Thirty-Seventh Annual Western Dakota Crops Day Research Report 2020

John Rickertsen, Research Agronomist Caleb Dalley, Weed Scientist Daniel Abe, UAV & Weed Science Tech Michael Wells, Agronomy Tech www.ag.ndsu.edu/HettingerREC

HETTINGER RESEARCH EXTENSION CENTER

NDSU

Acknowledgments

The Hettinger Research Extension Center gratefully acknowledges and thank the following individuals for their willingness to cooperate with us at off-station plot sites and in providing us with materials for this publication. Their participation has enabled us to compile the enclosed information which would not otherwise be possible.

Glenn Martin, Dickinson Research Extension Center Ryan Buetow, Dickinson Research Extension Center Dr. Joel Ransom, NDSU, Fargo Dr. Hans Kandel, NDSU, Fargo Neal and Justin Freitag, Scranton August and Perry Kirschmann, Regent Dan Christman, Hettinger USDA – ARS Northern Great Plains Research Center, Mandan Keith Gietzen, Glen Ullin Pat Doll, Hannover

This work is supported by the USDA National Institute of Food and Agriculture, Hatch projects ND06278 & ND06280.

Table of Contents

Interpreting Statistical Analysis	1
Growing Conditions	
Hettinger Weather Summary	2
Dickinson Weather Summary	4
Spring Wheat	
ND Hard Red Spring Wheat Variety Descriptions.	5
Scranton Hard Red Spring Wheat Variety Trial	7
Regent Hard Red Spring Wheat Variety Trial	, 8
Mandan Hard Red Spring Wheat Variety Trial	9
	9 11
Dickinson Hard Red Spring Wheat Variety Trial	
Glen Ullin Hard Red Spring Wheat Variety Trial	13
Winter Wheat and Winter Rye	
ND Hard Winter Wheat Variety Description	14
Dickinson Winter Wheat Variety Trial	15
Hettinger Winter Rye Variety Trial	16
Durum	
ND Durum Wheat Variety Descriptions	17
Hettinger Durum Variety Trial	18
Scranton Durum Variety Trial	19
Regent Durum Variety Trial	19
Dickinson Durum Variety Trial	20
Barley	
ND Barley Variety Descriptions	21
Hettinger Barley Variety Trial	22
Scranton Barley Variety Trial	23
Regent Barley Variety Trial	23
Dickinson Barley Variety Trial	23 24
	24 25
Glen Ullin Barley Variety Trial	25
Oat	
ND Oat Variety Descriptions	26
Hettinger Oat Variety Trial	27
Dickinson Oat Variety Trial	28
Oilseeds	
Hettinger Oil Type Sunflower Variety Trial	29
Hettinger Flax Variety Trial	31
Dickinson Flax Variety Trial	32
Hettinger Safflower Variety Trial	33
Grain Legumes	
Hettinger Dry Bean Variety Trial	34
Hettinger Chickpea Variety Trial	35
Dickinson Chickpea Variety Trial	36
Hettinger Field Pea Variety Trial	37

Dickinson Field Pea Variety Trial	38
Hettinger Lentil Variety Trial	39
Dickinson Lentil Variety Trial	40
Hettinger Roundup Ready Soybean Variety Trial	41
Mandan Roundup Ready Soybean Variety Trial	41
Hettinger Conventional Soybean Variety Trial	42
Mandan Conventional Soybean Variety Trial	42
Industrial Hemp	
	43
Dickinson Hemp variety Trial	44
Corn	
Hettinger Corn Variety Trial	45
Special Reports	
	46
Alternative Soybean Production Management Options in Acidic Soils	49
Weed Control	
	51
Evaluation of No-Till Spring Wheat Response to Preemergence, Delayed Preemergence, and Early	
	53
	55
	57
	59
	61
Comparing Rates of Carfentrazone plus Pyroxasulfone (Anthem Flex) with and without Metribuzin for Weed Control in Lentil	<u> </u>
	63 65
	65
Chickpea Response to Pyridate (Tough) Herbicide treatments with Preemergence Herbicides Applied at Planting or as a Tank-Mix partner	67
Evaluation of Postemergence Herbicides on Flax	69
Note Pages	71

Trials Not Published

The following trials were not published in this report because of very poor yields and significant plot variation. Trial average yields are reported below.

Trial	Average Yield
Hettinger HRSW VT	23.6 bu/ac
Hettinger Canola Trials	Not harvested due to hail damage
Hettinger Winter Wheat VT	Not harvested due to poor stands

Interpreting Statistical Analysis

Field research involves the testing of one or more variables such as crop varieties, fertilizer rates, weed control methods, planting dates, etc. Field testing of such variables is conducted in order to determine which variety, fertilizer rate, herbicide, date, etc. is best for the particular area of production. The main objectives of crop production research are to determine the best means of producing a crop and how to maximize yield and economic return from farming.

Agricultural researchers use statistics as a tool to help differentiate production variables so meaningful conclusions can be drawn from the data gathered from research trials. Attempts are made to control human error and environmental conditions such as soil variability by replicating the variable in question. For example, there were four plots (replications) of the every variety grown in the Hettinger HRSW variety trial. These plots are randomly placed throughout the trial to help eliminate differences that might be a result of soil or other variations.

The coefficient of variation (C.V.%) listed at the bottom of each data column is a relative measure of the amount of variation recorded for a particular trait expressed as a percentage of the mean for that trait. It is a measure of the precision or effectiveness of the trial and the procedures used in conducting it. The numbers that you see in the tables are an average of all four replications. The C.V. for yield in the 2020 Scranton HRSW variety trial was 5.9% meaning that there was a 5.9 percent average variation between high and low yields among replications. In summation, a trial with a C.V. of 6% is more precise and reliable than a trial with a C.V. of 18%. When comparing yields, trials with a C.V. less than 15% are generally considered reliable.

To determine if one variety, fertilizer rate, herbicide, planting date, etc. is better than another, use the least significant difference (LSD 5%) value at the bottom of each data column. The LSD 5% value is a statistical method of indicating if a trait like yield differs when comparing two hybrids. If the yield of hybrid A exceeds hybrid B by more than the LSD value, you can conclude that under like environmental conditions, hybrid A is expected to significantly out-yield hybrid B. The LSD value allows you to separate variety yields or any other variable and determine whether or not they are actually different.

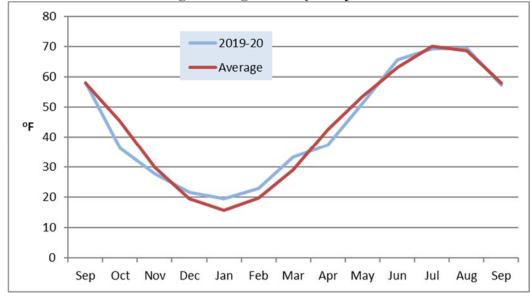
For example, in the HRSW trial at Scranton, the variety "Elgin ND" averaged 48.3 bu/ac in 2020 compared to "Bolles" at 39.6 bu/ac. Did the yield difference between these varieties differ significantly? Compare the yield difference of 8.7 bu/ac between the varieties (48.3 – 39.6) to the LSD 5% value of 5.9 bu/ac. Since the 8.7 bu/ac difference is more than the LSD value of 5.9 bu/a, the varieties do differ significantly in yield. If the difference between these two varieties would have been 5.0 bu/ac, their difference would have been less than 5.9 bu/ac; therefore, the yield difference between these varieties would not have been statiscally significant.

When selecting a variety or hybrid evaluate as much performance information as possible. Give more weight to information from trials close to home and look at relative performance over many locations and years. Performance averaged over many tests is called "yield stability." Good yield stability means that, while a variety may or may not be the best yielder at all locations, it ranks high in yielding potential at many locations and years. A hybrid that ranks in the upper 20% at all locations exhibits better yield stability than one that is the top variety at one location but ranks in the lower 40% at the other locations.

Weather Summary – Hettinger

Frost Free Days										
28°F 32°F 50% Probability 32°F										
Date of Last Frost	May 11	May 11	May 20							
Date of First Frost	September 8	September 8	September 16							
Frost Free Days	120	120	119							

	Precipitation (inches)										
						65 Year					
Month	2015-16	2016-17	2017-18	2018-19	2019-20	Average					
October	2.0	0.9	0.0	0.6	2.2	1.1					
November	0.0	0.4	0.2	0.7	0.6	0.5					
December	0.5	0.1	0.2	0.4	0.3	0.3					
January	0.2	0.6	0.3	0.4	0.1	0.4					
February	0.4	0.2	0.6	1.1	0.2	0.4					
March	0.2	0.9	0.3	0.3	0.1	0.7					
April	3.7	1.2	1.6	1.3	0.2	1.6					
May	1.0	0.6	1.7	4.0	0.5	2.7					
June	0.9	0.3	3.7	3.9	1.7	3.3					
July	1.5	1.7	2.7	2.1	2.5	2.0					
August	1.7	1.8	0.9	3.0	1.9	1.7					
September	2.3	1.9	1.7	4.1	1.1	1.4					
April-August	8.9	5.6	10.6	14.4	6.7	11.4					
Total	14.4	10.6	13.9	21.9	11.2	16.2					


	Air Temperature ([°] F)											
						65 Year						
Month	2015-16	2016-17	2017-18	2018-19	2019-20	Average						
October	48.5	48.1	44.9	40.5	36.3	45.3						
November	32.4	39.5	32.4	27.7	27.9	30.0						
December	23.9	10.1	19.0	24.0	21.6	19.6						
January	20.1	11.8	17.1	17.8	19.5	15.6						
February	32.0	24.6	6.0	-0.6	22.8	19.7						
March	38.8	34.1	27.4	20.3	33.3	29.2						
April	44.2	43.6	35.1	42.0	37.5	42.4						
May	54.2	55.2	58.7	47.2	51.3	53.6						
June	68.7	66.1	65.4	61.9	65.7	63.2						
July	72.0	76.3	69.1	68.8	69.4	70.2						
August	69.0	66.8	67.8	65.4	69.5	68.6						
September	60.7	58.2	56.3	58.3	57.4	58.0						
Average	47.0	44.5	41.6	39.4	42.7	43.0						

	Corn Growing Degree Days (GDD)											
						48 Year						
Month	2016	2017	2018	2019	2020	Average						
May	298	297	371	154	218	259						
June	545	519	467	409	505	424						
July	626	699	579	556	593	587						
August	568	520	511	529	586	537						
September	380	339	321	393	336	327						
Total	2417	2374	2249	2041	2238	2135						

Hettinger Monthly Precipitation

Hettinger Average Monthly Temperature

	Maximu	m temp	Minimu	n temp	Precipi	tation	Small gra	ins GDD ¹ -	Corn (GDD ²
	Long Term	Current	Long Term	Current						
Month	1983 - 2020	Year	1983 - 2020	year						
	°]	F	°F		incl	nes				
November - 19	39.5	36.5	18.9	17.9	0.56	0.75				
December - 19	26.9	29.8	7.8	12.6	0.44	0.58				
January	24.9	25.5	5.7	7.0	0.42	0.68				
February	28.4	31.0	8.6	11.4	0.44	0.44				
March	40.0	42.8	18.8	21.7	0.74	0.27				
April	54.3	51.1	29.1	24.4	1.41	0.59	333	332		
May	66.3	65.5	40.7	38.1	2.58	1.45	673	637	256	252
June	76.1	80.9	50.6	51.2	3.12	1.10	925	1021	401	493
July	83.6	82.9	55.7	55.6	2.31	2.67	1169	1155	611	583
August	82.7	84.5	54.0	54.7	2.01	2.56	1127	1163	569	578
September	71.4	71.6	43.9	42.5	1.70	0.86	770	756	322	327
October	55.9	50.4	31.1	26.1	1.17	0.26				
Mean	54.2	54.4	30.4	30.3	_					
Total					16.91	12.21	4998	5062	2159	2231

2020 Weather Summary for the Dickinson Research Extension Center Ranch Headquarters, Manning, ND.

¹ Small grains GDD, is growing degree days calculated with 95°F as the maximum temperature and 32°F as the base temperature.

 2 Corn GDD, is growing degree days calculated with 86 $^{\circ}$ F as the maxium temperature and 50 $^{\circ}$ F as the base temperature.

Source: Dickinson Research Extension Center. Data compiled by Garry Ottmar, Ranch Manager; Ryan Buetow, Area Extension Specialist/ Cropping System; and Sheri Schneider, Information Processing Specialist.

North Dakota	hard red	spring wheat	variety of	descriptions.	agronomic	traits, 2020.

						Reaction to Disease ⁴					
	Agent or	Year	Height	Straw	Days to	Stem	Leaf	Stripe	Tan	Bact. Leaf	Head
Variety	Origin ¹	Released	(inches)	Strength ²	Head ³	Rust ⁵	Rust	Rust	Spot	Streak	Scab
AP Murdock	Syngenta/AgriPro	2019	26	4	53	1	NA	NA	NA	5	6
Ambush	Dyna-Gro	2016	27	5	53	1	4	3	4	6	5
Ballistic	Dyna-Gro	2018	28	3	54	1	5	NA	NA	5	3
Barlow	ND	2009	28	6	52	1	6	4	4	4	4
Bolles	MN	2015	28	4	56	1	3	5	4	6	5
Boost	SD	2016	29	5	56	1	4	3	8	2	5
Commander	Dyna-Gro	2019	27	3	53	1	4	NA	3	4	5
CP3530	Croplan	2015	30	5	56	1	2	8	6	5	5
CP3903	Croplan	2020	27	2	53	1	7	NA	NA	5	4
CP3910	Croplan	2019	26	5	52	1	1	NA	8	8	6
CP3915	Croplan	2019	27	4	54	1	1	NA	7	4	5
Dagmar ⁶	MT	2019	27	6	53	1	7	NA	NA	7	7
Driver	SD	2019	28	3	55	1	1	NA	NA	7	3
Elgin-ND	ND	2012	30	5	53	1	6	5	6	6	4
Faller	ND	2007	28	5	56	1	7	8	7	5	4
Glenn	ND	2005	30	4	52	1	6	4	6	4	4
Lang-MN	MN	2017	28	5	55	1	2	1	4	3	3
Lanning	МТ	2017	26	4	54	1	7	NA	NA	8	6
LCS Buster	Limagrain	2020	28	6	59	NA	NA	NA	NA	4	5
LCS Cannon	Limagrain	2018	26	4	51	1	7	NA	5	7	6
LCS Rebel	Limagrain	2017	29	6	52	1	7	4	3	4	5
LCS Trigger	Limagrain	2016	29	5	60	1	1	2	6	3	3
Linkert	MN	2013	25	2	54	1	3	1	4	6	5
MN-Torgy	MN	2020	27	3	54	1	4	NA	NA	3	3
MN-Washburn	MN	2019	26	3	56	1	1	NA	6	5	5
MS Barracuda	Meridian Seeds	2018	25	4	51	1	2	NA	7	7	6
MS Chevelle	Meridian Seeds	2014	26	5	53	1	4	3	6	7	6
MS Ranchero	Meridian Seeds	2020	27	5	54	1	4	NA	NA	6	6
ND Frohberg	ND	2020	29	4	54	1	5	NA	NA	4	5
ND VitPro	ND	2016	28	3	53	1	4	3	7	4	4
Shelly	MN	2016	26	4	56	1	6	5	3	7	5
SY 611CL2	Syngenta/AgriPro	2019	25	5	54	1	6	NA	4	6	5
SY Ingmar	Syngenta/AgriPro	2014	27	3	54	1	3	6	6	4	5
SY Longmire ⁶	Syngenta/AgriPro	2019	27	4	54	1	7	NA	2	6	7
SY McCloud	Syngenta/AgriPro	2019	27	4	54	1	5	NA	7	8	5
SY Rockford	Syngenta/AgriPro	2017	27	4	55	1	6	NA	2	8	6
SY Soren	Syngenta/AgriPro	2011	25	3	54	1	2	7	2	7	7
SY Valda	Syngenta/AgriPro	2011	25 26	4	54	1	2	7	6	6	5
TCG-Heartland	21st Century Genetics	2019	26	3	52	1	2	NA	5	7	6
TCG-Spitfire	21st Century Genetics	2015	20	3	52	1	5	4	8	4	6
TCG-Wildcat	21st Century Genetics	2015 2020	27	3	55	1	5	NA	NA	5	NA
Velocity	Dyna-Gro	2020	27	3	54	1	2	NA	NA	6	5

¹Refers to agent or developer: MN = University of Minnesota; MT = Montana State University; ND = North Dakota State

University; SD = South Dakota State University. Bold varieties are those recently released, so data are limited and rating values may change.

²Straw Strength = 1 to 9 scale, with 1 the strongest and 9 the weakest. These values are based on recent data and may change as more data become available.

 3 Days to Head = the number of days from planting to head emergence from the boot, averaged based on data from several locations in 2020.

⁴Disease reaction scores from 1 to 9, with 1 = resistant and 9 = very susceptible, NA = not available.

⁵Fargo stem rust nursery inoculated with Puccinia graminis f. sp. Tritici races TPMK, TMLK, RTQQ, QFCQ and QTHJ.

⁶Solid stemmed or semisolid stem, imparting resistance to sawfly.

X 7. • 4	Test Weight ¹	Vitreous Kernels ²	1,000 KWT ³	Falling Number ⁴	Wheat Protein ⁵	Flour Extraction ⁶	Farinograph Absorption ⁷	Farinograph Stability ⁸	Loaf Volume ⁹
Variety							_		
	(lb/bu)	(%)	(gram)	(seconds)	(%)	(%)	(%)	(minutes)	(cubic cm)
Ambush	61.8	42	38.3	393	16.4	66.0	62.7	10.7	975
Barlow	61.7	59	35.9	370	16.0	67.8	66.3	16.1	1,003
Bolles	60.2	53	37.1	446	17.8	64.4	65.4	30.7	990
Boost	60.3	55	37.4	424	15.7	66.8	65.3	8.5	988
Commander	61.3	40	38.4	401	15.9	67.0	64.1	7.5	905
CP 3530	60.8	30	37.7	380	15.1	69.0	65.4	10.9	965
CP 3910	62.6	81	34.8	363	16.2	69.4	61.9	13.5	1,015
CP 3915	62.5	88	34.3	422	16.3	70.7	64.5	15.0	960
Elgin-ND	60.7	50	34.1	391	15.7	66.9	65.5	9.6	975
Faller	60.5	36	38.1	400	14.6	68.3	63.2	12.2	955
Glenn	63.3	92	35.6	352	16.4	65.8	65.8	14.0	988
Lang-MN	61.5	81	36.0	395	16.4	67.3	66.1	9.5	918
Lanning	61.2	81	39.4	372	16.3	65.4	64.6	10.4	903
LCS Cannon	62.7	51	36.6	338	15.7	69.6	64.0	12.7	985
LCS Rebel	62.0	60	38.3	384	15.7	68.5	64.2	12.7	930
LCS Trigger	61.1	59	33.4	439	13.1	68.4	63.5	10.2	728
Linkert	61.1	59	39.6	430	16.9	65.1	65.7	20.2	1,000
MN-Torgy	61.6	46	35.7	449	15.8	66.3	63.5	19.0	858
MN-Washburn	61.0	94	33.0	431	15.0	69.4	61.8	18.0	883
MS Barracuda	61.4	56	41.7	447	16.7	67.4	65.7	12.2	1,013
MS Chevelle	61.1	45	34.5	367	14.6	67.8	64.0	11.2	970
ND Frohberg	61.8	56	39.0	426	16.0	65.7	68.6	13.3	980
ND VitPro	62.9	92	35.9	409	16.5	66.6	65.6	9.7	998
Shelly	61.4	35	37.8	470	15.2	70.0	61.6	25.7	878
SY 611 CL2	63.0	78	37.2	417	16.0	65.4	69.3	8.2	890
SY Ingmar	61.9	55	34.8	412	16.4	66.6	64.9	12.2	1,063
SY Longmire	61.9	47	36.8	447	16.0	67.8	65.4	12.3	993
SY McCloud	62.4	46	40.8	340	16.4	66.3	67.3	10.9	940
SY Rockford	60.0	41	36.9	452	15.3	66.3	66.4	11.4	905
SY Soren	61.7	32	34.0	413	16.6	67.1	64.8	10.3	1,038
SY Valda	60.9	67	37.3	380	15.1	67.2	62.8	9.6	933
TCG-Heartland	62.5	49	39.6	421	16.3	68.1	64.9	17.3	918
TCG-Spitfire	60.9	53	36.0	366	14.8	67.3	65.0	14.6	935
TCG-Stalwart	60.4	54	38.1	426	16.5	68.4	64.5	15.5	973

¹Test weight - Expressed in pounds (lbs) per bushel. A high test weight is desirable. A 58 lb test weight is required for a grade of U.S. No. 1.

²Vitreous kernels - Expressed as a percentage of seeds having a vitreous-colored endosperm. A high percentage is desirable. US No. 1 DNS requires greater than 75% vitreous kernels.

³1,000 KWT - Estimate of weight of 1,000 seeds based on a clean 10g sample. Expressed in grams and used to approximate seed size.

⁴Falling Number - Expressed in seconds at a 14% moisture basis. It is used as an indicator of sprouting based on elevated enzyme activity. A high falling number is desirable, preferably greater than 400 seconds.

⁵Wheat Protein - Measured by NIR at a 12% moisture basis. A high protein is desirable for baking quality.

