airflow, cooled and then moved to a storage bin. A tremendous amount of condensation will occur during the steeping and cooling process, so the corn must be moved to a different bin for storage or spoilage will occur along the bin wall and on the top grain surface.

Hellevang says producers also need to know that immature corn has a shorter storage life than mature corn. Therefore, cooling immature corn in storage to about 20 to 25 degrees for winter storage is more important than for mature corn. Stored immature corn also needs to be checked more frequently. He does not recommend immature corn be stored long-term.

Drying costs

A dryer that captures the heat from cooling the dry corn and sometimes a part of the air from the final drying portion of the dryer can reduce the energy used to dry the corn by about 20 percent. Newer dryers typically have incorporated features to make them more energy efficient than previous dryers.

Using the maximum drying temperature that will not damage the corn also can reduce energy consumption. The amount of energy required to remove a pound of water is about 20 percent less using a drying air temperature of 200 F than 150 F.

The propane cost for high-temperature drying corn can be estimated using the following formula: cost/bushel-point = 0.022 x propane price/gallon. For example, the drying cost is $0.044/bushel-point if the cost of propane is $2 (0.022 x $2). Propane will cost about $53 to remove 10 percentage points of moisture from 120 bushels of corn using $2 propane.

The estimated quantity of propane needed to dry is 0.02 gallon per bushel per point of moisture removed. For example, 24 gallons of propane is needed to dry 120 bushels of corn from 25 percent to 15 percent (0.02 x 120 bushel x 10 points). This is based on 0.72 pound of water being removed per point of moisture per bushel, 2,500 British thermal units (Btu) of heat required to remove a pound of water in a high-temperature dryer and a propane heat content of 91,500 Btu/gallon.

The weight of water removed during drying can be calculated using the following formula: initial weight = (100 - final moisture content)/100 - initial moisture content) x final weight. For 56-pound corn with an initial moisture of 25 percent and final moisture of 15 percent, the initial weight would be 63.5 pounds per bushel. The weight of moisture removal is 63.5-56 = 7.5 pounds per bushel.

Moisture measurement

Moisture shrink is the reduction in weight as the grain is dried 1 percentage point and is calculated using this formula: moisture shrink factor = 100  (100 - final moisture content). The shrink factor of drying corn to 15.5 percent is 1.1834. The shrink drying corn from 20.5 percent to 15.5 percent would be 5 x 1.1834 = 5.92 percent.

Moisture meters will not provide accurate readings on corn coming from a high-temperature dryer. The error will vary depending on the amount of moisture removed and the drying temperature, but the meter reading may be about 2 percent lower than true moisture. Check the moisture of a sample, place the sample in a closed container for about 12 hours and then check the moisture content again to determine the amount of error. Moisture meter errors increase as corn moisture contents increase, so readings above 25 percent should be considered only estimates.

In addition, moisture meters are affected by grain temperature. If the meter does not measure the grain temperature and adjust the value automatically, then it must be done manually. Even if the meter does it automatically, Hellevang recommends cooling a sample in a sealed container to room temperature before measuring the moisture content. Then compare the moisture content of the room-temperature sample to the initial sample to verify that the adjustment is done accurately.

Normally, corn test weight increases about 0.25 pound for each point of moisture removed during high-temperature drying. However, little increase will occur in test weight on immature or frost-damaged corn.

Kernel damage

More fines are produced when corn is wet because more aggressive shelling is required, which causes more kernel cracking and breaking. The potential for stress cracks in kernels during drying also increases, which leads to more breakage potential during handling. In addition, immature corn contains more small and shriveled kernels.

Fines cause storage problems because they spoil faster than whole kernels, they have high airflow resistance and they accumulate in high concentrations under the fill hole unless a spreader or distributor is used. Preferably, the corn should be screen-cleaned before binning to remove fine material, cob pieces and broken kernels.

For more information on corn drying and storage, visit NDSU’s corn Web site at http://www.ag.ndsu.edu/procrop/crn/index.htm.


NDSU Agriculture Communication

Source:Ken Hellevang, (701) 231-7243, kenneth.hellevang@ndsu.edu
Editor:Ellen Crawford, (701) 231-5391, ellen.crawford@ndsu.edu
Creative Commons License
Feel free to use and share this content, but please do so under the conditions of our Creative Commons license and our Rules for Use. Thanks.