⁶Flour Extraction - Percentage of milled flour recovered from cleaned and tempered wheat. A high flour extraction percentage is desirable.

⁷Farinograph Absorption - Measured by NIR at a 14% moisture basis. A measure of dough water absorption, expressed as percent. A high absorption is desirable.

⁸Farinograph Stability - A measure of dough strength. It is expressed in minutes above the 500 Brabender unit line during mixing. A high stability is desirable.

⁹Loaf Volume - The volume of the pup loaf of bread, expressed in cubic centimeters. A high volume is desirable.

Hard Red Spring Wheat - 2020 Scranton, ND Average Yield Plant Plant Test Grain ----- Grain Yield -----Variety Height Lodge Weight Protein 2018 2019 2020 2 yr 3 yr inches 0-9* lbs/bu % ----- Bushels per acre ------AP Murdock 23 0 60.3 15.3 ---35.7 -------29 47.2 Barlow 0 64.0 15.0 33.0 28.3 37.8 36.2 Bolles 27 0 59.4 39.6 17.6 34.4 18.9 29.3 31.0 CP3910 25 0 63.1 14.3 ---47.6 --------CP3915 24 0 62.3 14.9 41.4 ----------Dagmar 25 0 60.6 15.4 45.4 ---------Dyna-Gro Commander 25 0 61.3 14.8 ------38.5 ----Elgin-ND 29 0 61.8 15.7 44.0 30.2 48.3 39.3 40.8 Glenn 28 0 63.8 15.6 33.7 21.2 40.2 30.7 31.7 0 Lang-MN 28 61.8 15.6 44.0 29.5 45.3 37.4 39.6 Lanning 25 0 61.7 15.4 --25.0 50.3 37.7 --LCS Cannon 26 0 64.1 14.6 ---27.8 44.0 35.9 --LCS Rebel 27 0 62.3 15.5 25.8 45.7 35.8 33.9 35.1 LCS Trigger 26 0 61.2 13.0 57.0 39.1 50.6 44.9 48.9 MN Torgy 26 0 62.7 14.5 -----45.8 ----MN Washburn 24 0 61.2 14.4 --29.0 43.0 36.0 ---ND Frohberg 28 0 60.9 16.4 19.9 40.4 30.2 ----ND VitPro 26 0 62.9 15.3 35.4 24.1 43.6 33.9 34.4 Shelly 25 0 60.7 14.7 44.2 26.0 40.7 33.4 37.0 SY Longmire 24 0 62.1 15.4 41.3 38.5 --35.7 --SY McCloud 25 0 62.8 15.7 42.7 ---------SY Rockford 25 0 59.4 15.7 41.1 29.5 43.2 36.4 37.9 23 0 42.2 SY Soren 61.7 15.0 37.2 28.0 35.1 35.8 TCG Heartland 24 0 61.5 15.9 40.2 -----------24 TCG Spitfire 0 61.2 14.8 46.7 36.0 43.6 39.8 42.1 Trial Mean 26 0 61.8 15.2 39.9 28.1 43.5 37.7 35.9 C.V. % 3.8 --1.6 3.2 5.3 9.6 16.8 ----LSD 5% 1.4 NS 1.4 0.7 3.0 6.6 5.9 ----LSD 10% 1.2 NS 1.1 0.6 2.5 5.6 4.9 -----

* 0 =no lodging, 9 = 100% lodged.

Planting Date: April 22

Harvest Date: August 22

Hard Red Spring Whe	eat - 202				Reg	ent, ND			
	Plant	Plant	Test	Grain		rain Yie			e Yield
Variety	Height	-	Weight	Protein	2018	2019	2019	2 yr	3 yr
	inches	0-9*	lbs/bu	%		Bus		acre	
AP Murdock	24	0	55.7	14.1			21.3		
Barlow	27	0	59.2	15.4	45.1	40.9	26.1	33.5	37.4
Bolles	26	0	59.0	16.3	45.2	41.5	16.4	29.0	34.4
CP3910	24	0	59.0	14.4			18.5		
CP3915	25	0	59.1	14.9			29.0		
Dagmar	25	0	56.5	15.2			28.0		
Dyna-Gro Commander	24	0	57.4	14.8			19.3		
Elgin-ND	28	0	57.7	15.1	48.6	48.7	26.7	37.7	41.3
Glenn	26	0	58.7	15.2	46.3	39.0	21.6	30.3	35.6
Lang-MN	27	0	59.3	14.9	53.4	47.7	28.4	38.1	43.2
Lanning	25	0	56.8	15.1		46.0	21.3	33.7	
LCS Cannon	24	0	60.2	14.3		37.5	19.6	28.6	
LCS Rebel	26	0	59.2	15.3	48.8	42.7	24.7	33.7	38.7
LCS Trigger	25	0	60.0	13.4	52.9	58.8	38.2	48.5	50.0
MN Torgy	25	0	56.8	14.8			22.4		
MN Washburn	24	0	58.4	14.8		44.6	26.9	35.8	
ND Frohberg	26	0	**	15.4		43.1	14.7	28.9	
ND VitPro	26	0	58.8	15.8	48.3	38.0	24.5	31.3	36.9
Shelly	23	0	57.3	14.2	51.6	44.3	20.8	32.6	38.9
SY Longmire	24	0	59.5	15.3		49.6	27.8	38.7	
SY McCloud	25	0	58.4	16.1			20.9		
SY Rockford	26	0	55.9	15.4	51.3	44.0	20.4	32.2	38.6
SY Soren	22	0	**	15.4	47.3	44.1	16.3	30.2	35.9
TCG Heartland	23	0	58.0	15.4			18.4		
TCG Spitfire	24	0	56.5	14.8	48.9	51.9	26.8	39.4	42.5
Trial Mean	25	0	58.2	15.0	48.1	44.2	23.2	34.2	39.5
C.V. %	4.6		2.2	3.8	6.3	6.9	16.7		
LSD 5%	1.6	NS	1.6	0.8	4.3	4.3	5.5		
LSD 10%	1.4	NS	1.3	0.7	3.6	3.6	4.6		

* 0 = no lodging, 9 = 100% lodged.

** Not enough sample for test weight reading.

Planting Date: April 22

Harvest Date: August 20

Hard Red Spring Wheat - 2020

Mandan, ND

	Plant	Plant	Test	Grain	G	rain Yie	ld	Averag	
Variety	Height	Lodge	Weight	Protein	2018	2019	2020	2 yr	3 yr
	inches	0-9*	lbs/bu	%		Bus	hels per	acre	
AAC Concord	28	0	60.3	14.5			45.5		
AP Murdock	23	0	61.2	14.3		40.6	44.7	42.7	
Barlow	26	0	62.1	14.8	46.2	34.4	43.0	38.7	41.2
Bolles	26	0	60.2	17.2	48.6	35.6	40.7	38.2	41.6
Boost	27	0	60.7	15.1	50.5	34.8	44.5	39.7	43.3
CP3530	28	0	62.2	14.7	48.2	38.8	45.9	42.4	44.3
CP3903	26	0	62.2	15.0			42		
CP3910	24	0	63.1	15.1		33.6	45.3	39.5	
CP3915	25	0	62.4	14.4		36.2	47.9	42.1	
Dagmar	25	0	60.8	15.3			40.5		
Driver	27	0	62.5	13.9			50.7		
Dyna-Gro Ambush	25	0	61.5	14.3	50.5	36.2	42.9	39.6	43.2
Dyna-Gro Ballistic	27	0	61.7	13.9		31.9	52.6	42.3	
Dyna-Gro Commander	25	0	61.0	14.7		35.0	44.5	39.8	
Dyna-Gro Velocity	24	0	61.3	14.8			38.2		
Elgin ND	28	0	61.8	14.2	48.9	38.7	51.6	45.2	46.4
Faller	25	0	61.5	13.8	45.6	42.1	48.3	45.2	45.3
Glenn	28	0	62.4	15.0	56.0	34.8	42.0	38.4	44.3
Lang MN	26	0	62	14.9	51.3	40	48.8	44.4	46.7
Lanning	24	0	61.1	14.9	46.3	36.7	47.4	42.1	43.5
LCS Buster	26	0	61.6	12.2			54.0		
LCS Cannon	25	0	62.9	14.8	50.0	37.1	41.5	39.3	42.9
LCS Rebel	28	0	61.8	15.6	52.0	36.8	46.8	41.8	45.2
LCS Trigger	24	0	62.4	12.1	43.5	41.7	50.2	46.0	45.1
Linkert	24	0	62.1	15.0	45.9	35.5	45.1	40.3	42.2
MN Torgy	23	0	62.4	14.1		40.7	48.2	44.5	
MN Washburn	24	0	61.6	13.7	52.4	35.4	40.4	37.9	42.7
MS Barracuda	24	0	60.6	16.3	50.2	34.7	43.6	39.2	42.8
MS Chevelle	23	0	61.5	13.7	49.8	36.3	41.7	39.0	42.6
MS Ranchero	24	0	60.4	14.3			49.1		
ND Frohberg	26	0	61.6	15.2		32.1	45.2	38.7	
ND VitPro	25	0	62.4	15.7	47.1	36.9	46.1	41.5	43.4
Shelly	23	0	60.1	14.1	51.8	37.2	48.7	43.0	45.9
Table continued on n	ext page								

Hard Red Spring Wheat - 2020

Mandan, ND

	Plant	Plant	Test	Grain	G	rain Yie	ld	Averag	e Yield
Variety	Height	Lodge	Weight	Protein	2018	2019	2020	2 yr	3 yr
	inches	0-9*	lbs/bu	%		Bus	shels per	acre	
Table continues fr	om previou	s page							
SY 611 CL2	23	0	63.2	15.0	45.3	40.7	44.3	42.5	43.4
SY Ingmar	24	0	61.8	15.6	55.4	33.0	39.9	36.5	42.8
SY Longmire	25	0	62.3	15.4	52.6	32.6	45.1	38.9	43.4
SY McCloud	26	0	62.3	15.8	45.8	32.5	41.5	37.0	39.9
SY Rockford	26	0	60.1	15.2	46.0	38.2	49.6	43.9	44.6
SY Soren	23	0	61.9	15.0	48.0	30.4	39.4	34.9	39.3
SY Valda	25	0	61.8	14.1	46.0	41.5	51.5	46.5	46.3
TCG Heartland	24	0	62.6	15.3		30.9	42.1	36.5	
TCG Sptifire	25	0	61.8	13.2	49.2	38.5	48.7	43.6	45.5
TCG Wildcat	25	0	61.9	15.6			38.9		
Trial Mean	25	0	61.6	14.7	49.3	36.1	44.8	40.9	43.6
C.V. %	6.5		1.5	3.3	15.7	7.6	14.0		
LSD 5%	2.3		1.3	0.7	4.1	3.8	8.8		
LSD 10%	1.9		1.1	0.6	3.4	3.2	7.4		

* 0 = no lodging, 9 = 100% lodged.

Planting Date: May 1

Harvest Date: August 26

Previous Crop: Soybean

2020 Hard Red Spring Wheat - Recrop

Dickinson, ND

	Days	Seeds				G	rain Yie	ld	Average	e Yield
	to	per	Plant	Test					2	3
Variety	Head	Pound	Height	Weight	Protein	2018	2019	2020	Year	Year
			in	lbs/bu	%		bu/ac		bu/	ac
AAC Concord	61	11,938	26	60.0	15.9			43.5		
AP Murdock	59	13,230	21	60.5	15.8			42.0		
Barlow	58	12,501	26	62.2	15.7	60.2	45.2	43.5	44.3	49.6
Bolles	61	11,500	25	60.4	18.5	65.0	38.4	38.6	38.5	47.3
Boost	61	11,484	25	60.7	17.0	57.5	47.7	42.3	45.0	49.2
CP 3530	61	11,219	28	61.0	15.7	63.1	52.0	44.4	48.2	53.2
CP 3903	59	13,046	24	61.8	16.3			42.2		
CP 3910	57	12,856	23	62.2	16.2		51.0	40.7	45.9	
CP 3915	60	12,285	25	62.0	16.4		51.5	44.5	48.0	
Dagmar	59	10,902	24	61.0	16.3			44.8		
Driver	60	12,318	27	62.6	15.7			45.4		
Dyna-Gro Ambush	58	12,273	24	61.3	16.7	61.6	46.5	40.8	43.6	49.6
Dyna-Gro Ballistic	60	11,938	26	61.0	16.1			48.5		
Dyna-gro Commander	59	11,824	23	61.1	16.7		47.2	40.7	44.0	
Dyna-Gro Velocity	59	13,154	24	61.7	17.0			40.4		
Elgin-ND	59	12,306	26	61.0	15.7	60.1	47.3	43.8	45.5	50.4
Faller	60	11,335	25	60.8	16.0	72.1	51.2	46.8	49.0	56.7
Glenn	57	13,125	26	62.6	16.6	63.5	44.8	37.3	41.0	48.5
LCS Buster	64	11,649	24	60.8	13.9			52.2		
LCS Cannon	57	12,568	23	62.7	15.3	56.6	47.3	44.4	45.8	49.4
LCS Rebel	57	11,248	26	61.9	16.7	60.4	48.9	44.4	46.7	51.3
LCS Trigger	65	12,906	25	61.7	14.4	76.0	47.1	51.6	49.3	58.2
Lang-MN	60	13,204	25	61.6	16.1	61.3	51.2	42.6	46.9	51.7
Lanning	59	11,228	22	60.4	16.7	69.5	49.2	44.4	46.8	54.3
Linkert	59	11,321	23	60.9	17.5	58.8	47.1	40.1	43.6	48.7
MN Washburn	61	12,754	23	61.2	15.5	64.8	48.6	40.1	44.4	51.2
MN Torgy	59	12,033	24	61.5	15.8			45.4		
MS Barracuda	56	11,249	22	60.9	17.0	51.1	36.8	36.4	36.6	41.4
MS Chevelle	59	13,416	23	61.7	14.6	67.3	54.8	46.9	50.8	56.3
MS Ranchero	58	11,891	24	60.3	15.2			47.5		
Mott	61	13,020	27	60.9	16.5	60.1	42.7	43.8	43.2	48.9
ND Frohberg	60	11,125	26	61.4	16.8	55.7	48.2	41.2	44.7	48.4
ND-VitPro	59	12,509	25	61.8	17.0	59.6	44.7	38.9	41.8	47.7
Table continued on ne		· ·								

2020 Hard Red Spring Wheat - Recrop Dickinson, ND Seeds ----- Grain Yield------Days Average Yield to Plant Test 2 3 per Variety Head Pound Height Weight Protein 2018 2019 2020 Year Year % in lbs/bu -----bu/ac---------bu/ac----Table continues from previous page SY Ingmar 60 12,802 23 62.1 16.7 61.8 46.8 43.3 45.1 50.7 SY Longmire 49.8 46.4 60 11,644 24 61.5 16.0 61.5 43.0 51.4 SY McCLoud 46.2 60 11,521 23 61.7 17.5 60.5 39.9 43.1 48.9 SY Rockford 61 11,667 24 59.8 16.1 64.9 54.0 47.5 50.7 55.4 Sy Soren 60 12,742 21 61.3 16.9 61.9 48.6 40.5 44.5 50.3 Sy Valda 60 11,612 22 61.8 15.0 62.9 47.0 52.2 46.6 46.8 SY611CL2 59 12,098 23 61.9 16.4 --49.8 44.2 47.0 --Shelly 62 11,946 24 61.8 15.3 48.1 45.9 47.0 54.8 70.4 TCG-Heartland 58 12,417 23 61.7 17.1 43.9 41.0 42.5 -----TCG-Spitfire 63 11,495 25 14.7 52.6 61.5 66.1 47.7 50.1 55.5 TCG-Wildcat 60 11,715 24 62.0 16.2 --47.3 -------Trial Mean 60 12,127 24 61.4 16.2 63.1 47.6 43.3 ----CV % 1.4 4.7 4.7 0.7 3.6 8.5 8.1 7.6 ----LSD 0.05 1 788 2 0.6 0.8 7.5 5.4 4.6 ----LSD 0.10 1 0.7 4.5 660 1 0.5 6.2 3.8 ----

Planting Date: April 27, 2020

Harvest Date: August 12, 2020

Previous Crop: Soybean

Seeding Rate: 1.2 million live seeds/ac

2020 Glen Ullin Spring Wheat - Recrop

Dickinson, ND

	Seeds				Grain Yie	ld	Averag	e Yield
	per	Test					2	3
Variety	Pound	Weight	Protein	2017	2018	2020	Year	Year
		lbs/bu	%		bu/ac		bu	/ac
Barlow	13,887	61.9	14.6	33.9	72.8	50.0	61.4	52.2
CP 3915	14,814	61.6	13.8			51.1		
Driver	13,877	61.4	13.8			50.9		
Dyna-Gro Commander	13,500	60.5	14.3			49.0		
LCS Cannon	14,447	62.0	14.4			41.8		
Lanning	13,633	61.0	14.5			46.1		
MN Washburn	13,713	60.3	13.5			49.5		
MN-Torgy	13,291	61.2	14.1			57.7		
MS Barracuda	12,747	60.2	14.8			45.9		
ND Frohberg	12,301	60.4	14.5			47.0		
ND VitPro	13,739	61.9	15.2	35.3	71.5	43.6	57.6	50.2
SY Longmire	12,626	61.1	14.8			48.9		
SY McCLoud	11,827	61.2	14.9			43.6		
Trial Mean	13,416	61.1	14.4	37.2	75.0	48.1		
CV %	3.9	0.9	2.2	16.4	6.6	8.1		
LSD 0.05	755	0.8	0.5	NS	7.1	5.6		
LSD 0.10	628	0.6	0.4	NS	5.9	4.6		
Planting Data:	May 6, 2020							

Planting Date: May 6, 2020

2019 Crop was lost due to hail

Harvest Date: August 18, 2020

Seeding Rate: 1.2 million live seeds/ac

North Dakota hard red winter wheat variety description and agronomic traits.

				Reac	tion to Dis	ease ¹					
	Agent or		Stripe	Leaf	Stem		Tan	Days to	Straw	Height ⁵	Winter ⁶
Variety	Origin²	Year	Rust	Rust	Rust	Scab	Spot	Heading ³	Strength ⁴	(inches)	Hardiness
AAC Wildfire	FP Genetics	2015	1	5	8	NA	NA	1	3	29	3
AC Emerson	Meridian	2011	1	6	1	3	5	1	2	32	4
Ideal	SD	2011	4	1	3	8	4	-1	4	28	4
Jerry	ND	2001	8	3	1	8	8	0	5	34	3
Keldin	WB	2011	2	3	3	5	3	0	3	29	5
ND Noreen	ND	2020	3	3	1	3	5	0	4	29	3
Northern	MT	2015	1	8	1	8	6	2	4	29	5
Oahe	SD	2016	2	6	6	4	6	-2	5	29	4
Peregrine	CDC	2008	1	3	1	6	6	1	5	34	2
SY Monument	Agripro	2014	3	3	1	6	5	-2	4	27	3
SY Sunrise	Agripro	2015	3	4	2	6	7	-2	4	23	6
SY Wolf	Agripro	2010	3	3	1	6	1	-2	3	27	6
SY Wolverine	Agripro	2019	4	3	1	4	5	-5	4	25	4
TCG-Boomlock	TCG	2019	NA	NA	NA	NA	NA	-1	4	29	6
Thompson	SD	2017	5	3	3	3	6	-1	3	30	5
WB4462	WB	2016	7	3	NA	8	6	-5	4	28	4
WB4595	WB	2019	4	4	NA	6	6	-1	3	28	6

¹Disease reaction scores from 1-9, with 1 = resistant and 9 = very susceptible, NA = not available.

²CDC = Crop Development Centre, University of Saskatchewan; MT = Montana State University; ND = North Dakota State University;

SD = South Dakota State University; TCG = Twenty-first Century Genetics; WB = WestBred.

³Days to heading relative to Jerry.

⁴Straw strength: 1 = strongest, 9 = weakest. Based on field observations in limited sites in 2020.

⁵Based on the average of several environments, and should be used for comparing varieties. The environment can impact the height of varieties.

 6 Relative winter hardiness rating: 1 = excellent, 10 = no survival. These values are subject to change as additional information becomes available. Bold varieties are those recently released or the first time tested, so data are limited and rating values may change.

2020 Winter Wheat - Recrop

Dickinson, ND

			Seeds				(Grain Yie	eld	Averag	e Yield
	Winter	Heading	per	Plant	Test					2	3
Variety	Survival	Date	Pound	Height	Weight	Protein	2018	2019	2020	Year	Year
		from 1/1		in	lbs/bu	%		bu/ac		bu/ac	bu/ac
AAC-Wildfire	100	167	12,386	25	60.1	14.1			51.8		
AC Emerson	100	165	15,369	24	59.1	15.4	83.1	45.2	38.0	41.6	55.4
Ideal	100	164	13,068	22	59.5	12.4	90.6	49.6	45.5	47.5	61.9
Jerry	100	163	13,176	24	57.7	13.3	84.6	46.7	45.1	45.9	58.8
Keldin	100	166	10,898	22	60.1	13.7	99.0	53.9	38.2	46.0	63.7
NE14696	100	162	12,837	22	58.7	12.9			40.5		
NW13493	100	163	12,905	21	59.9	12.4			43.1		
Northern	100	165	12,657	21	59.6	14.3	85.2	54.0	44.3	49.1	61.1
Oahe	100	163	11,671	22	59.4	13.1	74.7	54.6	41.2	47.9	56.8
Peregrine	100	164	13,970	25	59.9	12.5	90.6	51.3	46.5	48.9	62.8
SY Monument	100	162	13,373	21	58.0	12.0	76.2	54.9	41.0	47.9	57.4
SY Sunrise	100	162	12,883	18	58.9	12.1	64.1	49.3	37.5	43.4	50.3
SY Wolf	100	162	13,030	21	60.1	13.5	80.5	60.4	42.1	51.2	61.0
SY Wolverine	100	161	12,601	20	59.1	12.5			40.5		
TCG Boomlock	100	163	14,124	22	59.6	13.4		53.2	42.6	47.9	
Thompson	100	164	14,152	23	59.1	14.0	84.4	53.2	44.2	48.7	60.6
WB-4462	100	161	12,317	21	58.2	12.2	68.7	55.2	39.6	47.4	54.5
WB-4595	100	164	12,182	21	62.4	12.2		60.0	43.3	51.6	
Trial Mean	100	163	12,870	22	59.5	13.2	83.3	53.0	42.9		
CV %	0	0.4	7.1	5.1	0.6	3.3	8.8	8.5	8.1		
LSD 0.05	0	1	1,296	2	0.5	0.6	10.3	6.4	4.9		
LSD 0.10	0	1	1,082	1	0.4	0.5	8.6	5.3	4.1		

Planting Date: September 23, 2019

Harvest Date: August 3, 2020

Protein adjusted to 12% moisture

Previous Crop: oat hay

Seeding Rate: 1 million live seeds/ac

Winter Rye - 2020

	Spring	Heading	Plant	Plant	Test	(brain Yie	ld	Averag	e Yield
Variety	Stand	Date	Height	Lodge	Weight	2018	2019	2020	2 yr	3 yr
	%		inches	$0-9^{1}$	lbs/bu		Bus	shels per	acre	
Aroostok	83	5/31	50	6	50.4	27.6	54.1	36.6	45.4	39.4
Bono (hybrid)	84	6/5	38	1	54.4		98.2	68.9	83.6	
Brasetto (hybrid)	80	6/5	37	1	53.6	58.6	89.9	64.3	77.1	70.9
Dacold	48	6/6	44	3	51.1	37.6	43.8	38.4	41.1	39.9
Danko	78	6/4	43	2	54.0			45.5		
Hazlet	86	6/4	41	5	53.6	40.2	68.6	50.1	59.4	53.0
ND Dylan	85	6/4	45	4	52.1	21.6	69.5	50.5	60.0	47.2
ND Gardner	90	5/31	47	6	51.1	28.6	61.7	38.3	50.0	42.9
Rymin	74	6/3	41	5	52.9	39.6	65.0	44.6	54.8	49.7
Spooner	85	6/2	44	5	52.3	32.6	63.2	42.2	52.7	46.0
Trial Mean	79	6/3	43	4	52.5	34.2	62.6	47.9	58.2	19.6
										48.6
C.V. %	5.4	0.4	5.8	19.6	1.8	15.3	6.9	15.0		
LSD 0.05	6.2	1.0	3.6	1.1	1.4	7.6	6.2	10.5		
LSD 0.10	5.2	0.8	3.0	0.9	1.1	6.3	5.2	8.7		

 1 0 = no lodging, 9 = 100% lodged.

Planting Date: September 26

Harvest Date: July 28

Previous Crop: Spring Wheat

							Re	action to l	Disease ⁵	
	Agent or	Year	Height	Straw	Days to	Stem	Leaf	Foliar	Bact. Leaf	Head
	Origin ¹	Released	(inches) ²	Strength ³	Heading ⁴	Rust	Rust	Disease	Streak	Scab
AC Commander	Can.	2002	25	5	57	1	1	6	NA	NA
Alkabo	ND	2005	27	2	56	1	1	5	7	6
Alzada	WB	2004	24	6	54	1	1	8	NA	9
Ben	ND	1996	28	4	56	1	1	4	7	8
Carpio	ND	2012	27	5	58	1	1	5	6	5
CDC Verona	Can.	2010	27	5	58	1	1	4	NA	8
Divide	ND	2005	27	5	58	1	1	5	7	5
Grenora	ND	2005	26	5	55	1	1	5	7	6
Joppa	ND	2013	27	5	57	1	1	5	7	5
Lebsock	ND	1999	27	3	55	1	1	5	7	6
Maier	ND	1998	27	5	56	1	1	5	NA	8
Mountrail	ND	1998	27	5	57	1	1	5	7	8
ND Grano ⁶	ND	2017	27	5	57	1	1	NA	7	6
ND Riveland ⁶	ND	2017	29	4	57	1	1	NA	7	5
Pierce	ND	2001	28	5	56	1	1	6	7	8
Rugby	ND	1973	29	5	56	1	1	4	NA	8
Strongfield ⁶	Can.	2004	26	6	58	1	1	6	NA	8
Tioga	ND	2010	29	4	57	1	1	5	7	6
VT Peak	Viterra	2010	28	6	56	1	NA	NA	NA	NA

Descriptions and agronomic traits of durum wheat varieties grown in North Dakota, 2020.

¹Refers to agent or developer: Can. = Agriculture Canada, WB = Westbred, ND = North Dakota State University.

²Plant height was obtained from the average of several locations in 2020.

 3 Straw Strength = 1-9 scale, with 1 the strongest and 9 the weakest. Based on recent data. These values may change as more data become available. 4 Days to Heading = the number of days from planting to head emergence from the boot. Averaged from several locations in 2020.

⁵Disease reaction scores from 1-9, with 1 = resistant and 9 = very susceptible. NA = Not adequately tested. Foliar Disease = reaction to tan spot and septoria leaf spot complex.

⁶Low cadmium accumulating variety.

Durum Wheat - 2020

Hettinger, ND

	Dava to	Plant	Plant	Test	Grain	G	rain Yie	1.4	Avorage	Viald
N. a. t. t.	Days to								Average	
Variety	Head	Height		Weight	Protein	2018	2019	2020	2 yr	3 yr
	DAP ¹	inches	$0-9^{2}$	lbs/bu	%			•	acre	
AC Commander		20	0	57.0	15.3	37.3	57.5	23.3	40.4	39.4
Alkabo		20	0	58.6	13.8	38.1	73.6	22.1	47.9	44.6
Alzada		21	0	54.7	15.3	35.6	48.2	16.7	32.5	33.5
Ben		22	0	57.8	15.1	31.9	60.3	20.4	40.4	37.5
Carpio		21	0	57.5	14.6	41.9	63.7	20.5	42.1	42.0
CDC Verona		22	0	59.0	15.0	36.2	67.7	25.8	46.8	43.2
Divide		20	0	58.4	14.6	34.1	70.8	19.5	45.2	41.5
Grenora		21	0	57.6	14.5	38.3	67.9	22.9	45.4	43.0
Joppa		22	0	58.9	14.1	34.6	66.2	21.6	43.9	40.8
Lebsock		23	0	58.4	14.2	33.2	64.8	20.4	42.6	39.5
Maier		21	0	57.4	15.7	35.9	62.7	18.2	40.5	38.9
Mountrail		20	0	58.6	13.9	37.7	66.9	23.7	45.3	42.8
ND Grano		21	0	59.2	13.9	34.6	68.5	24.1	46.3	42.4
ND Riveland		21	0	58.5	14.3	36.3	73.0	22.5	47.8	43.9
Pierce		23	0	58.8	14.2	32.2	69.6	21.5	45.6	41.1
Rugby		23	0	58.2	14.3	31.5	59.8	23.1	41.5	38.1
Strongfield		21	0	57.9	15.1	38.8	67.0	21.1	44.1	42.3
Tioga		21	0	56.8	14.4	32.1	64.5	20.5	42.5	39.0
VT Peak		22	0	59.2	15.0	39.5	72.4	24.2	48.3	45.4
Trial Mean		21	0	58.1	14.6	36.7	67.6	22.0	44.5	41.6
C.V. %		5.9		1.2	2.9	8.1	7.6	10.6		
LSD 5%		1.8		1.0	0.6	4.1	7.2	3.3		
LSD 10%		1.5		0.8	0.5	3.5	6.1	2.7		

¹ Days to Head = the number of days from planting to head emergence from the boot.

 2 0 = no lodging, 9 = 100% lodged.

Planting Date: April 10

Harvest Date: August 17

Previous Crop: Soybean

Durum Wheat - 2020 Scranton, ND Plant Plant Test ----- Grain Yield -----Average Yield Grain Weight 3 yr Variety Height Lodge Protein 2018 2019 2020 2 yr ----- Bushels per acre -----inches 0-9* lbs/bu % Alkabo 27 60.3 33.6 23.6 0 12.6 41.1 32.4 32.8 Carpio 27 0 58.1 13.1 36.4 23.3 38.4 30.9 32.7 28 Joppa 0 60.4 12.4 34.9 24.9 36.4 30.7 32.1 ND Grano 26 0 59.9 13.1 32.1 22.0 37.0 29.5 30.4 ND Riveland 30 0 21.6 59.5 13.1 36.4 42.0 31.8 33.3 Tioga 30 0 60.1 13.5 34.0 26.3 35.9 31.1 32.1 Trial Mean 28 0 59.7 13.0 34.6 23.6 38.5 31.0 32.2 C.V. % 3.3 3.4 7.7 14.4 --1.2 6.3 ----LSD 5% 1.3 NS 1.1 0.7 4.0 5.1 3.6 -----LSD 10% NS 0.9 4.2 1.1 0.6 3.3 3.0 ----

NDSU Hettinger Research Extension Center

* 0 = no lodging, 9 = 100% lodged.

Planting Date: April 22

Harvest Date: August 22

Durum Wheat - 2020

Regent, ND

	Plant	Plant	Test	Grain	G	rain Yie	ld	Averag	e Yield
Variety	Height	Lodge	Weight	Protein	2018	2019	2020	2 yr	3 yr
	inches	0-9*	lbs/bu	%		Bus	hels per	acre	
Alkabo	28	0	57.4	13.6	52.4	43.8	26.2	35.0	40.8
Carpio	28	0	58.1	14.0	49.3	46.5	28.9	37.7	41.6
Joppa	28	0	58.0	13.0	53.8	38.1	25.8	32.0	39.2
ND Grano	28	0	57.0	13.9	50.2	44.1	24.8	34.5	39.7
ND Riveland	29	0	59.1	14.0	52.0	40.9	28.9	34.9	40.6
Tioga	30	0	57.3	15.0	52.3	45.2	24.1	34.7	40.5
Trial Mean	28	0	57.8	13.9	51.7	43.1	26.5	34.8	40.4
C.V. %	3.6		2.2	2.9	5.4	8.0	9.0		
LSD 5%	1.6	NS	1.9	0.6	4.2	5.2	3.6		
LSD 10%	1.3	NS	1.6	0.5	3.4	4.3	2.9		

* 0 = no lodging, 9 = 100% lodged.

Planting Date: April 22

Harvest Date: August 22

2020 Durum - Recrop

Dickinson, ND

	Days	Seeds				(Grain Yie	ld	Averag	e Yield
	to	per	Plant	Test					2	3
Variety	Head	Pound	Height	Weight	Protein	2018	2019	2020	Year	Year
			in	lbs/bu	%		bu/ac		bu	/ac
AC Commander	61	9,906	23	60.2	15.4	48.1	53.6	39.2	46.4	47.0
Alkabo	61	10,079	24	60.4	14.1	63.2	46.8	39.4	43.1	49.8
Alzada	57	9,898	20	58.9	14.6	38.4	50.2	35.4	42.8	41.4
Ben	61	10,749	26	60.3	15.6	56.5	52.7	36.1	44.4	48.4
CDC Verona	62	10,123	24	61.2	15.3	64.1	49.7	41.7	45.7	51.9
Carpio	61	10,161	26	59.7	14.7	57.9	47.0	36.4	41.7	47.1
Divide	61	10,234	26	60.1	14.9	62.4	49.7	38.3	44.0	50.1
Grenora	60	10,106	24	60.0	15.5	55.9	51.5	39.5	45.5	49.0
Joppa	61	10,665	25	61.1	14.2	65.8	51.0	41.5	46.2	52.8
Lebsock	61	10,166	24	60.8	14.9	59.1	53.9	38.0	46.0	50.4
Maier	61	10,916	24	59.8	15.8	57.5	47.7	35.1	41.4	46.8
Mountrail	61	10,939	25	59.7	14.5	64.8	52.1	40.9	46.5	52.6
ND Grano	61	10,130	25	60.7	15.4	64.5	53.9	38.7	46.3	52.4
ND Riveland	61	10,549	27	60.2	14.9	60.1	45.8	38.3	42.1	48.1
Pierce	61	10,077	26	60.5	15.1	56.8	47.2	37.8	42.5	47.3
Rugby	60	11,008	28	60.5	14.9	63.2	44.5	36.9	40.7	48.2
Strongfield	62	10,685	23	59.9	15.9	60.3	49.8	36.2	43.0	48.8
Tioga	61	9,588	27	59.7	15.2	63.3	52.1	37.6	44.9	51.0
VT Peak	61	10,058	26	61.6	15.4	60.3	50.5	37.7	44.1	49.5
Trial Mean	61	10,296	25	60.2	15.1	61.6	51.1	37.9		
CV %	0.9	5.0	5.2	0.9	3.5	9.0	9.3	7.4		
LSD 0.05	1	726	2	0.8	0.7	7.8	6.6	4.0		
LSD 0.10	1	608	2	0.9	0.6	6.5	5.6	3.3		
Planting Date:	A	7 2020								

Planting Date: April 27, 2020

Harvest Date: August 11, 2020

Previous Crop: Soybean

Seeding Rate: 1.2 million live seeds/ac

2020 North D	akota b	arley varie	ty descript	ions.									
					Rachilla						Reaction to	Disease ⁶	
			Year	Awn	Hair	Aleurone	Height	Days to	Straw	Stem	Spot-form	Spot	Net
Variety	Use ¹	Origin ²	Released	Type ³	Length ⁴	Color	(inch)	Head	Strength ⁵	Rust	Net Blotch	Blotch	Blotch
Six-rowed													
Tradition	M/F	BARI	2003	S	L	White	23	58	3	8	6	3	7
Two-rowed													
AAC Connect	M/F	Meridian	2017	R	L	White	21	62	3	4	5	4	5
AAC Synergy	M/F	Syngenta	2015	R	L	White	21	63	5	4	3	4	4
CDC Bow	M/F	CDC	2016	R	L	White	22	64	3	NA	NA	NA	NA
Conlon ⁷	M/F	ND	1996	S	L	White	23	57	7	8	4	6	3
Explorer	М	Secobra	NA	R	L	White	20	61	4	NA	NA	8	4
ND Genesis	M/F	ND	2015	S	L	White	24	61	5	8	4	4	6
Pinnacle	M/F	ND	2006	S	L	White	22	60	6	8	8	4	6

 $^{1}M = malting; F = feed.$

²BARI = Busch Agricultural Resources Inc.; CDC = Crop Development Centre, University of Saskatchewan.MN = University of Minnesota;

ND = North Dakota State University.

 ${}^{3}R = rough; S = smooth.$

 4 S = short; L = long.

⁵Straw Strength scores from 1-9, with 1 = strongest and 9 = weakest.

⁶Disease reaction scores from 1-9, with 1 = resistant and 9 = very susceptible, NA – not available.

⁷Lower DON accumulations than other varieties tested.

Barley	-	2020
--------	---	------

Hettinger, ND

	Days to	Plant	Plant		Test	Grain	(brain Yie	ld	Averag	e Yield	
Variety	Head	Height	Lodge	Plump	Weight	Protein	2018	2019	2020	2 yr	3 yr	
	DAP^{1}	inches	$0-9^{2}$	%	lbs/bu	%	Bushels per acre					
TWO ROW												
AAC Connect	77	20	0	96	49.1	15.1		109.8	43.0	76.4		
AAC Synergy	76	21	0	97	48.9	14.8	88.6	117.4	41.3	79.4	82.4	
CDC Bow	78	21	0	97	49.3	14.7			48.7			
Conlon	71	23	0	97	47.6	15.6	75.5	89.0	26.5	57.8	63.7	
Explorer	76	20	0	98	47.9	16.7	95.5	90.1	43.1	66.6	76.2	
ND Genesis	76	23	0	94	48.4	12.8	90.3	124.7	47.6	86.2	87.5	
Pinnacle	75	21	0	97	49.3	13.4	90.4	80.9	39.2	60.1	70.2	
SIX ROW												
Tradition	75	23	0	95	47.6	16.8	76.4	113.2	34.4	73.8	74.7	
Trial Mean	75	22	0	96	48.2	14.3	82.9	107.6	42.1	74.3	78.0	
C.V. %	1.3	6.0		0.9	1.1	2.5	5.7	4.4	11.5			
LSD 5%	1.4	1.8		1.2	0.7	0.5	6.7	6.7	6.8			
LSD 10%	1.2	1.5		1.0	0.6	0.4	5.6	5.6	5.7			

¹ Days to Head = the number of days from planting to head emergence from the boot. ² 0 = no lodging, 9 = 100% lodged.

Planting Date: April 10

Harvest Date: August 21

Previouis Crop: Oat

Barley - 2020		

Scranton, ND

	Plant	Plant		Test	Grain	G	rain Yie	ld	Averag	e Yield
Variety	Height	Lodge	Plump	Weight	Protein	2017	2018	2020	2 yr	3 yr
	inches	0-9*	%	lbs/bu	%		Bus	shels per	acre	
TWO ROW										
AAC Connect	24	0	92	47.6	12.4			78.5		
AAC Synergy	24	0	95	47.6	11.5			81.9		
Explorer	22	0	92	47.0	12.1			73.0		
ND Genesis	26	0	93	47.5	11.4	11.3	52.7	72.9	62.8	45.6
SIX ROW										
Tradition	26	0	95	47.3	12.7	12.1	32.9	66.5	49.7	37.2
Trial Mean	24	0	93	47.4	12.0	11.2	50.7	74.6	35.7	51.3
C.V. %	3.8		2.1	0.9	4.7	23.1	6.8	11.1		
LSD 5%	1.4	NS	3.0	0.7	0.9	4.0	10.5	12.8		
LSD 10%	1.2	NS	2.4	0.5	0.7	3.3	8.6	0.3		

* 0 =no lodging, 9 = 100% lodged.

Planting Date: April 22

Harvest Date: August 22

Barley - 2020

Regent, ND

	Plant	Plant		Test	Grain	G	rain Yie	ld	Averag	e Yield
Variety	Height	Lodge	Plump	Weight	Protein	2018	2019	2020	2 yr	3 yr
	inches	0-9*	%	lbs/bu	%		Bus	shels per	acre	
TWO ROW										
AAC Connect	21	0	92	43.9	15.0			32.2		
AAC Synergy	25	0	94	44.8	15.0			34.8		
Explorer	21	0	95	44.9	15.0		70.9	39.0	55.0	
ND Genesis	25	0	93	44.8	13.7	87.0	76.3	39.9	58.1	67.7
SIX ROW										
Tradition	23	0	94	40.2	16.5	85.4	67.6	24.4	46.0	59.1
Trial Mean	23	0	93	43.7	15.0	83.7	72.8	34.1	26.3	50.1
C.V. %	6.5		0.9	3.8	3.4	6.7	7.8	7.7		
LSD 5%	2.3	NS	1.3	2.6	0.8	8.6	8.8	4.1		
LSD 10%	1.9	NS	1.1	2.1	0.6	7.0	7.2	3.3		

* 0 =no lodging, 9 = 100% lodged.

Planting Date: April 22

Harvest Date: August 22

2020 Barley - Recrop

```
Dickinson, ND
```

	Days	Seeds					G	rain Yiel	d	Averag	e Yield
	to	per	Plant	Test		%				2	3
Variety	Head	Pound	Height	Weight	Protein	Plump	2018	2019	2020	Year	Year
-			in	lbs/bu	%	>6/64		bu/ac		bu	/ac
Six Row											
Tradition	60	11,714	19	48.6	13.3	94.0	124.9	67.3	40.7	54.0	77.6
Two Row											
AAC Connect	63	10,180	18	49.1	12.9	95.8		73.7	49.5	61.6	
AAC Synergy	64	10,694	18	49.4	11.9	96.6	141.3	73.8	50.3	62.0	88.5
CDC Bow	66	10,362	20	49.6	11.8	96.5			47.7		
Conlon	58	9,791	19	49.2	12.2	97.7	79.9	60.7	45.7	53.2	62.1
Explorer	65	10,005	17	49.1	11.8	97.3	134.5	86.9	52.4	69.7	91.3
ND Genesis	63	9,957	22	49.8	10.7	96.7	134.4	69.1	50.5	59.8	84.7
Pinnacle	60	9,809	21	50.3	11.4	97.4	133.9	76.4	49.2	62.8	86.5
Trial Maan	62	10 151	10	48.0	11 /	07	127.9	72.0	10 7		
Trial Mean	62	10,151	19	48.9	11.4	97	127.8	73.0	48.7		
CV %	1.9	4.6	6.4	0.9	4.7	0.8	7.2	11.3	7.2		
LSD 0.05	2	665	2	0.6	0.8	1	13.0	11.8	5.0		
LSD 0.10	1	555	1	0.5	0.6	1	10.8	9.8	4.2		

Planting Date: April 27, 2020

Harvest Date: August 7, 2020

Previous Crop: Soybean

Seeding Rate: 1.2 million live seeds/ac

Grain protein percentages reported on a 0% moisture basis

2020 Glen Ullin Barley - Recrop Dickinson, ND Seeds Average Yield Test % 2 3 -----Grain Yield-----per Variety Pound Weight Plump Protein 2017 2018 2020 Year Year lbs/bu % >6/64 -bu/ac---------bu/ac---------Six Row 91.2 Tradition 9,551 51.2 96.3 15.0 65.6 106.3 76.1 82.7 Two Row AAC Synergy 8,956 51.3 96.3 12.9 ----106.8 ------CDC Bow 9,352 49.9 92.2 94.5 12.6 ----------ND Genesis 9,193 95.1 50.9 11.3 65.8 115.8 102.8 109.3 94.8 Trial Mean 9,186 50.6 95 12.7 64.6 117.9 95.4 -----CV % 7.8 1.2 1.8 3.8 11.3 9.2 7.6 ----LSD 0.05 NS 0.9 3 0.7 NS 16.3 10.8 -----LSD 0.10 NS 2 NS 13.4 9.9 0.8 0.6 ----

Planting Date: May 6, 2020

Harvest Date: August 15, 2020

2019 Crop lost due to hail

Seeding Rate: 1.2 million live seeds/ac

Grain protein percentages reported on a 0% moisture basis

2020 North Dak	2020 North Dakota oat variety descriptions.													
							Rea	ction to Di	seases					
		Year	Grain		Straw	Days to	Stem	Crown	Barley	Test				
Variety	Origin ¹	Released	Color	Height	Strength	Heading ²	Rust ³	Rust ³	Y.Dwf ⁴	Weight	Protein ⁵			
Beach	ND	2004	White	35	M.strg.	63	8	4	6	V.good	М			
CDC Dancer	Sask.	2000	White	35	Strong	63	8	6	8	V.good	М			
CDC Minstrel	Sask.	2006	White	34	M.strg.	64	8	8	8	Good	М			
CS Camden	Meridian	2016	White	33	Strong	64	8	6	NA	Good	М			
Deon	MN	2013	Yellow	37	Strong	65	8	2	2	V.good	М			
Hayden	SD	2014	White	36	Med.	62	8	6	NA	V.good	М			
HiFi	ND	2001	White	35	Strong	63	4	8	2	Good	М			
Hytest	SD	1986	White	38	M.strg.	62	8	6	8	V.good	Н			
Jury	ND	2012	White	34	M.strg.	64	1	8	4	V.good	М			
Killdeer	ND	2000	White	32	Strong	63	8	6	4	Good	М			
Leggett	AAFC	2005	White	33	Strong	63	3	1	8	Good	М			
ND Heart	ND	2020	White	39	Strong	60	3	6	4	Good	Н			
Newburg	ND	2011	White	38	Med.	62	1	8	4	Good	М			
Otana	MT	1977	White	36	M.weak	63	8	8	8	V.good	M/L			
Paul6	ND	1994	Hull-less	37	Strong	68	1	4	2	Good	Н			
Rockford	ND	2008	White	38	Strong	65	8	8	4	V.good	М			
Souris	ND	2006	White	33	Strong	63	6	8	6	V.good	М			
Stallion	SD	2006	White	34	Med.	64	8	3	NA	V.good	М			
Warrior	SD	2018	White	32	Strong	62	6	1	NA	V.good	М			

¹AAFC = Agriculture & Agri-Food Canada; MN = University of Minnesota; ND = North Dakota State University; SD = South Dakota State

University; Sask. = University of Saskatchewan; MT = Montana State University.

²Days after planting.

³Disease reaction scores from 1-9, with 1 = resistant and 9 = very susceptible.

⁴Disease reaction scores from 1-9, with 1 = resistant and 9 = very susceptible, NA – not available.

 5 H = high; M = medium; L = low; NA = not available.

⁶Hull-less variety.

Oat - 2020									Hettin	ger, ND
	Days to	Plant	Plant	Test	Grain	6	rain Yie	ld	Averag	e Vield
Variety	Head	Height		Weight	Protein	2018	2019	2020	2 yr	3 yr
Variety	DAP ¹	inches	$0-9^2$	lbs/bu	%					
Deesh	70	25	0-9	33.4	70	90.9	Bus 153.9	44.9	99.4	96.6
Beach CS. Complete			0							90.0 114.8
CS Camden	75	23		32.6		114.1	173.9	56.4	115.2	
CDC Dancer	74	24	0	33.3		98.9	172.9	45.2	109.1	105.7
Deon	75	24	0	34.6		89.8	160.6	40.0	100.3	96.8
Hayden	74	25	0	34.7		105.2	174.1	48.2	111.2	109.2
ND Heart	72	27	0	34.0		101.1	154.1	42.9	98.5	99.4
HiFi	75	25	0	34.0		94.1	161.7	50.6	106.2	102.1
Hytest	70	27	0	36.3		84.3	146.4	48.7	97.6	93.1
Jury	73	27	0	32.9		92.3	162.2	48.2	105.2	100.9
Killdeer	73	22	0	34.1		108.3	150.5	48.6	99.6	102.5
Leggett	76	22	0	33.0		99.7	160.5	49.9	105.2	103.4
CDC Minstrel	75	23	0	33.8		99.6	183.6	47.8	115.7	110.3
Newburg	75	24	0	32.8		95.6	159.1	40.5	99.8	98.4
Otana	75	26	0	36.0		97.1	159.3	42.9	101.1	99.8
Rockford	74	26	0	36.5		112.3	167.7	55.9	111.8	112.0
Souris	74	24	0	35.1		103.6	152.3	46.4	99.4	100.8
Stallion	74	23	0	36.4		96.5	144.9	33.8	89.4	91.7
Warrior	70	22	0	33.3			168.1	47.4	107.8	
Paul (hull-less)	76	24	0	43.0		72.7	105.5	32.9	69.2	70.4
Trial Mean	74	24	0	34.9		97.3	157.6	46.8	110.9	104.8
C.V. %	0.9	6.2		2.3		6.0	7.3	7.5		
LSD 5%	0.9	2.1		1.1		8.2	16.2	4.9		
LSD 10%	0.8	1.8		0.9		6.9	13.5	4.1		

¹ Days to Head = the number of days from planting to head emergence from the boot.

 2 0 = no lodging, 9 = 100% lodged.

Planting Date: April 10

Harvest Date: August 24

Previous Crop: Spring Wheat

----- Grain Yield------Days Seeds Average Yield 2 Plant 3 to per Test Variety Head Pound Height Weight 2018 2019 2020 Year Year in lbs/bu -bu/ac---------bu/ac---------108.5 59 10,866 99.4 94.1 Beach 27 39.4 83.5 90.3 CDC Dancer 63 11,611 95.3 102.3 93.0 93.7 27 37.8 83.7 CDC Minstrel 11,154 23 127.5 93.9 110.7 109.1 62 37.7 106.0 Cs Camden 11,201 100.4 104.1 62 26 35.0 111.4 102.4 98.5 Deon 61 12,234 26 36.9 95.5 149.8 94.5 122.2 113.3 Hayden 61 11,545 25 38.2 117.4 129.5 93.2 111.3 113.3 HiFi 62 13,160 35.9 109.4 93.3 105.7 106.9 26 118.0 Hytest 12,368 90.5 88.7 93.0 59 28 38.2 101.6 86.9 Jury 60 12,573 30 36.3 95.2 122.6 93.6 108.1 103.8 Killdeer 59 12,859 24 36.0 109.3 125.7 102.5 114.1 112.5 12,027 25 95.4 97.9 93.2 93.9 Leggett 63 37.9 88.5 ND Heart 59 11,498 26 33.8 103.0 99.2 93.0 96.1 98.4 Newburg 97.0 63 11,682 25 37.4 82.1 107.5 101.3 104.4 Otana 13,821 29 37.9 97.7 108.0 94.5 101.2 100.1 63 Paul 64 16,706 27 43.8 82.2 87.5 62.3 74.9 77.3 Rockford 61 13,370 27 99.1 123.4 90.5 107.0 104.3 38.2 Souris 60 14,388 24 36.9 94.5 110.9 103.2 107.1 102.9 Stallion 60 13,889 26 38.7 103.6 113.7 94.6 104.2 104.0 Warrior 59 13,413 23 97.0 91.6 94.3 36.8 ----Trial Mean 61 12,394 26 37.8 100.7 113.7 91.3 ___ --CV % 1.1 4.9 5.2 2.6 13.7 14.6 7.9 ----LSD 0.05 2 1 860 1.4 19.3 23.2 10.1 ----1 720 2 19.4 LSD 0.10 1.2 16.1 8.4 ----

NDSU Dickinson Research Extension Center

2020 Oat - Recrop

Dickinson, ND

Planting Date: April 27, 2020

Harvest Date: August 17, 2020

Previous Crop: Field Pea

Seeding Rate: 1 million live seeds/ac

Oil Type Sunflow	wer - 2020							Hetting	ger, ND
		Oil Type	Davs to	Plant	Test	Oil	0	rain Yie	ld
Company/Brand	Hybrid	& Traits ¹	•					2-Year	
Company/Drand	Ilyond	& Huits	Dioom	inches	lbs/bu	<u>%</u>			
CROPLAN	CP3845	НО	68	62	31.1	43.4	1347	1939	
CROPLAN	CP432E	NS, EX	65	63	29.4	37.8	1717	1688	2265
CROPLAN	CP450E	HO, EX	69	66	30.3	39.3	2075	1950	
CROPLAN	CP455E	HO, EX	68	67	31.1	42.0	2220	2090	2631
CROPLAN	CP4909E	NS, EX	69	62	31.1	39.9	2000	1950	
Dairyland Seed	D643HO	HO, EX	68	69	30.5	42.9	1903		
Dairyland Seed	D683MO	NS, EX	68	67	30.9	42.5	1998		
Dairyland Seed	D684HO	HO, EX	70	73	30.6	41.9	1997		
Dairyland Seed	D690MO	NS, EX	71	78	28.9	42.9	1762		
Dyna-Gro	H42HO18CL	HO, CL	68	64	31.3	41.0	1725	1805	
Dyna-Gro	H44HO12CL	HO, CL	65	66	31.2	44.1	2008	2074	
Dyna-Gro	H45HO10EX	HO, EX	68	65	28.6	39.5	1681	1854	
Dyna-Gro	H45NS16CL	NS, CL	67	66	31.4	42.2	1967	2226	
Dyna-Gro	H48HO15CL	HO, CL	71	68	29.5	45.1	1640	1958	
Dyna-Gro	H49HO19CL	HO, CL	71	70	31.6	42.9	2005	2286	
Dyna-Gro	H49NS14CL	NS, CL	70	65	31.6	41.5	1732	2022	
Dyna-Gro	XH00H57	NS	70	72	31.1	43.5	1833		
Dyna-Gro	XH81H52CP	HO, CLP	71	69	32.5	43.9	1817	2014	
Dyna-Gro	XH82H63EX	HO, EX	69	76	31.0	41.8	1784		
Dyna-Gro	XH82H65EX	HO, EX	66	70	31.3	42.7	1779		
Dyna-Gro	XH91H54CL	HO, CL	69	75	30.9	42.2	1921	2064	
Dyna-Gro	XH93H79CL	HO, CL	72	73	30.2	41.6	1673	2174	
Legend Seeds	Kaledonia	HO, CL	69	74	29.7	35.8	2149		
Nuseed	Camaro II	NS, CL	69	70	32.9	41.4	2006	2299	2501
Nuseed	Falcon	NS, EX	69	64	31.2	41.3	1982	2018	2350
Nuseed	Hornet	HO, CL	72	67	30.3	41.1	1699	2036	2496
Nuseed	N4H302 E	HO, EX	68	61	29.6	40.7	1819	1921	2127
Nuseed	N4H422 CL	HO, CL	69	75	31.1	41.1	1768		
Nuseed	N4H470 CL Plus	HO, CLP	71	72	33.0	44.8	1820	2016	2533
Nuseed	N4H521 CL	HO, CL	70	62	30.6	43.1	2313	2394	2715
Nuseed	N4HM354	NS, CL	67	66	32.0	43.5	1684	1797	2121
Proseed	12G25 CL	HO, CL	67	62	32.6	44.8	2146		
Proseed	E-50016	HO, CL	70	66	29.6	41.3	1878		
Proseed	E-91 E	HO, EX	70	77	30.8	40.9	1723		
Proseed	E-93 E	NS, CL	69	70	28.1	38.1	1837		
S&W	SF110	HO, CL	67	71	31.4	41.8	1677		
S&W	SF440	HO, CL	72	72	30.9	42.1	1947		
SunOpta	4415 HO/CLP/DM	HO, CLP	69	72	29.6	39.5	1766	2110	2403
SunOpta	4425CL	NS, CL	69	76	29.0	38.2	1798	1889	2261
SunOpta	44725CL	NS, CL	69	74	28.4	41.6	1868	2063	
SunOpta	9583CLP	Conf, CLP	71	73	23.9		1579	1585	
SunOpta	EXSS90	Conf	69	77	24.1		1343		
Table continued									

Oil Type Sunflow	wer - 2020							Hetting	ger, ND
		Oil Type	Days to	Plant	Test	Oil	C	Brain Yie	ld
Company/Brand	Hybrid	& Traits ¹	Bloom ²	Height	Weight	Content	2020	2-Year	3-Year
Table continues	from previous page	?							
USDA (Check)	894	TR	67	71	31.2	39.7	1315	1469	1915
USDA (Check)	Honeycomb NS	NS	61	66	31.5	43.6	788		
Croplan (Check)	559 CL	NS, CL	69	74	29.8	37.8	1537	2019	
Mycogen (Check))8N270CLDM	NS, CL	64	62	32.1	43.0	1591	1770	1933
Trial Mean			69	69	30.4	41.1	1803	1982	2327
C.V. %			1.4	6.3	3.6	2.9	10.3		
LSD 5%			1.4	6.1	1.3	1.7	259		
LSD 10%			1.1	5.1	1.1	1.4	217		

LSD 10% 1.1 5.1 1.1 1.4 217 -- --¹ Type: TR-Traditonal, NS-NuSun, HO-High Oleic, CL=Clearfield, CLP=Clearfield Plus, EX=ExpressSur Conf=Confectionary.

² Days after planting.

Planting Date: May 18

Harvest Date: October 18

Previous Crop: Spring Wheat

Flax - 2020								Hetting	ger, ND
ſ	Days to	Plant	Test	Oil	G1	rain Yie	d	- Averag	e Yield
Variety	•		Weight Co			2018	2020		3-Yr
	**	inches	lbs/bu			b	u per ac	re	
AAC Bright	51	20	*** 4	46.4			12.5		
Bison	47	21	2	43.8	18.7	21.6	14.9	18.3	18.4
Carter*	49	21	2	43.2	18.2	24.5	14.1	19.3	18.9
CDC Buryu	47	19	2	43.1			13.1		
CDC Dorado*	46	17	2	44.6			13.9		
CDC Glas	50	22	4	44.5	21.1	24.1	15.0	19.6	20.1
CDC Neela	48	19	4	43.4	21.6	25.1	16.1	20.6	20.9
CDC Plava	51	21	2	44.8			16.2		
Gold ND*	50	21	2	44.1	19.4	22.0	13.9	18.0	18.4
ND Hammond	50	20	4	41.0		22.0	13.2	17.6	
Omega*	51	21	4	42.7	19.4	18.9	16.3	17.6	18.2
Prairie Thunder	51	23	4	43.9	18.9	27.0	17.9	22.5	21.3
Webster	50	21	4	44.2	20.1	23.9	14.8	19.4	19.6
York	50	19	2	43.7	19.4	24	17.2	20.6	20.2
Trial Mean	49	20	2	43.8	19.5	23.0	14.9	19.0	19.6
C.V. %	1.6	7.1		1.0	9.6	11.6	11.3		
LSD 5%	1.2	2.1		0.6	2.7	3.7	2.4		
LSD 10%	1.0	1.7		0.5	2.2	3.1	2.0		

* Yellow seed type.

** Days after planting.

*** Not enough grain sample for a test weight reading.

Lodging notes were taken at harvest, however no lodging was observed.

Planting Date: May 6

Harvest Date: September 4

Previous Crop: Peas

2020 Flax - Recrop Dickinson, ND												
	Days	Days						2				
	to	to	Plant	Test	Oil	Grain	Yield	Year				
Variety	Flower	Mature	Height	Weight	Content	2019	2020	Average				
			in	lbs/bu	%	bu	/ac	bu/ac				
AAC Bright	56	103	14	52.1	46.6	13.6	20.1	16.9				
Bison	55	102	16	53.6	43.5	16.2	22.1	19.2				
CDC Buryu	57	103	15	53.1	44.0	15.4	22.9	19.2				
CDC Dorado	50	104	14	53.1	44.6		17.9					
CDC Glas	57	103	15	52.2	44.2	13.3	19.7	16.5				
CDC Neela	55	103	15	53.1	44.6	13.9	22.7	18.3				
CDC Plava	56	102	14	52.8	44.2	9.9	18.4	14.2				
Carter	55	104	16	53.4	44.0	14.7	20.0	17.3				
Gold ND	57	105	16	53.3	45.2	14.1	19.1	16.6				
ND Hammond	56	105	17	53.0	42.3	11.0	19.2	15.1				
Omega	57	104	15	53.7	43.8	13.3	19.0	16.2				
Prairiethunder	56	105	18	53.5	43.6	15.9	22.8	19.4				
Webster	55	105	17	53.2	44.6	13.9	22.2	18.1				
York	55	103	15	53.2	43.9	18.4	20.6	19.5				
Trial Maar	56	105	16	52.2	11.5	146	21.1	21.1				
Trial Mean	56	105	16	53.3	44.5	14.6	21.1	21.1				
CV %	1.1	1.3	7.1	0.8	0.9	15.0	10.9	10.9				
LSD 0.05	1	2	2	0.7	0.6	3.6	3.7	3.7				
LSD 0.10	1	2	2	0.6	0.5	3.0	3.1	3.1				

Planting Date: April 30, 2020

Harvest Date: September 3, 2020

Previous Crop: Oat

No Lodging observed

Oil content reported on 9% moisture basis

Safflower - 2020								Hetting	ger, ND
	Days to	Plant	Test	Oil	G	rain Yie	ld	- Averag	e Yield
Variety	Flower	Height	Weight	Content	2018	2019	2020	2-Yr	3-Yr
	DAP^1	inches	lbs/bu	%		1	bs per a	cre	
Linoleic Types									
Cardinal	87	24	42.4	42.3	1825	1577	2363	1970	1922
Finch	83	22	43.5	43.8	1335	1456	2281	1869	1691
NutraSaff	87	24	37.0	51.7	1425	555	1910	1233	1297
Rubis Red	89	23	44.9	36.7	1393	706	1693	1200	1264
Oleic Types									
Chickadee	86	21	42.1	40.2	1497	1299	2194	1747	1663
Hybrid 1601	85	25	36.0	42.7	1929	1142	2043	1593	1705
Hybrid 200	87	24	41.1	34.2	1397	1108	2050	1579	1518
Hybrid 446	86	23	42.7	33.4	1297	1665	2394	2030	1785
MonDak	87	22	40.9	38.3	1680	1668	2135	1902	1828
Montola 2003	89	21	38.2	39.6	1830	851	1871	1361	1517
Trial Mean	86	23	40.9	40.3	1561	1203	2093	1648	1619
C.V. %	1.2	7.7	3.3	0.9	9.5	15.3	9.3		
LSD 5%	1.5	2.8	1.8	0.5	215	268	283		
LSD 10%	1.2	2.1	1.5	0.4	179	222	235		

¹ Days after planting. Planting Date: May 6

Harvest Date: September 17

Previous Crop: Field Pea

Dry Bean - 202	0							Hetti	nger, ND
		Plant	Plant	Test	(Grain Viel	d	Averag	e Vield
Variety	Туре	Height	Lodge	Weight	2018	2019	2020	2 yr	3 yr
	- 5 F -	inches	0-91	lbs/bu			lbs per acı		
LaPaz	Pinto	26	6	49.9	1691	1441	1139	1290	1424
Lariat	Pinto	36	8	51.8	1375	1245	1159	1202	1260
Monterrey	Pinto	30	5	51.1	1653	1345	1036	1191	1345
ND-Falcon	Pinto	27	6	50.9		1509	1105	1307	
Palomino	Pinto	29	5	53.2	1536	1611	1019	1315	1389
Stampede	Pinto	33	5	50.4	1609	1797	1207	1502	1538
Torreon	Pinto	31	5	53.2		1437	1031	1234	
Vibrant	Pinto	30	5	56.1		1286	1150	1218	
Windbreaker	Pinto	36	7	51.2	1534	1295	1070	1183	1300
Blizzard	Navy	31	5	**		1166	787	977	
HMS Medalist	Navy	29	3	51.8	937	1130	962	1046	1010
Т9905	Navy	27	4	**	1243	1350	878	1114	1157
Merlot	Sm Red	24	6	**	1011	1757	794	1276	1187
Viper	Sm Red	25	5	54.3		1659	1257	1458	
Black Tails	Black	24	6	56.6		1870	1151	1511	
Eclipse	Black	24	3	49.0	1162	1661	1250	1456	1358
ND Twilight	Black	24	4	58.3		1525	1073	1299	
ND Pegasus	Great Northern	32	3	50.4		1811	1342	1577	
Trial Mean		29	5	52.1	1288	1488	1063	1286	1297
C.V. %		16.8	10.2		13.0	15.7	12.2		
LSD 5%		6.8	1.0		240	330	184		
LSD 10%		5.7	0.8		200	275	154		

 1 0 = no lodging, 9 = lying flat on ground.

** Not enough sample for the weigh system to register a test weight.

Planting Date: May 19

Harvest Date: September 15

Previous Crop: Oats

Chickpea - 2020

Hettinger, ND

	Days to			S	eed Si	ze (mr	n)	Seed	Test	G1	rain Yie	eld	Averag	e Yield
Variety	Flower	Height	Lodging	<8	8-9	9-10	>10	Size	Weight	2018	2019	2020	2 yr	3 yr
	DAP^{1}	inches	$0 - 9^2$		%	<i>•</i>		seed/lb	lb/bu			-lbs/ac		
Kabuli Type														
CDC Frontier	63	16	0	8	63	24	4	1295	**	1802	1483	761	1122	1349
CDC Leader	62	15	0	7	56	31	5	1274			2307	834	1571	
CDC Orion	59	17	0	7	39	38	16	1231		1456	1918	624	1271	1333
CDC Palmer	59	15	0	5	43	42	10	1112			2762	648	1705	
ND Crown	62	18	0	5	35	43	17	1123				487		
Royal	65	23	0	12	25	33	30	1282				340		
Sawyer	65	20	0	11	31	34	24	1296		1439	662	347	505	816
Sierra	65	21	0	10	32	35	24	1336		1066	280	271	276	539
Mean	63	18	0	8	40	35	16	1244		1507	1823	539	1075	1009
C.V. %	1.3	12.6		24.1	10.6	10.0	21.7	3.8		11.1	13.0	10.3		
LSD 5%	1.4	3.3	NS	3	6	5	5	70		253	343	82		
LSD 10%	1.2	2.7	NS	2	5	4	4	58		208	284	68		

¹ Days after planting.

² Lodging: 0 =none, 9 =lying flat on ground.

** Not enough sample for a test weight.

Planting Date: April 21

Harvest Date: September 5

Previous Crop: Corn

NDSU Dickinson Research Extension Center

2020 Chickpea - Recrop

	Days	Days		1000	Seeds						
	to	to	Plant	seed	per	Test		-Seed Si	ze (mm)-		
Variety	Flower	Mature	Height	weight	Pound	Weight	<8	8-9	9-10	>10	Yield
			in	gm		lbs/bu		(%		lbs/ac
Kabuli type											
CDC Frontier	56	97	11	384	1,181	60.5	42	49	10	0	1018
CDC Orion	50	95	11	436	1,040	58.7	18	49	33	1	1006
ND Crown	52	96	12	447	1,016	60.0	19	44	37	0	952
Royal	57	97	12	525	865	58.7	7	27	60	6	670
Sawyer	52	97	12	518	875	57.7	6	31	60	3	666
Sierra	56	97	10	517	880	57.5	6	29	61	3	569
Trial Mean	54	06	11	471	976	58.9	16	20	42	2	012
		96 1.0					16	38	43		813
CV %	1.4	1.0	8.3	3.7	3.2	0.7	14.7	6.0	9.2	33.9	18
LSD 0.05	1	2	2	31	57	0.7	4	4	7	1	262
LSD 0.10	1	1	1	25	47	0.6	4	3	6	1	213

Planting Date:April 28, 2020Harvest Date:August 17, 2020Previous Crop:Barley

NDSU Hettinger	· Research	Extension	Center
----------------	------------	-----------	--------

Field Pea - 2020

Hettinger, ND

	Days to	Flower	Days to	Canopy		Seed	1,000	Seeds	Test		Seed Yield	1
Variety		Duration		Height	Lodging	Protein	Seed Wt.	Lb	Weight	2020	2-Yr. Avg.	3-Yr. Avg.
	DAP^1	days	DAP^1	inches	$0 - 9^2$	%	gm	seeds	lb/bu	B	Sushels per a	cre
Yellow Cotyle	don Typ	e										
AAC Asher	55	15	81	15	3	25.7	251	1815	62.1	36.6	41.3	
AAC Carver	55	15	80	22	3	25.4	232	1958	62.2	33.6	42.0	
AAC Chrome	56	14	81	19	3	25.5	247	1835	62.5	31.9	40.2	
AAC Profit	57	13	81	22	3	25.8	235	1929	63.4	35.8	43.0	38.7
Agassiz	57	15	83	23	3	25.6	226	2013	62.4	31.9	40.2	35.2
CDC Amarillo	58	13	82	21	1	25.5	228	1992	61.9	34.2	39.2	
CDC Dakota	59	11	81	18	2	30.9	202	2250	61.2	29.8		
CDC Inca	57	14	83	21	3	26.1	240	1892	63.2	35.4	43.2	
CDC Saffron	57	14	81	17	3	26.1	236	1926	61.9	29.2	38.0	
CDC Spectrum	58	14	83	20	3	27.2	236	1923	60.9	33.5	40.1	
Cronos	52	15	78	19	3	29.9	220	2070	60.3	19.2		
DL Apollo	54	16	81	21	2	28.1	217	2112	62.8	25.0	36.4	
DS Admiral	54	17	81	22	2	27.5	237	1923	62.0	26.2	35.1	29.9
Durwood	55	16	82	24	2	27.1	221	2069	61.6	29.2	37.2	31.9
Hyline	57	13	81	19	3	25.9	253	1797	63.6	30.8	38.1	30.5
Jetset	54	16	81	21	3	27.9	208	2181	60.2	24.4	35.2	
Kite	53	17	81	17	6	27.1	235	1939	60.0	21.5		
Korando	52	18	81	20	3	30.6	284	1599	60.5	24.0	32.9	
LG Equator	53	19	82	20	2	27.0	226	2008	61.4	28.6		
LG Stunner	54	16	81	21	2	27.9	246	1850	61.6	27.5	36.0	32.2
ND Dawn	55	14	81	22	3	26.3	236	1929	60.9	27.2	34.9	
Nette 2010	53	17	81	19	2	27.5	225	2021	61.8	26.7	36.1	30.1
Orchestra	53	18	82	21	3	28.9	228	2003	60.2	26.1		
Peregrine	52	16	80	17	5	27.8	232	1958	61.0	19.8		
Salamanca	54	17	82	20	3	27.9	249	1829	61.6	27.1	38.2	32.2
Green Cotyled	lon Typ	e										
Aragorn	53	17	81	18	4	27.7	214	2126	61.9	22.4		
Arcadia	54	15	80	19	3	26.6	219	2080	63.6	31.6	36.1	25.9
CDC Striker	56	14	81	19	3	28.9	227	1998	61.4	25.9	34.6	26.2
Empire	57	12	80	23	2	25.5	217	2104	62.1	27.4	33.9	
Greenwood	54	17	81	17	4	26.8	215	2117	62.9	26.7		
Hampton	56	15	81	19	4	29.1	240	1893	61.1	25.1	28.7	
LG Koda	57	13	81	21	3	26.0	241	1885	62.2	26.1	33.0	28.8
Shamrock	56	15	82	20	3	26.7	218	2098	59.4	25.2	33.1	28.3
Viper	53	17	80	22	4	29.9	210	2163	59.8	20.1	29.3	23.8
Mean	55	15	81	20	3	27.2	231	1977	61.5	27.2	36.5	30.3
C.V. %	1.4	8.6	1.4	9.2	38.7	2.1	5.1	5.3	1.5	10.2		
LSD 5%	1.1	1.8	1.6	2.6	1.6	0.8	17	146	1.3	3.2		
LSD 10%	0.9	1.5	1.3	2.1	1.4	0.7	14	122	1.1	2.5		

LSD 10% ¹ Days after planting.

² Lodging: 0 =none, 9 =lying flat on ground.

Planting Date: April 27 Harvest Date: August 3

NDSU Dickinson Research Extension Center

2020 Field Pea - Recrop

Dickinson, ND

	Days	Days	1000	Seeds					Seed Yie	ld
	to	to	Seed	per	Plant	Test	-		2	3
Variety	Flower	Mature	Weight	Pound	Height	Weight	Protein	2020	Year	Year
			gm		in	lbs/bu	%		bu	/ac
Yellow Cotyledo	n Types									
AAC Asher	56	84	315	1,443	14	65.4	22.2	31.0		
AAC Carver	55	84	292	1,558	15	65.4	22.5	24.2	35.6	
AAC Chrome	56	85	322	1,411	13	66.1	21.8	26.1	38.1	
AAC Profit	57	84	327	1,387	18	64.9	23.9	30.8	43.3	
Agassiz	56	84	287	1,581	15	65.5	23.4	24.4	38.3	33.2
CDC Amarillo	58	86	291	1,559	19	65.5	24.7	34.5	38.9	
CDC Dakota	60	86	217	2,099	20	66.5	26.6	29.9		
CDC Inca	57	84	285	1,594	18	66.1	23.5	29.2	41.8	
CDC Saffron	56	84	282	1,611	14	65.8	23.3	27.3	37.4	
CDC Spectrum	56	84	307	1,480	17	65.8	23.5	29.5	37.6	
Cronos	51	84	330	1,379	16	65.7	25.5	21.8		
DS Admiral	54	84	289	1,571	18	66.6	23.9	30.4	35.6	32.3
Durwood	55	84	273	1,662	19	65.8	25.0	31.7		
Hyline	56	84	311	1,462	18	66.4	21.9	34.1	41.4	36.0
Jetset	55	84	271	1,681	18	64.4	23.3	31.1	37.4	
Peregrine	50	83	276	1,645	12	65.7	22.7	21.7		
Kite	53	84	309	1,469	18	65.5	23.5	37.7		
Korando	50	84	324	1,403	14	66.8	26.7	26.9		
LG Equator	53	84	274	1,662	18	65.6	23.7	26.0		
ND Dawn	55	84	316	1,446	16	64.5	23.8	25.8	33.8	
Nette 2010	54	83	283	1,602	19	66.7	23.1	30.2		
Salamanca	54	84	327	1,396	18	65.7	24.9	25.7	35.6	32.6
Green Cotyledon	n Types									
AAC Comfort	59	87	350	1,298	17	66.1	23.7	25.8	36.1	
Aragorn	51	80	279	1,629	14	62.8	25.3	23.4		
Arcadia	55	84	252	1,808	16	65.3	22.8	33.6	38.9	35.2
CDC	56	86	307	1,477	20	65.3	23.1	34.9	38.0	
CDC Striker	56	85	282	1,614	18	66.1	25.0	23.2	34.7	31.7
Daytona	55	84	324	1,406	17	65.0	23.9	28.7		
Empire	56	85	300	1,526	22	66.6	24.6	26.7		
Greenwood	54	83	254	1,796	15	64.8	24.2	25.1		
Hampton	55	85	316	1,435	14	65.1	26.0	24.4	35.5	
MS-20GP5	55	86	307	1,484	19	66.1	24.0	28.4		
Shamrock	57	84	280	1,628	20	66.4	23.3	32.8		
Trial Mean	55	84	295	1,556	17	65.6	23.9	28.4		
CV %	2.1	0.7	5.6	5.7	14.6	0.6	4.0	17.1		
LSD 0.05	2	1	23	124	3	0.5	1.3	6.8		
LSD 0.10	1	1	19	104	3	0.5	1.1	5.7		

Planting Date: April 28, 2020

Harvest Date: July 29, 2020

Previous Crop: Durum

Seeding Rate: 325,000 live seeds/ac

Grain protein percentages reported on 0% moisture basis

Lentil - 2020

Hettinger, ND

	Dava to			1,000	Seeds	Test	Grain	G	rain Yie	14	Averoa	o Viald
T 7 • ,	Days to		·	· ·							Y	
Variety	Flower	Height	Lodging	Seed Wt.	Lb	Weight	Protein	2018	2019	2020	2 yr	3 yr
	DAP^1	inches	$0 - 9^2$	gm	seeds	lb/bu	%			bs/acre-		
Large Green Type												
CDC Greenstar	59	16	0	82	5521	59.2	24.4			1893		
Medium Green Ty	pe											
Avondale	58	14	0	73	6196	59.2	24.3			1852		
CDC Richlea	58	14	1	83	5452	58.9	24.2	1233	1830	1700	1765	1588
Small Green Type												
CDC Imvincible CL	61	13	1	55	8307	60.6	27.7			1562		
CDC Kermit	62	12	1	46	9822	62.2	26.0			1688		
ND Eagle	58	13	0	76	6011	60.4	25.3	1455	2134	1671	1903	1753
Small Red Type												
CDC Impalabn CL	61	14	1	81	5625	60.2	26.7			1619		
CDC Maxim CL	58	12	0	60	7599	58.9	24.6			1512		
Trial Mean	59	13	0	69	6817	59.9	25.4	1306	1912	1687	1834	1670
C.V. %	1.1	5.7	139.5	3.6	4.4	2.0	1.4	18.9	11.5	12.4		
LSD 5%	1.0	1.1	0.8	3.7	442	1.8	0.5	357	317	310		
LSD 10%	0.8	0.9	0.6	3.0	365	1.5	0.4	297	264	256		

¹ Days after planting.

² Lodging: 0 =none, 9 =lying flat on ground.

Planting Date: April 21

Harvest Date: August 13

Previous Crop: Field Peas

2020 Eenth Reerop									DICKI	5011, 1 (D
	Days	Days	1000	Seeds			-		Seed Yie	
	to	to	Seed	per	Plant	Test			2	3
Variety	Flower	Mature	Weight	Pound	Height	Weight	protein	2020	Year	Year
			gm		in	lbs/bu	%		lbs	/ac
Large Green Types										
CDC Greenstar	60	98	69	6,603	10	58.6	26.0	1276		
Medium Green Type										
Avondale	58	98	53	8,640	9	60.7	24.9	1034		
CDC Richlea	60	97	52	8,752	10	60.3	24.3	1269	1,335	1,176
Small Green Type										
CDC Imvincible-CL	57	91	40	11,497	10	62.0	26.8	1375		
CDC Kermit	60	94	32	14,378	9	62.1	26.5	1386		
ND Eagle	59	95	41	11,089	10	61.2	26.5	1332	1,279	1,061
Small Red Types										
CDC Maxim-CL	55	91	43	10,505	9	61.7	23.9	1210		
Extra Small Red Type										
CDC Impala-CL	57	91	33	13,773	10	62.4	26.2	1598		
Trial Mean	58	94	45	10,655	10	61.1	25.6	1,310		
CV %	1.3	1.3	5.5	7.2	7.0	0.4	1.6	13.8		
LSD 0.05	1	2	4	1,344	1	0.4	0.7	316		
LSD 0.10	1	2	4	1,104	1	0.3	0.6	260		

NDSU Dickinson Research Extension Center

Dickinson, ND

Planting Date:April 28, 2020Harvest Date:August 11, 2020Previous Crop:BarleySeeding Rate:600,000live seeds/ac

2020 Lentil - Recrop

Grain protein percentages reported on 0% moisture basis

Soybean - Round	lup Ready - 2020)						Hetting	er, ND
		Maturity	Mature	Plant	Test	Seed	Seed	Seed	Yield
Company/Brand	Variety	·	Date	Height	Weight	Oil	Protein	2020	2-Yr
				inches	lbs/bu	%	%	Bu	ı/ac
NDSU	ND17009GT	00.9	9/4	29	57.3	17.0	36.6	23.6	32.1
Proseed	XT80-20N	0.2	9/12	30	55.2	15.5	36.2	22.2	
INTEGRA	50309N	0.3	9/8	29	55.2	15.7	35.8	25.4	34.2
INTEGRA	40300N	0.3	9/11	26	55.9	15.6	35.4	27.1	
REA Hybrids	RX0411	0.4	9/12	30	54.9	16.7	34.4	23.5	
Proseed	XT60-40	0.4	9/12	27	54.6	16.7	36.2	21.9	31.0
REA Hybrids	RX0520	0.5	9/13	28	56.8	15.8	36.4	18.2	28.4
REA Hybrids	RX0721	0.7	9/13	28	55.8	15.6	36.5	22.5	
Trial Mean			9/8	27	55.4	16.7	35.4	21.4	31.8
C.V. %			0.8	7.6	1.6	1.8	1.1	9.7	
LSD 5%			1.3	2.9	0.8	0.4	0.5	2.9	
LSD 10%			1.1	2.4	0.7	0.4	0.4	2.4	

Planting Date: May 19 Harvest Date: September 16 Previous Crop: Spring Wheat

Soybean - Roundup Ready - 2020

Mandan, ND

		Maturity	Plant	Test	Seed	Seed	Seed	Yield
Company/Brand	Variety		Height	Weight	Oil	Protein	2020	2-Yr
			inches	lbs/bu	%	%	Bu	/ac
NDSU	ND17009GT	00.9	38	59.3	17.0	36.1	38.6	
Proseed	XT80-20N	0.2	35	57.2	17.7	30.7	35.0	
INTEGRA	50309N	0.3	33	57.2	17.7	30.6	37.6	38.7
INTEGRA	40300N	0.3	32	57.2	17.7	30.6	40.4	
REA Hybrids	RX0411	0.4	38	56.9	18.6	29.5	34.9	
Proseed	XT60-40	0.4	29	56.8	18.5	31.1	32.0	35.9
REA Hybrids	RX0520	0.5	36	57.4	17.1	32.7	33.6	38.1
REA Hybrids	RX0721	0.7	34	57.1	17.6	32.3	36.4	
			34	57.2	17.9	31.8	34.6	37.6
C.V. %			7.2	0.6	2.2	1.1	6.6	
LSD 5%			3.4	0.5	0.5	0.6	3.2	
LSD 10%			2.9	0.4	0.4	0.5	2.7	

Planting Date: May 20 Harvest Date: September 24 Previous Crop: Spring Wheat

Soybean - Convo	entional/Libe	rtyLink -	2020					Hetting	ger, ND
		Maturity	Mature	Plant	Test	Seed	Seed	Seed	Yield
Company/Brand	Variety	5	Date		Weight	Oil	Protein	2020	2-Yr
	-			inches	lbs/bu	%	%	Bu	/ac
Conventional									
NDSU	ND Benson	0.4	9/10	26	53.0	16.2	36.4	19.0	28.6
NDSU	ND Dickey	0.7	9/13	27	52.6	15.0	36.5	19.0	
RR Check #1	-	0.8	9/15	31	52.2	15.7	36.5	21.1	35.2
RR Check #2		0.8	9/13	29	53.1	15.6	36.5	19.6	
LibertyLink									
Proseed	BX20-65	0.8	9/14	27	51.7	16.5	36.1	13.4	
Trial Mean			9/13	28	52.6	15.6	36.7	18.5	31.9
C.V. %			0.1	10.8	1.6	2.2	1.1	13.3	
LSD 5%			1.1	4.6	2.1	0.5	0.6	3.0	
LSD 10%			0.9	3.8	1.6	0.4	0.5	2.3	

Planting Date: May 19 Harvest Date: September 16 Previous Crop: Spring Wheat

Soybean - Conv	Soybean - Conventional/LibertyLink - 2020										
		Maturity	Plant	Test	Seed	Seed	Seed	Yield			
Company/Brand	Variety		Height	Weight	Oil	Protein	2020	2-Yr			
			inches	lbs/bu	%	%	Bı	ı/ac			
Conventional											
NDSU	ND Benson	0.4	32	57.5	16.9	35.0	31.9				
NDSU	ND Dickey	0.7	32	57.5	16.2	34.7	36.5				
RR Check #1		0.8	32	56.1	16.2	35.2	31.7				
RR Check #2		0.8	31	56.7	16.5	34.4	30.2				
LibertyLink											
Proseed	BX20-65	0.8	28	57.5	16.5	34.6	26.7				
Trial Mean			32	57.1	16.3	35.1	30.7				
C.V. %			5.2	0.6	2.1	1.3	9.8				
LSD 5%			2.5	0.6	0.5	0.7	4.5				
LSD 10%			2.0	0.5	0.4	0.6	3.7				

Planting Date: May 20 Harvest Date: September 24 Previous Crop: Spring Wheat

Industrial Hem	ndustrial Hemp Variety Trial - 2020												
	Plant		Seedling	Flower			Test	Oil					
Variety	Stand	$PLSE^1$	Mortality	Date	Height	Lodging ²	Weight	Content					
	plants/ft ²	%	%		inches	0-9	lbs/bu	%					
CRS-1	11.1	70	30	7/1	41	0	*	32.3					
CFX-2	10.4	65	35	7/2	34	0		33.3					
Grandi	9.3	58	42	7/1	31	0		34.2					
Katani	10.2	64	36	7/2	32	0		33.5					
X-59	6.1	38	62	7/2	40	0		30.4					
NWG Abound	7.1	44	56	7/18	54	0		30.9					
NWG Elite	10.7	67	33	7/16	59	0		32.8					
	9.3	58	42		42	0		32.5					
C.V. %	22.4	22.4	31.0		12.2			2.3					
LSD 5%	3.1	19	19		7.5			1.1					
LSD 10%	2.6	16	16		6.2			0.9					

¹ Pure live seed emergence. ² Lodging: 0 = none, 9 = lying flat on ground.

* Not enough sample to obtain a test weight.

Planting Date:May 27

Harvest Date: September 17

Trial suffered from significant bird feeding which drastically reduced yields before harvest, therefore yields are not being reported.

43

NDSU Dickinson Research Extension Center

2020 Industrial Hemp - Recrop

Dickinson, ND

					Seeds	Plant					2
	Plant	1000		Seedling	per	Stand	Test	Oil	Grain	Yield	Year
Variety	Stand	KWT	PLSE ¹	Mortality	Pound	niformit	Weight	Content ³	2019	2020	Average
	ft^2	g	%	%			lbs/bu	%	lbs	ac/ac	lbs/ac
Altair	7.7	15.1	48	52	30,098	3.0	38.9	30.8	860	384	622
CFX-2	7.1	14.8	45	55	30,612	2.5	41.1	33.6	722	451	586
CRS-1	7.1	15.7	44	56	29,014	3.3	41.3	33.6	744	569	657
Canda	7.7	16.8	48	52	27,018	4.3	39.4	30.8	897	415	656
Grandi	7.7	14.0	48	52	32,322	2.0	41.0	33.5	653	397	525
Joey	8.7	16.0	54	46	28,301	3.0	40.4	31.3		426	
Katani	7.1	13.0	44	56	35,002	2.0	41.4	32.8	671	435	553
Vega	6.9	15.3	43	57	29,709	2.8	39.7	30.9		483	
Trial Maan	7.0	15	4.4	5(20.792	2 1	40.0	21.6	(07	427	
Trial Mean	7.0	15	44	56	30,782		40.0	31.6	697	427	
CV %	20.1	3.2	20.1	15.8	3.6	15.7	0.8	1.4	13.8	17.3	
LSD 0.05	2.1	0.7	13	13	1,620	0.7	0.5	0.7	136	108	
LSD 0.10	1.7	0.6	11	11	1,343	0.6	0.4	0.5	114	89	

¹ Pure live seed emergence

³ oil content reported as is basis (uniformly dried to approximately 3% moisture)

⁴ Stand Uniformity: 1 = plants are uniform height at harvest, 5 = very non-uniform plant height

Target seeding rate was 12 seeds/ft2 + additional 25% for expected mortality loss.

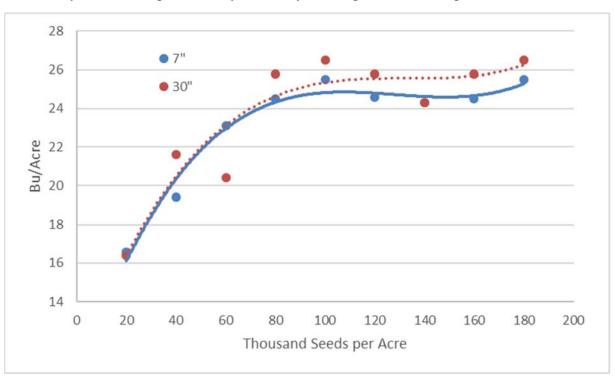
Planting Date May 28, 2020

Harvest Date: September 4, 2020 Previous Crop: wheat

Corn - 2020								Hettir	nger, ND
		Relavtive	Plant	Ear	Stalk	Maiatuma	Test	Crain	Viald
		Relavitve	Plant	Ear	Stark	Moisture	Test	Grain	Yield
Company	Hybrid	Maturity	Height	Height	Lodge	Content	Weight	2020	2-Yr
		days	inches	inches	%	%	lbs/bu	bu	ı/ac
Integra	3282	82	77	87	0	14.7	50.4	52.0	89.8
Integra	3431	84	75	80	0	15.5	49.7	53.9	
Integra	3537	85	77	86	0	16.1	48.3	47.8	91.3
Proseed	1974	74	70	85	0	16.6	58.6	61.8	
Proseed	2078	78	74	87	0	12.8	48.3	46.3	
Proseed	1980	80	70	80	0	14.3	52.7	64.7	
Proseed	1882	82	75	86	0	15.1	52.4	51.7	81.9
Proseed	1984	84	74	85	0	14.8	50.6	59.3	
Trial Mean			74	85	0	15.4	51.1	53.6	87.7
C.V. %			1.2	9.6		10.0	2.8	10.8	
LSD 5%			3.3	3.0		1.5	1.4	4.8	
LSD 10%			2.8	2.5		1.3	1.2	3.7	

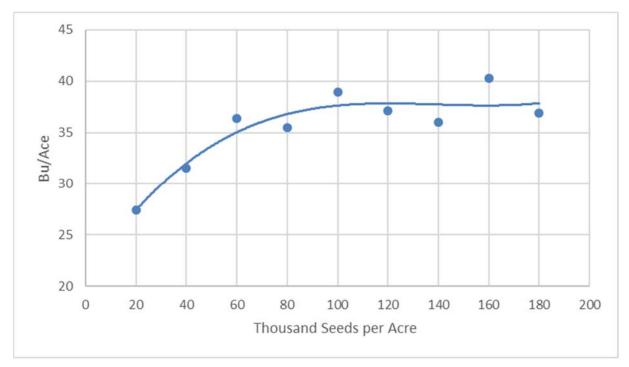
¹ Relavtive maturity provided by company.

Planting Date: May 18 Harvest Date: October 7


Hettinger Soybean Seeding Rate Study

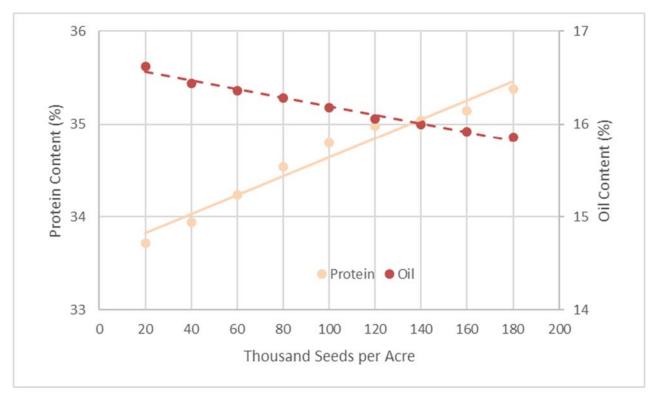
John Rickertsen & Michael Wells, Hettinger Research Extension Center, 2018 - 2020

Over the past decade soybean seeding rate recommendations in the corn-soybean belt have been reduced from 180,00 - 240,000 seeds per acre to 125,000 - 170,000. Much of this is due to increasing cost of soybean seed and soybeans tremendous ability to compensate for lower densities with increased branching and pod number. Yield per acre for soybeans remains relatively constant across population. This is because the number of seeds produced per plant is inversely related to the number of plants per acre. In general, numerous studies in the Midwest have shown 100,000 relatively uniformly spaced plants at harvest will produce the maximum economic return under most conditions. There have been many studies on soybean seeding rates in the Midwest, but there is little information on seeding rates for dryland soybeans in the semi-arid high plains.


A study was initiated in 2018 with nine seeding rates, 20,000 to 180,000 in 20,000 increments in both drilled (7") and row (30") configurations at Hettinger, ND and just 30" rows at Mandan, ND. In 2020 the Hettinger trial was planted on May 19 and Mandan on May 20. The soybean variety ND19009GT was used at both locations. Trials were no-till planted with a 7 row 7" inch spacing plot drill equipped with Acra Plant ADU double disk openers and a two row plot planter equipped with John Deere 1700 row units on 30" inch spacing. Weed control was obtained by a pre-emergence herbicide application of BroadAxe and post-emergence application of glyphosate. The trials were harvested with a Kincaid 8XP small plot combine on September 16 at Hettinger and September 26 at Mandan. Data was recorded on flowering, height, maturity date, yield, test weight, seed protein and seed oil content.


The results showed that seeding rates of 100,000 - 180,000 were not significantly different in yield and even the extremely low rate of 20,000 yielded 65% of the 100,000 - 180,000 seeding rates. For seed protein and oil content, as seeding rate increased, oil content decreased and protein increased. At the very lowest populations, seed size increased and test weight decreased, but there was no significant difference in the 100,000 to 180,000 rates for seed size and no significant difference in 40,000 to 180,000 rates for test weight. In 2018 and 2020, there was no difference in yield between 7" and 30" rows, while in 2019, 7" rows yielded 5.5 Bu/Acre higher than 30" rows. Over the past three years the 120,000 seeds/acre rate has been the optimal seeding rate for southwest North Dakota.

Soybean Seeding Rate Study Yields by Seeding Rate at Hettinger, ND in 2020.


Soybean Seeding Rate Study Yields by Seeding Rate at Mandan, ND in 2020.

Soybean Seeding Rate Study Yields by Seeding Rate Averaged Over All Trials, 2018 - 2020.

Soybean Seeding Rate Study Protein and Oil Content by Seeding Rate, Averaged Over All Trials, 2018 - 2020.

Alternative Soybean Production Management Options in Acidic Soils

Ryan Buetow, Dickinson Research Extension Center

Introduction

Many fields in western North Dakota are having issues with pH values below 5.5. When the pH drops below these levels it impacts nutrient availability, activity of bacteria in the soil, and reduce yield from Aluminum toxicity. The best management practice for these situations in no-till is a surface application of lime, however it takes a large amount of product to change soil chemistry to adequate levels and a surface application can take time to adjust pH levels. Producers are searching for less costly short term options, especially for rented land. Work done in Oklahoma and Montana has shown phosphorous applied with the seed in wheat and durum can help growth in acidic environments and some producers in southwestern ND have applied lime directly with the seed. A comparison of lime and phosphorous treatments applied with the seed in acidic soil was conducted to observe impact on growth and yield in soybean.

Past Research

Liming the soil can be costly and surface application can often be variable in coverage. Work has been conducted in small grains applying phosphorus (P) at high rates. In the short term, high rates of phosphorus fertilizer placed in seed furrows have been found to reduce the impact of Al toxicity in winter wheat in Oklahoma (Kaitibie et al., 2002). A similar effect was observed in Montana for durum wheat seeded in a field with a soil pH of 4.4. Even though the field site tested very high in available P (Olsen P = 49 ppm; Bray P = 105 ppm), triple superphosphate (0- 45-0) improved vegetative growth and grain yield in non-limed soil. How seed-placed P helps is currently not known, but the theory is that P binds with aluminum within roots; P did not improve yields on a similar field site with a pH of 4.8 (Jones et al., 2019). Some producers in Stark and Hettinger counties have tried P as well as pelletized lime with the seed on small grains with anecdotal evidence showing a yield increase.

References

Jones, C., R. Engel, K. Olson-Rutz. 2019. Soil acidification in the semiarid regions of North America's Great Plains. Crops & Soils magazine. March-April 2019. 28-31, 56.

Kaitibie, S., F.M. Epplin, E.G. Krenzer, Jr., and H. Zhang. 2002. Economics of lime and phosphorus application for dual purpose winter wheat production on low-pH soils. Agron. J. 94:1139–1145. doi:10.2134/agronj2002.1139

Materials and Methods

The research included two variables in a factorial arrangement. The experiment was managed based off of prior research in the region to decide soybean maturity, seeding rate, and inoculation. Four lime treatments and a control were applied with 0 lbs of pelletized lime with the seed, 50 lbs, 75 lbs, and 100 lbs per acre along with a treatment of 2 tons/acre surface applied. Each of the lime treatments were treated with 3 phosphorus treatments of 0 lbs/ac, 30 lbs/ac, and 60 lbs/ac of P as MAP. The treatments are listed in Table 1.

Lime	Phosphorous (MAP)
0 lbs	0 lbs
	30 lbs
	60 lbs
50 lbs	0 lbs
	30 lbs
	60 lbs
75 lbs	0 lbs
	30 lbs
	60 lbs
100 lbs	0 lbs
	30 lbs
	60 lbs
Surface Applied 2 tons	0 lbs
	30 lbs
	60 lbs

T 11 4 T

Results

As seen in Table 2 and Table 3 both lime and P rates had a significant impact on soybean yield. There was no significance on the interaction between the two treatments. Lime showed a significant yield bump at 75 lbs in furrow with no difference between 75 and 100. This yield increase aligns with a difference in amount of aluminum found in the tissue samples for these treatments. While we can see some differences the yield of the crop was majorly impacted by dry weather conditions in 2020. Further research is being requested for 2021 to confirm these findings. It is important to remember that these small rates of lime in furrow is not enough to have a major impact on soil pH levels.

Table 2. Tield and Mile vels act 055 mile ti catificitis.									
Lime applied in furrow	Yield	Aluminum from tissue samples							
lbs/ac of product	bu/ac	%							
0	13.9	45.6							
50	13.9	40.9							
75	15.7	31.8							
100	15.8	31.4							
4000 (surface applied)	14.5	51.2							

Phosphorous treatments had a visible impact on plant stand, however this was aggravated further with dry conditions at and following planting. As P rates go up, the yield goes down as seen in Table 3. These treatments did not have a significant impact on Aluminum levels in 2020. Further research is needed, but a reduction in plant stand was expected, however with soybeans especially, stand loss doesn't always necessarily mean yield loss. More data is needed to see how much of the impact on stand loss and vield reduction was from drought and how much was from the treatments and soil pH.

Table 5. Tield act 055 T treatments.		
Phosphorous in furrow	Yield	
lbs/ac	bu/ac	
0	16.2	
30	14.5	
60	13.5	

Table 3 Vield across P treatments

Weed Control with Preplant Burndown Herbicide Application prior to Planting Spring Wheat

Caleb Dalley and Daniel Guimaraes Abe, Hettinger Research Extension Center

A trial was conducted to evaluate preplant burndown herbicides applied to control emerged winter annual weeds prior to planting spring wheat. Herbicide treatments (see Table 1) were applied on April 30, 2020 using a tractor mounted research sprayer at a spray volume of 15 gallons per acre using XR8002 flat fan nozzles. Environmental conditions at time of application was; air temperature, 60 F; humidity, 36%, wind speed 8 mph from south; soil temperature, 49 F; the soil surface was dry; no dew was present on leaves; 10% cloud cover. No rainfall occurred after treatment application until May 5 (5 days after treatment application). Weeds present at time of application included downy brome, prickly lettuce, flixweed, and shepherds purse. Spring wheat 'Shelly' was planted at a rate of 120 lbs seed per acre on May 1, 2020 using a no-till drill at a depth of 2.5 inches.

Weed control was evaluated 15 and 32 days after treatment (DAT). Downy brome control at 15 DAT was best with most treatments containing glyphosate (Roundup PowerMAX). Tank mixing saflufencil (Sharpen) with glyphosate increased downy brome control compared with glyphosate alone. All other treatment combinations were statistically similar to glyphosate alone. At 32 DAT, downy brome control was 100% with all treatments containing glyphosate. Treatments containing paraquat (Gramoxone) controlled downy brome 84 to 89% 32 DAT. The treatment containing clethodim (Section Three) controlled downy brome 88% 32 DAT. Prickly lettuce was controlled 88% by glyphosate alone and 87% with paraguat alone 15 DAT. Addition al 2,4-D as a tank-mix with paraquat improved prickly lettuce control to 97. Additional of 2,4-D, saflufencil, or carfentrazone (Aim) as a tank-mix with glyphosate improved prickly lettuce control to 96, 100, and 95%, respectively. Other treatments did not significantly improve prickly lettuce control compare with either paraquat or glyphosate alone. Flixweed was control 61% 32 DAT with paraquat alone. Addition of 2,4-D or saflufencil increased control to 100% and 72%, respectively. All treatments containing glyphosate controlled flixweed 100% 32 DAT, including glyphosate alone. Clethodim plus fluroxypyr (Starane Ultra) plus halauxifen (Elevore) controlled flixweed 98% 32 DAT. Shepherdspurse control was 98% or greater at 32 DAT for all herbicide treatments. Applying herbicides for burndown of weeds prior to planting is necessary when using no-till production practices. Tank-mixing herbicides with glyphosate or paraquat can sometimes reduce the timing required for weed control. For example, prickly lettuce control 15 DAT with glyphosate alone was 88%, compared with 96% with the addition of 2,4-D, 100% with the addition of saflufencil, and 95% with the addition of carfentrazone. However, over time glyphosate was just as successful at controlling the weeds evaluated in this trial as when tankmixes were used. However, the addition of 2,4-D to paraquat increased control of both prickly lettuce and flixweed compared with paraguat alone.

Tr	eatment		Downy	brome	Prickly	Lettuce	Flixy	veed	Shepher	denurse
		Rate	•		-	32DAT			-	1
	1 Toddet Hallie	(oz/A)		520111	150/11	<u> </u>		520111	150/11	520711
1	Gramoxone SL 2.0	32	73 e	88 cd	87 def	89 cd	, 69 c	61 b	88 c	100 a
2	Gramoxone SL 2.0	32	84 cd	89 cd	97 ab	100 a	100 a	100 a		100 a
_	2,4-D LV-6	16	0.00	0, 00	<i>y</i> , u e	100 4	100 4	100 4	<i>y</i> c u c c	100 4
3	Gramoxone SL 2.0	32	77 de	84 d	92 a-f	84 d	91 b	72 b	95 abc	100 a
	Sharpen	2								
4	Roundup PowerMAX	24	91 bc	100 ab	88 def	100 a	100 a	100 a	93 abc	100 a
5	Roundup PowerMAX	24	89 bc	100 ab	96 abc	100 a	99 ab	100 a	94 abc	100 a
	2,4-D LV-6	16								
6	Roundup PowerMAX	24	100 a	100 a	100 a	100 a	100 a	100 a	100 a	100 a
	Sharpen	2								
7	Roundup PowerMAX	24	98 ab	100 ab	95 a-d	92 abc	100 a	100 a	96 ab	100 a
	Aim	2								
8	Roundup PowerMAX	24	92 abc	100 ab	91 b-f	97 ab	100 a	100 a	98 ab	100 a
	Anthem Flex	4								
9	Roundup PowerMAX	24	88 c	100 ab	90 b-f	93 abc	100 a	100 a	98 ab	100 a
10	Quelex	0.75	0.0.1	100 1		100	~	100		100
10	Roundup PowerMAX	24	90 bc	100 ab	87 ef	100 a	95 ab	100 a	92 bc	100 a
1 1	Elevore	1	001	100 1	00	100	100	100	07 1	100
11	Roundup PowerMAX	24	90 bc	100 ab	93 a-e	100 a	100 a	100 a	97 ab	100 a
	Starane Ultra	4.5								
10	Elevore Section Three	1	73 e	88 cd	85 f	00 had	26 d	98 a	80 d	98 b
12	Starane Ultra	5.33 4.5	/s e	88 cu	851	90 bcd	36 d	98 a	80 a	98 D
	Elevore	4.3 1								
IS	D P=.10	1	8.05	6.80	7.97	7.85	8.92	21.86	7.27	1.66
CV			8.03	6.39	8.13	7.85	8.75	21.80	7.04	1.00
	eatment F		49.000	78.987	57.546			12.449	65.871	1.57
	eatment Prob(F)		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-	estments were emplied of				0.0001	0.0001	0.0001	0.0001	0.0001	0.0001

Table 1. Weed control with preplant burndown in spring wheat.

Treatments were applied on April 30, 2020.

NIS (0.5% v/v) was added to treatments 1 and 2.

AMS (17 lb/100 gallons) was added to treatments 3-13.

MSO Destiny HSOC (1% v/v) was added to treatments 3, and 7-13.

Evaluation of No-Till Spring Wheat Response to Preemergence, Delayed Preemergence, and Early Postemergence Applications of Pyroxasulfone

Caleb Dalley, Daniel Guimaraes Abe, Hettinger Research Extension Center

A trial was conducted to evaluate the response of spring wheat to pyroxasulfone applied at different timings after planting. The hard red spring wheat 'Shelly' was planted into safflower stubble on May 1, 2020 using a no-till drill at a depth of 2.5 inches. The herbicide Zidua SC (pyroxasulfone) was applied at 1.75, 2.5, 3.25, and 4 oz/A at three timings. Treatments were applied preemergence (PRE) on May 2; delayed preemergence (DPRE) on May 11, and early postemergence to 1-leaf wheat on May 22. Treatments were applied using a tractor-mounted research sprayer at a spray volume of 10 gallons per acre using XP8002 flat fan nozzles. The herbicide glyphosate was applied to the entire field site to control weeds that had emerged prior to planting. Between planting and wheat emergence on May 14, rainfall of 0.39 inches occurred with 0.11 inches on May 5, 0.23 inches on May 7, 0.03 inches on May 9, and 0.02 inches on May 12. Wheat was evaluated for injury on May 22 and on June 1 (8 and 18 days after crop emergence. Wheat was harvested and yield measured on August 31 using a small plot combine with a 5-foot header (Kincaid 8 XP).

There was no visual injury to wheat from any of the herbicide treatments regardless of treatment rate or timing at either evaluation dates. The label for Zidua SC described increased risks for applying Zidua as a preplant or preemergence application and recommends a delayed preemergence timing to reduce risk for injury. A delayed preemergence application is defined as an application following wheat planting when 80% of germinated wheat seeds have a shoot at least one-half inch long and prior to wheat spiking. The risk for injury is greater when higher rainfall occurs in-between planting and wheat emergence or when seed furrow remains open after planting that allows herbicide to directly contact seed. In this trial, there was only 0.39 inches of rainfall and a maximum daily rainfall of 0.23 inches. Perhaps under a higher rainfall environment, injury to wheat would have occurred, but this was not observed in this trial. Pyroxasulfone is not highly mobile in the soil and generally needs an inch of rainfall for adequate incorporation into the soil as a herbicide for weed control. Wheat yields were similar between all treatments regardless of rate of pyroxasulfone applied or the timing of application.

While there was no injury to wheat in this trial and no reduction in wheat yield due to herbicide treatment, caution should be taken when using this herbicide prior to the delayed preemergence wheat stage as described earlier. When using under no-till conditions, ensure seed drill is set up properly to fully close seed furrow during planting. Also realize that seed drills that leave a deep seed furrow during planting increase the risk of crop injury. Also check weather for predicted rainfall as higher rainfall increases risk of crop injury although this rainfall will also increase weed control with this herbicide.

Treatment	reatment Wheat Injury								
Product name	Rate	Timing	8 DAE	18 DAE	Yield	Test wt			
	(oz/A)			9	6				
1 Zidua SC	1.75	PRE	0 -	0 -	40.1 -	59.00 -			
2 Zidua SC	2.5	PRE	0 -	0 -	42.0 -	59.18 -			
3 Zidua SC	3.25	PRE	0 -	0 -	42.7 -	59.08 -			
4 Zidua SC	4.0	PRE	0 -	0 -	37.7 -	59.08 -			
5 Zidua SC	1.75	DPRE	0 -	0 -	36.1 -	58.90 -			
6 Zidua SC	2.5	DPRE	0 -	0 -	40.8 -	59.08 -			
7 Zidua SC	3.25	DPRE	0 -	0 -	39.5 -	59.15 -			
8 Zidua SC	4.0	DPRE	0 -	0 -	43.0 -	59.35 -			
9 Zidua SC	1.75	EPOST	0 -	0 -	39.0 -	58.98 -			
10 Zidua SC	2.5	EPOST	0 -	0 -	44.2 -	59.25 -			
11 Zidua SC	3.25	EPOST	0 -	0 -	40.2 -	58.90 -			
12 Zidua SC	4.0	EPOST	0 -	0 -	45.3 -	59.38 -			
13 Weed Free			0 -	0 -	39.5 -	59.36 -			
LSD P=.10					5.86	0.382			
CV			0.0	0.0	12.05	0.54			
Treatment F			0.000	0.000	1.111	0.920			
Treatment Prob(F)			1.0000	1.0000	0.3813	0.5376			

Table 1. Spring wheat response to the herbicide pyroxasulfone (Zidua) at four rates and three application timings.

-Spring wheat 'Shelly' was planted on May 1, 2020 and emerged on May 14.

-Treatment timings were: preemergence (PRE), applied on May 2, 2020; delayed preemergence (DPRE), applied on May 11; early postemergence (EPOST) applied to 1-leaf wheat on May 21.

-Wheat was evaluated for injury on May 22 and June 1 (8 and 18 days after wheat emergence).

-Wheat was harvested on August 31 using a small plot combine (Kincaid 8XP).

Spring Wheat and Weed Control Response to Postemergence Herbicides

Caleb Dalley, Daniel Guimaraes Abe, Hettinger Research Extension Center

A trial was conducted to evaluate different postemergence herbicide combinations for broadleaf weed control in spring wheat. Prior to planting, the field site was treated with glyphosate to control existing weeds on April 29 and urea fertilizer (50 lbs N/acre) was applied on April 15, 2020. The hard red spring wheat 'Shelly' was planted at a rate of 120 lbs seed per acre on May 1 using a no-till drill set to a depth of 2.5 inches. Wheat emerged on May 14. Weeds that emerged after planting were allowed to grow with the wheat crop until either the 3-leaf or jointing stage of wheat was reached. Herbicide treatments were applied using a tractor-mounted research sprayer at a spray volume of 10 gallons per acre using XR8002 flat fan nozzles. Herbicides were applied at the 3-leaf stage on June 5, 2020. Air temperature at time of application was 67 F, relative humidity was 40%, wind speed was 5 mph from the east, soil temperature was 46 F, and no dew was present on leaves. Weeds present at time of application included: kochia, $738/m^2$, 3 cm in height; common lambsquarters, 121/m², 3.5 cm in height; bindweed, 12/m², 24 cm runners. The second application timing was at the wheat jointing stage. These treatments were applied on June 17. Environmental conditions at time of application were: air temperature, 84 F; relative humidity, 41%; wind speed, 5 mph from north northwest; soil temperature, 58 F; no dew was present. Treatments were evaluated on June 24 (19 days after the first application timing and 7 days after the second application timing) and July 9 (34 days after the first and 22 days after the second application timing). Wheat was harvested on August 31 using a small plot combine (Kincaid 8XP).

Due to the dry conditions that occurred during the spring of 2020 where from May 1 through June 27 only 1.11 inches of rainfall occurred in Hettinger. During the final week of June and first week of July, 3.16 inches of rainfall occurred which saved the crop from complete failure. However, lack of rainfall resulted in poor incorporation of the applied urea fertilizer resulting in nitrogen deficiencies in some area and weed control was not as good as would be expected due to the drought stress. Also, wheat yields were highly variable and there was no clear response to the herbicide treatments. Kochia was best control with 3-leaf application of PerfectMatch (clopyralid+fluroxypyr+pyroxsulam) at 83%. Treatments similar to PerfectMatch were 3-leaf and jointing application of Quelex plus Starane Flex plus TeamMate (halauxifen+florasulam plus fluroxypyr+florasulam plus pyroxsulam) at 81 and 74%, respectively; 3-leaf and jointing application of Starane Ultra plus Varro (halauxifen plus thifencarbazone-methyl) at 80 and 77%, respectively; 3-leaf application of Talinor (bicycolpyrone+bromoxynil) at 80%; 3-leaf and jointing application of Starane Ultra plus Axial XL (fluroxypyr plus pinoxaden) at 78 and 75%, respectively; jointing application of OpenSky (flyroxypry+pyroxsulam) at 77%; and jointing application of PerfectMatch at 75%. Common lambsquarters was best control with the 3-leaf application of Talinor or Supremacy (fluroxypyr+thifensulfuron-methyl+tribenuron) both at 99%. Similar to these were 3-leaf applications of OpenSky at 92%; Quelex+TeamMate at 92%; Qulex plus Starane Flex + TeamMate at 95%; PerfectMatch at 92%. The only treatment that was similar when applied at the jointing stage was Supremacy at 96%. Field bindweed was best controlled with Starane Ultra plus Varro at 82 to 83%; Quelex plus Starane Flex plus TeamMate at 75 to 80%; and PerfectMatch at 76 to 80%. Wheat yield was highly variable and no differences in yield or test weight were found.

Tre	eatment			Ko	chia	Lambs	quarters	Bindweed	Wł	neat
	Product name	Rate	Timing	19DAA			34DAA	34DAA	Yield	Test
		(oz/A)	U		-	- % contro			Bu/A	LB/Bu
1	Untreated			0 h	0 f	0 f	0 f	0 g	12.9 -	49.7 -
2	OpenSky	16	3-lf	82 ab	66 cd	89 ab	92 ab	64 bcd	18.3 -	56.3 -
3	Quelex	0.75	3-lf	76 bcd	71 bcd	82 bc	91 ab	60 d	21.7 -	51.5 -
	TeamMate	1								
4	Quelex	0.75	3-lf	79 a-d	81 ab	74 cd	95 ab	80 a	19.8 -	54.4 -
	Starane Flex	13.5								
	TeamMate	1								
5	PerfectMatch	16	3-lf	76 bcd	83 a	78 bc	92 ab	80 a	17.5 -	49.6 -
6	Starane Ultra	5.3	3-lf	80 abc	78 ab	36 e	0 f	63 cd	25.3 -	56.5 -
	Axial XL	16.4								
7	Starane Ultra	5.3	3-lf	78 a-d	80 ab	80 bc	85 bc	82 a	24.7 -	58.3 -
	Varro	6.85								
8	Supremacy	4	3-lf	65 f	61 de	79 bc	99 a	46 ef	18.8 -	46.7 -
9	Talinor	13.7	3-lf	85 a	80 ab	97 a	99 a	43 f	19.0 -	52.8 -
	OpenSky	16	JNT	72 def	77 ab	71 cd	72 d	74 abc	18.9 -	52.2 -
11	Quelex	0.75	JNT	72 def	74 abc	75 c	77 cd	75 ab	17.3 -	48.7 -
	Starane Flex	13.5								
	TeamMate	1								
12	Quelex	0.75	JNT	66 f	53 e	68 cd	81 cd	57 de	20.0 -	55.1 -
	TeamMate	1								
	PerfectMatch	16	JNT	71 def	75 abc	73 cd	78 cd	76 ab	13.8 -	49.2 -
14	Starane Ultra	5.3	JNT	74 cde	75 abc	25 e	0 f	83 a	19.4 -	56.5 -
	Axial XL	16.4								
15	Starane Ultra	5.3	JNT	67 ef	77 ab	63 d	56 e	83 a	15.8 -	51.6 -
	Varro	6.85								
	Supremacy	4	JNT	67 def	77 ab	66 cd	96 a	55 de	14.7 -	45.0 -
	D P=.10			7.61	10.08	10.47	10.63	11.86	7.26	9.922
CV				9.34	12.29	13.55	13.08	15.75	33.06	16.02
	eatment F			37.453	22.493	30.070	63.770	18.234	1.216	0.799
Tre	eatment Prob(F)		0.0001	0.0001	0.0001	0.0001	0.0001	0.2920	0.6793

Table 1. Weed control and spring wheat response to postemergence herbicides applied at either the 3-leaf stage or at jointing.

-Spring wheat 'Shelly' was planted on May 1, 2020.

-Treatments were applied was either at 3-leaf on June 5 or at jointing on June 17.

-NIS (0.25% v/v) was included with treatments 2-8, 9-16; AMS (15 lb/gal) was included with treatments 2, 5-8, 10, 13-16; COC (1% v/v) and (CoAct+ 2.5 oz/A) was included with treatment 9.

-Kochia, common lambsquarters, and field bindweed were evaluated on June 24 [19 days after the application (DAA) to 3-leaf wheat or 7 DAA to wheat at jointing stage] and on July 9 (34 DAA to 3-leaf wheat or 22 DAA to wheat at jointing stage).

-Wheat was harvested on August 31 using a small plot combine (Kincaid 8-XP).

Field Pea and Green Foxtail Response to Spring-Applied Preemergence Herbicides

Caleb Dalley, Daniel Abe, Hettinger Research Extension Center

A trial was conducted to evaluate field pea response and resulting weed control from spring application of soil active preemergence herbicides. Field pea 'Salamanca' was planted on May 5, 2020 using a no till drill at a rate of 120 lbs seed per acre at a depth of 2.5 inches. On May 6, herbicide treatments were applied using a tractor-mounted research sprayer at a spray volume of 10 gallons per acre using 8002XP flat fan nozzles. All treatments were tank-mixed with glyphosate (Roundup PowerMAX at 22 oz/acre) + AMS (8.5 lbs/100 gallons) + Destiny HSOC (1% v/v) to control weeds that had emerged prior to planting. The herbicide carfentrazone (Aim) was added at 1 oz/acre to improve control of winter annual weeds in all treatments except Spartan Charge (carfentrazone plus sulfentrazone), Sharpen (saflufencil), and Anthem Flex (carfentrazone plus pyroxasulfone).

Crop stand was measured using two 0.5 m² quadrats per plot on June 3, two weeks after crop emergence. Of the herbicide treatments, sulfentrazone plus carfentrazone (Spartan Charge) and saflufencil (Sharpen) resulted in stand counts greater than what was recorded in the untreated control. Stand counts for all other treatments were similar to the untreated control. Field pea height was measured on June 23, by measuring the height of 10 random plants per plot. Pea height was less following application of sulfentrazone plus pyroxasulfone (Authority Edge). All other treatments resulted in pea height that was similar to what was found in the untreated control. The months of May and June were very dry in 2020 and few weeds emerged with the crop. When significant rainfall did occur during the last week of June and first week of July, this rain resulted in the emergence of green foxtail. Control of green foxtail was evaluated on July 10, 65 days after herbicide application. Even with the lack of rainfall early in the growing season, the herbicide treatment that provided good or excellent control of green foxtail included Authority Supreme (sulfentrazone plus pyroxasulfone) with 93% control, Spartan Elite (sulfentrazone plus metolachlor) with 90% control, and Anthem Flex (carfentrazone plus pyroxasulfone) with 86% control. Other treatments resulted in fair or poor control of green foxtail. While both Spartan Elite and Authority Edge contain sulfentrazone plus pyroxasulfone, better control of green foxtail with Authority Supreme was likely due to the higher amount of pyroxasulfone in this herbicide formulation. Field pea was harvested on August 12 using a small plot combine (Kincaid XP). Yield of field pea was greater, compared with the untreated control (1008 lbs/acre), following application of sulfentrazone plus pyroxasulfone (Authority Supreme) at 1932 lbs/acre; sulfentrazone plus carfentrazone (Spartan Charge) at 1605 lbs/acre, saflufencil (Sharpen) at 2043 lbs/acre, and pyroxasulfone plus carfentrazone (Anthem Flex) at 1694 lbs/acre. All other treatments yielded similar to the untreated control.

Treatment		Green foxtail			
Product name	Rate	control	Stand count	Height	Yield
	(oz/A)	%	—#/m ² —	—cm—	lbs/acre
1 Authority Supreme	5.8	93 a	59 abc	34 a	1932 a
Aim	1				
2 Spartan Elite	19	90 a	57 bcd	29 bc	1460 bc
Aim	1				
3 Spartan Charge	3.75	63 c	62 ab	32 ab	1605 ab
4 Sharpen	2	20 d	64 a	33 a	2043 a
5 Authority Edge	4.4	73 b	57 bcd	26 c	1341 bc
Aim	1				
6 Anthem Flex	4	86 a	52 d	33 ab	1694 ab
7 Untreated control		0 e	54 cd	31 ab	1008 c
LSD P=.10		9.84	7.15	3.91	462.7
CV		13.26	10.12	10.32	23.83
Treatment F		82.804	2.303	3.314	3.514
Treatment Prob(F)		0.0001	0.0795	0.0223	0.0177

Table 1. Field pea and lentil and weed control response to fall application of preemergence herbicides.

Field pea were planted on May 5, 2020

Treatments were applied on May 6, 2020.

All treatments were tank mixed with glyphosate (Roundup PowerMAX at 22 oz/acre) plus AMS (8.5 lb/100 gal) and HSOC (1% v/v).

Green foxtail control was evaluated on July 10, 2020, 65 days after treatment application.

Crop stand was measured using two 0.5 m^2 quadrats per plot and was measured on July 3, at 2 weeks after crop emergence.

Crop height was average of 10 random plants per plot and was measured on June 23, at 5 weeks after crop emergence.

Field pea were harvested on August 7 using a small plot combine.

Field Pea and Lentil Response to Fall-Applied Preemergence Herbicides

Caleb Dalley, Daniel Abe, Hettinger Research Extension Center

A trial was conducted to evaluate field pea and lentil response and resulting weed control from fall application of soil active preemergence herbicides. On October 8, 2019, herbicide treatments were applied (see table) using a tractor-mounted research sprayer at a spray volume of 10 gallons per acre using 8002XP flat fan nozzles. All treatments were tank-mixed with glyphosate (Roundup PowerMAX at 22 oz/acre) + AMS (8.5 lbs/100 gallons) + Destiny HSOC (1% v/v) to control weeds that had emerged prior to planting. Field pea and lentil were planted on May 5, 2020 using a no till drill. Field pea 'Salamanca' were planted at a rate of 120 lbs seed per acre at a depth of 2.5 inches. Lentil 'Imvincible' was planted at a rate of 15 seeds per square foot at a depth of 1.5 inches. No additional herbicides were applied after planting.

Injury to pea and lentil were evaluated 8 days after crop emergence. No injury was observed for any herbicide treatment in field pea. In lentil, injury occurred with herbicide treatments containing sulfentrazone (Spartan Charge and Spartan Elite). This injury was visible as necrotic lesions (dead tissue) on leaves and stems. Crop stand was measured using two 0.5 m² quadrats per plot on June 9, three weeks after crop emergence. No herbicide treatment affected crop stand within each crop. Control of three weed species, kochia, common lambsquarters, and green foxtail, was evaluated on June 23, five weeks after crop emergence. Kochia control was 95 to 100% for all herbicide treatments. Common lambsquarters was controlled 95 to 100% with herbicides containing sulfentrazone (Spartan Charge and Spartan Elite). Control of common lambsquarters with other herbicide treatments was poor and ranged from 18 to 38%. Control of green foxtail was best at 78-81% with application of sulfentrazone plus metolachlor (Spartan Elite). Control was fair 56-61% with carfentrazone+pyroxasulfone (Anthem Flex) and was poor with pyroxasulfone+flumioxazin (Fierce). All other treatments provided no control of green foxtail. Better control of green foxtail with Anthem Flex versus Fierce, both of which contain the herbicide pyroxasulfone, was related to the higher rate of pyroxasulfone in the Anthem Flex application (2.1 oz of pyroxasulfone active per acre) compared with Fierce (1.3 oz of pyroxasulfone active per acre). Crop height was measured on June 23 by measuring the height of 10 random plants per plot. There were a few differences in the height of field pea but there were no differences in lentil height. The differences in the height of field pea was small and is not easily explained as there was no visual injury and it did not appear related to differences in weed control. Field pea and lentil were both harvest on August 12 using a small plot combine (Kincaid XP). Yield of field pea was increased, compared with the untreated control (1597 lbs/acre), following application of sulfentrazone plus carfentrazone (Spartan Charge), 1904 lbs/acre; and sulfentrazone plus metolachlor (Spartan Elite), 1872 lbs/acre. All other treatments yielded similar to the untreated control. Lentil yield was increased compared to the untreated control (1665 lbs/acre) only with application of pyroxasulfone plus flumioxazin (Fierce), 1996 lbs/acre. While some treatments yielded numerically less than the untreated control, no treatment resulted in yields that were statistically different. These trials show the value of fall application of preemergence herbicide for improved efficacy of spring weed control.

		Injury		Control				
Rate	Crop	8 DAE	Kochia	Lamb	G. fox	Stand	Height	Yield
(oz/A)				%		#/m ²	cm	lb/acre
	Pea	0 c	0 b	0 e	0 e	58 b	37 bcd	1597 de
2	Pea	0 c	100 a	19 d	0 e	62 b	39 ab	1552 de
3	Pea	0 c	95 a	25 cd	0 e	69 b	39 ab	1656 cde
10	Pea	0 c	100 a	98 a	0 e	71 b	41 a	1904 abc
4.5	Pea	0 c	96 a	35 bc	56 b	69 b	37 bc	1797 a-d
3	Pea	0 c	100 a	28 bcd	23 d	66 b	35 d	1682 b-e
32	Pea	0 c	100 a	95 a	78 a	61 b	36 cd	1872 abc
	Lentil	0 c	0 b	0 e	0 e	250 a	20 e	1665 b-e
2	Lentil	0 c	100 a	18 d	0 e	249 a	20 e	1509 e
3	Lentil	0 c	96 a	38 b	0 e	268 a	21 e	1518 e
10	Lentil	13 b	100 a	96 a	3 e	254 a	19 e	1574 de
4.5	Lentil	0 c	95 a	38 b	61 b	260 a	19 e	1916 ab
3	Lentil	0 c	100 a	30 bc	41 c	254 a	20 e	1996 a
32	Lentil	23 a	100 a	100 a	81 a	250 a	19 e	1664 cde
		4.29	5.70	10.28	7.92	20.13	2.31	252.56
		142.0	5.66	19.56	27.84	10.67	6.73	12.42
		14.13	224.44	72.47	89.55	134.49	92.15	2.31
		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0218
	(oz/A) 2 3 10 4.5 3 32 2 3 10 4.5 3 10 4.5 3	Pea2Pea3Pea10Pea4.5Pea3Pea32Pea2Lentil3Lentil10Lentil3Lentil3Lentil3Lentil3Lentil3Lentil3Lentil3Lentil3Lentil	Rate Crop 8 DAE (oz/A) Pea 0 c Pea 0 c 3 Pea 0 c 3 Pea 0 c 10 Pea 0 c 4.5 Pea 0 c 3 Pea 0 c 3 Pea 0 c 3 Pea 0 c 3 Pea 0 c 32 Pea 0 c 2 Lentil 0 c 3 Lentil 0 c 32 Lentil 0 c 32 Lentil 0 c 32 Lentil 0 c	Rate Crop 8 DAE Kochia (oz/A) Pea 0 c 0 b 2 Pea 0 c 100 a 3 Pea 0 c 95 a 10 Pea 0 c 96 a 10 Pea 0 c 96 a 3 Pea 0 c 100 a 4.5 Pea 0 c 100 a 3 Pea 0 c 100 a 32 Pea 0 c 100 a 32 Pea 0 c 100 a 32 Pea 0 c 100 a 3 Lentil 0 c 96 a 10 Lentil 0 c 100 a 4.5 Lentil 0 c 96 a 10 Lentil 0 c 96 a 3 Lentil 0 c 96 a 3 Lentil 0 c 96 a 3 Lentil 0 c 100 a 4.5 Lentil	Rate Crop 8 DAE Kochia Lamb (oz/A) Pea 0 c 0 b 0 e 2 Pea 0 c 100 a 19 d 3 Pea 0 c 100 a 19 d 3 Pea 0 c 95 a 25 cd 10 Pea 0 c 100 a 98 a 4.5 Pea 0 c 96 a 35 bc 3 Pea 0 c 100 a 28 bcd 32 Pea 0 c 100 a 95 a 32 Pea 0 c 100 a 95 a 32 Pea 0 c 100 a 95 a 33 Lentil 0 c 96 a 38 b 4 Lentil 0 c 96 a 38 b 10 Lentil 0 c 100 a 30 bc 33 Lentil 0 c 100 a 30 bc 34 Lentil 0 c 100 a 100 a <tr< td=""><td>Rate Crop 8 DAE Kochia Lamb G. fox (oz/A) Pea 0 c 0 b 0 e 0 e 2 Pea 0 c 100 a 19 d 0 e 3 Pea 0 c 100 a 19 d 0 e 3 Pea 0 c 95 a 25 cd 0 e 10 Pea 0 c 100 a 98 a 0 e 10 Pea 0 c 100 a 98 a 0 e 4.5 Pea 0 c 100 a 98 a 0 e 3 Pea 0 c 100 a 28 bcd 23 d 32 Pea 0 c 100 a 95 a 78 a 10 Lentil 0 c 100 a 18 d 0 e 2 Lentil 0 c 96 a 38 b 61 b 3 Lentil 0 c 100 a 30 bc 41 c 32 Lentil 0 c 100 a 30 b</td><td>RateCrop8 DAEKochiaLambG. foxStand(oz/A)$\%$#/m²Pea0 c0 b0 e0 e58 b2Pea0 c100 a19 d0 e62 b3Pea0 c95 a25 cd0 e69 b10Pea0 c100 a98 a0 e71 b4.5Pea0 c96 a35 bc56 b69 b3Pea0 c100 a28 bcd23 d66 b32Pea0 c100 a95 a78 a61 b32Pea0 c100 a95 a78 a61 b32Lentil0 c0 b0 e0 e249 a3Lentil0 c96 a38 b0 e268 a10Lentil13 b100 a96 a3 e254 a4.5Lentil0 c100 a30 bc41 c254 a32Lentil0 c100 a100 a81 a250 a33Lentil0 c100 a30 bc41 c254 a4.5Lentil23 a100 a100 a81 a250 a34Lentil23 a100 a100 a81 a250 a4.295.7010.287.9220.13142.04.295.6619.5627.8410.6714.13224.4472.4789.55134.490.00010.00010.00010.0001<</td><td>RateCrop8 DAEKochiaLambG. foxStandHeight(oz/A)$$</td></tr<>	Rate Crop 8 DAE Kochia Lamb G. fox (oz/A) Pea 0 c 0 b 0 e 0 e 2 Pea 0 c 100 a 19 d 0 e 3 Pea 0 c 100 a 19 d 0 e 3 Pea 0 c 95 a 25 cd 0 e 10 Pea 0 c 100 a 98 a 0 e 10 Pea 0 c 100 a 98 a 0 e 4.5 Pea 0 c 100 a 98 a 0 e 3 Pea 0 c 100 a 28 bcd 23 d 32 Pea 0 c 100 a 95 a 78 a 10 Lentil 0 c 100 a 18 d 0 e 2 Lentil 0 c 96 a 38 b 61 b 3 Lentil 0 c 100 a 30 bc 41 c 32 Lentil 0 c 100 a 30 b	RateCrop8 DAEKochiaLambG. foxStand(oz/A) $\%$ #/m²Pea0 c0 b0 e0 e58 b2Pea0 c100 a19 d0 e62 b3Pea0 c95 a25 cd0 e69 b10Pea0 c100 a98 a0 e71 b4.5Pea0 c96 a35 bc56 b69 b3Pea0 c100 a28 bcd23 d66 b32Pea0 c100 a95 a78 a61 b32Pea0 c100 a95 a78 a61 b32Lentil0 c0 b0 e0 e249 a3Lentil0 c96 a38 b0 e268 a10Lentil13 b100 a96 a3 e254 a4.5Lentil0 c100 a30 bc41 c254 a32Lentil0 c100 a100 a81 a250 a33Lentil0 c100 a30 bc41 c254 a4.5Lentil23 a100 a100 a81 a250 a34Lentil23 a100 a100 a81 a250 a4.295.7010.287.9220.13142.04.295.6619.5627.8410.6714.13224.4472.4789.55134.490.00010.00010.00010.0001<	RateCrop8 DAEKochiaLambG. foxStandHeight(oz/A) $$

Table 1. Field pea and lentil and weed control response to fall application of preemergence herbicides.

Treatments were applied on Oct 8, 2019.

All treatments were tank mixed with glyphosate (Roundup PowerMAX at 22 oz/acre) plus AMS (8.5 lb/100 gal) and HSOC (1% v/v).

Weeds evaluated were kochia, common lambsquarters, and green foxtail

Crop stand was measured using two 0.5 m^2 quadrats per plot and was measured on Jun 9, at 3 weeks after crop emergence.

Crop height was average of 10 random plants per plot and was measured on June 23, at 7 weeks after crop emergence.

Field pea and lentil were planted on May 5, 2020.

Lentil Response to Spring Preemergence Herbicides

Caleb Dalley, Daniel Guimaraes Abe, Hettinger Research Extension Center

A trial was conducted to evaluate lentil response and resulting weed control from spring application of various preemergence herbicides applied at planting. Lentil 'Invincible CL' was planted on May 5, 2020 using a no till drill at a rate of 25 seed per square foot at a depth of 1.5 inches. On May 6, herbicide treatments were applied using a tractor-mounted research sprayer at a spray volume of 10 gallons per acre using 8002XP flat fan nozzles. All treatments were tank-mixed with glyphosate (Roundup PowerMAX at 22 oz/acre) + AMS (8.5 lbs/100 gallons) + Destiny HSOC (1% v/v) to control weeds that had emerged prior to planting (including the weed free control). Lentil emergence occurred on May 19. Between planting and lentil emergence rainfall of 0.23 inched occurred (May 7). During the first six weeks after planting, other substantial rainfall (> 0.05 inches) events occurred on June 2 (0.12 inches), June 4 (0.09 inches), and June 6 (0.16 inches). During the last week of June and first week of July, 3.14 inches of rainfall occurred. Lack of rainfall during the first six weeks of growth limited activation of the applied preemergence herbicides and also limited the germination and growth of summer annual weeds. Due to limited and inconsistent emergence of weeds in this trial, weed control was not evaluated.

Lentil was evaluated for injury at 8 and 14 days after emergence. No herbicide treatment resulted in visible injury to lentil at either evaluation. Lack of lentil response may be due to the limited rainfall that occurred in the months of May and June. Results may have been different with normal or above average rainfall. Stand count were measured by counting the number of lentil plants within two 0.5 m² quadrats in each plot. No differences in lentil stand was found regardless of herbicide treatment. Lentil height was measured on July 1 (6 weeks after emergence). No differences in lentil height was found regardless of herbicide treatment. Similarly, lentil were harvested on August 12 using a small plot combine, and no differences in lentil yield was found. Under the environmental conditions that occurred during the spring of 2020, none of the applied herbicides had a negative impact of lentil. Under conditions with higher amounts of rainfall these results may have been different. Further investigation is needed under different environments to verify the safety of the herbicide treatments applied in this trial.

Treatment					
Product name	Rate	Lentil Injury	Stand count	Height	Yield
	(oz/A)	%	—#/m ² —		lbs/acre
1 Sharpen	0.75	0 -	244 -	25 -	1536 -
Outlook	21				
Metribuzin DF	4				
2 Anthem Flex	4	0 -	265 -	25 -	1531 -
Metribuzin DF	4				
3 Sharpen	0.75	0 -	267 -	24 -	1579 -
Metribuzin DF	4				
Prowl H2O	32				
4 Sharpen	0.75	0 -	240 -	25 -	1430 -
Dual II Magnum	26.7				
Metribuzin	4				
5 Sharpen	0.75	0 -	244 -	25 -	1589 -
Metribuzin DF	4				
Zidua SC	3.25				
6 Sharpen	0.75	0 -	248 -	24 -	1765 -
Metribuzin	4				
Zidua SC	5				
7 Spartan Charge	3.75	0 -	232 -	25 -	1557 -
Dual II Magnum	26.7				
8 Spartan Charge	5	0 -	248 -	25 -	1545 -
Dual II Magnum	26.7				
9 Weed Free		0 -	249 -	26 -	1514 -
10 Untreated		0 -	251 -	24 -	1467 -
LSD P=.10		NS	23.35	1.2	231.8
CV		0.0	7.8	3.85	12.41
Treatment F		0.000	1.189	1.463	0.864
Treatment Prob(F)	1 41	1.0000	0.3414	0.2119	0.5672

Table 1. Lentil response to spring preemergence herbicide application.

Lentil (Imvincible) were planted using a no-till planter on May 5, 2020.

Herbicides were applied on May 6, 2020.

Glyphosate (Roundup PowerMAX) plus AMS plus MSO (Denstiny HSOC) was tank mixed with all herbicide treatment (including the Weed Free treatment) to control weeds that were present at time of application.

Lentil injury was evaluated 8 and 14 days after emergence; no injury was observed at either evaluation.

Lentil stand count was measured (two 0.5 m^2 quadrats per plot) on June 8, 2020.

Lentil height was measured (10 random plants per plot) on July 1, 2020.

Lentil were harvested and yield recorded on August 12, 2020.

Comparing Rates of Carfentrazone plus Pyroxasulfone (Anthem Flex) with and without Metribuzin for Weed Control in Lentil

Caleb Dalley and Daniel Guimaraes Abe, Hettinger Research Extension Center

A trial was conducted to evaluate lentil response and resulting weed control from spring application of carfentrazone plus pyroxasulfone (Anthem Flex) applied as a spring preemergence application at planting. Lentil 'Invincible CL' was planted on May 5, 2020 using a no till drill at a rate of 25 seed per square foot at a depth of 1.5 inches. On May 6, herbicide treatments were applied using a tractor-mounted research sprayer at a spray volume of 10 gallons per acre using 8002XP flat fan nozzles. All treatments were tank-mixed with glyphosate (Roundup PowerMAX at 22 oz/acre) + AMS (8.5 lbs/100 gallons) + Destiny HSOC (1% v/v) to control weeds that had emerged prior to planting. Lentil emergence occurred on May 19. Between planting and lentil emergence rainfall of 0.23 inched occurred (May 7). During the first six weeks after planting, other substantial rainfall (> 0.05 inches) events occurred on June 2 (0.12 inches), June 4 (0.09 inches), and June 6 (0.16 inches). During the last week of June and first week of July, 3.14 inches of rainfall occurred. Lack of rainfall during the first six weeks of growth limited activation of the applied preemergence herbicides and also limited the germination and growth of summer annual weeds. The rainfall that occurred at the end of June and first of July allowed for herbicide activation and encouraged crop growth and emergence of green foxtail. No other weeds were evaluated due to low and uneven emergence rates.

Lentil injury was evaluated 8 and 14 days after emergence; no injury was observed during either evaluation. It is possible that the lack of substantial rainfall during May and early June limited lentil response to applied herbicides. Under normal or above normal rainfall conditions, results would possibly have been different. Stand counts were measured on June 8 using two randomly placed 0.5 m² quadrats placed in each plot and then counting numbers of lentil plants. There were no differences in lentil stand counts due to herbicide application. Lentil height was measured on June 29 (6 weeks after lentil emergence) by measuring height of 10 random plants within each plot. No difference in lentil height was found. Green foxtail control was evaluated on July 10 (65 days after treatment application). Green foxtail control increased with increasing rates of carfentrazone plus pyroxasulfone (Anthem Flex). The addition of metribuzin did not consistently improve foxtail control. The herbicide pyroxasulfone is a preemergence herbicide that is active on grass seedling weeds as well as some small seeded broadleaf weed; it has little or no postemergence activity. Pyroxasulfone required a half inch or more of rainfall to be properly incorporated and activated within the soil profile where weed seeds are germinating. Where green foxtail is a summer annual grass that emerges during the summer months, often coinciding with rainfall events, the application of a preemergence herbicide, such as pyroxasulfone, will help to control this weed as it is emerging. Lentil yield was measured on August 12 using a small plot combine. All carfentrazone plus pyroxasulfone treatments, with and without metribuzin yield greater than the untreated control and most yielded greater than the pendimethalin control treatment.

Treatment		Lentil			Green foxtail	
Product name	Rate	Injury	Stand count	Height	control	Yield
	(oz/A)	%	#/m ²	—cm—	%	lbs/acre
1 Anthem Flex	3.5	0 -	276.5 -	25.3 -	69.3 d	1695 a-d
2 Anthem Flex	4	0 -	234.5 -	25.6 -	76.3 cd	1945 a
3 Anthem Flex	3.5	0 -	264.0 -	25.3 -	69.3 d	1524 cd
Metribuzin DF	2					
4 Anthem Flex	4	0 -	265.0 -	24.8 -	84.0 abc	2018 a
Metribuzin	2	0 -				
5 Anthem Flex	3.5	0 -	262.5 -	25.7 -	87.5 abc	1923 abc
Metribuzin	4					
6 Anthem Flex	4	0 -	262.0 -	25.6 -	84.8 abc	1821 abc
Metribuzin	4	0 -				
7 Anthem Flex	3.5	0 -	266.8 -	25.0 -	78.0 bcd	1567 bcd
Metribuzin	5.3					
8 Anthem Flex	4	0 -	253.3 -	24.3 -	87.0 abc	1699 a-d
Metribuzin	5.3					
9 Anthem Flex	6	0 -	259.3 -	25.1 -	91.8 a	1927 ab
10 Prowl H2O	40	0 -	263.3 -	25.6 -	89.5 ab	1406 d
11 Untreated		0 -	256.0 -	24.5 -	0 e	954 e
LSD P=.10		NS	31.68	1.65	11.78	367.3
CV		0.0	10.14	5.46	13.21	18.01
Treatment F		0.000	0.627	0.457	27.676	3.424
Treatment Prob(F)		1.0000	0.7793	0.9044	0.0001	0.0049

Table 1. Comparison of Anthem Flex with and without metribuzin for weed control in lentil.

Lentil injury was evaluated on May 27 and June 8; no injury was observed at either date. Stand count of lentil was measured on June 8 using two 0.5 m^2 quadrats per plot.

Lentil height was measured on June 29 (6 weeks after emergence) by measuring height of 10 random plants per plot.

Green foxtail control was evaluated on July 10 (65 days after treatment application).

Chickpea Response to Preemergence Herbicides at Hettinger, ND

Caleb Dalley, Daniel Abe, Hettinger Research Extension Center

A trial was conducted to evaluate chickpea response to various preemergence herbicide combinations. Chickpea was planted at a rate of 40 seeds per m² (174,000 seeds per acre) into wheat stubble on May 8, 2020, using a no-till drill. After planting, herbicide treatments were applied using a tractor mounted research sprayer at a spray volume of 10 gallons per acre using 8002XP flat fan nozzles. All preemergence herbicide treatments were tank-mixed with glyphosate (Roundup PowerMAX at 22 oz/A plus AMS at 8.5 lb/100 gallons) to control weeds that had emerged prior to planting.

Due to lack of rainfall during the months of May and June, few weeds emerged with the crop and weed control could not be evaluated. Chickpea stand counts were measured on June 8 (2 weeks after chickpea emergence) using two 0.5 m² quadrats per plot. No differences in chickpea stand was observed due to herbicide treatment. Chickpea height was measured (10 random plants per plot) on July 2. No differences in chickpea height was observed due to herbicide treatment. Chickpea height was observed due to herbicide treatment. Chickpea height was observed due to herbicide treatment. Chickpea were harvested on September 1 using a small plot combine (Kincaid XP). Three of the seven treatments yielded greater than the untreated control with the highest yield (1820 lbs/acre) following application of sulfentrazone plus metolachlor (Spartan Elite). Chickpea yield was also greater than in the control following application of sulfentrazone plus pyroxasulfone (Authority Edge) and carfentrazone plus pyroxasulfone (Anthem Flex). Due to dry conditions in the seven weeks following planting, herbicide activation was less than ideal. Rainfall that occurred during the last week of June and the first week of July resulted in emergence of green foxtail in plots where no preemergence grass herbicide was applied.

Treatment		Stand count	Height	Yield
Product name	Rate	#/m ²	cm	lbs/acre
1Authority Supreme	5.8oz/a	39.0-	35.9-	1345bcd
Aim	1oz/a			
MSO	1%v/v			
2Spartan Elite	19oz/a	41.0-	36.7-	1820a
Aim	1oz/a			
MSO	1% v/v			
3Spartan Charge	3.75oz/a	41.0-	33.8-	1326cd
MSO	1% v/v			
4Authority Edge	4.4oz/a	37.8-	35.4-	1732a
Aim	1oz/a			
MSO	1% v/v			
5Anthem Flex	4oz/a	38.5-	36.0-	1650ab
Aim	0.47oz/a			
MSO	1% v/v			
6Sharpen	1oz/a	39.3-	34.0-	1157d
MSO	1% v/v			
7Sharpen	2oz/a	40.8-	35.5-	1422bcd
MSO	1% v/v			
8Untreated		39.0-	35.1-	1253cd
LSD P=.10		6.82	2.12	320.0
CV		14.1	4.97	17.85
Treatment F		0.573	1.134	3.167
Treatment Prob(F)		0.8070	0.3741	0.0097

Table 1. Response of chickpea to preemergence herbicides at Hettinger, ND in 2020.

Herbicide treatments were applied directly after planting on May 8, 2020.

Glyphosate was tank-mixed with all herbicide treatments.

Stand counts were measured on June 8 and heights were measured on July 2, 2020. Chickpea was harvested on September 1, 2020.

Means followed by same letter or symbol do not significantly differ (P=.10, LSD).

Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison.

Chickpea Response to Pyridate (Tough) Herbicide treatments with Preemergence Herbicides Applied at Planting or as a Tank-Mix partner.

Caleb Dalley, Daniel Abe, Hettinger Research Extension Center

Chickpea 'Frontier' was planted on May 8, 2020 using a no-till drill at a rate of 40 seeds per square meter (174,000 seeds per acre) with granular chickpea inoculum at 4 lbs per acre. After planting, planned preemergence (PRE) herbicide treatments were applied using a tractor-mounted research plot sprayer using 8002 flat fan nozzles with a spray volume of 15 gallons per acre at a spray pressure of 38 PSI. PRE treatments included sulfentrazone plus carfentrazone (Spartan Charge), sulfentrazone plus metolachlor (BroadAxe XC), metolachlor (Dual II Magnum), sulfentrazone plus pyroxasulfone (Authority Supreme), imazethapyr (Pursuit), and saflufencil (Sharpen). Glyphosate was applied across the entire plot area to control existing weeds. Chickpea emerged on May 27. Postemergence application of pyridate (Tough) herbicide alone and tank-mixed with either pendimethalin (Prowl H2O) or metolachlor (Dual II Magnum) were applied on June 17, 2020 using the same methods described earlier. All treatments were compared with an untreated control (no herbicides other than the glyphosate applied at planting) and a weed free control (which was hand weeded). Stand counts were measured on June 8 using two quadrats (0.5 m²) per plot. Chickpea height (10 random plants per plot) was measured on July 17. Chickpea were harvest on September 1.

Compared with both the untreated and weed free controls, no PRE herbicide treatment resulted in a reduction of chickpea stand which ranged from 30.3 to 41.8 plants per square meter. Plant heights were measure on July 2, two weeks after POST herbicide application. The combination of Tough plus Prowl H2O resulted in injury in the form of abnormal growth (elongated leaves and stems). No other treatment resulted in visual injury (data not shown). Few weeds emerged in this trial due to the dry conditions that occurred following planting and weed control was not evaluated. Yield was greatest in the weed free control, but yield with herbicide treatments was similar to the hand-weeded control with the exception of Dual II Magnum (PRE) followed by Tough (POST), Sharpen (PRE) followed by Tough (POST), and Tough plus Prowl H2O (POST).

The herbicide pyridate (Tough) has now been labelled for use in chickpea in North Dakota. It is a POST herbicide that can be used to control broadleaf weeds. However, applications must be applied when weeds are small 1-2 inches for control. Pyridate is a contact herbicide and as such spray coverage is critical for controlling weeds. Applications should be applied at no less than 15 gallons per acre of spray solution. As pyridate will only control emerged weeds, a PRE herbicide with activity on broadleaf weeds should be applied at planting. However, the results from this trial suggest that combinations of Tough plus Prowl H2O should be avoided due to potential for crop injury.

Treatment			Stand count	Height	Yield
Product name	Rate	Timing	#/m ²	cm	lbs/acre
1Untreated		0	31.3cd	34.9-	1718de
2Tough	20oz/a	POST	38.3ab	35.1-	1934а-е
COČ	1% v/v	POST			
3Spartan Charge	5oz/a	PRE	36.3abc	35.3-	2234ab
Tough	20oz/a	POST			
COC	1% v/v	POST			
4Broadaxe XC	2pt/a	PRE	33.0bcd	35.6-	2158abc
Tough	20oz/a	POST			
COC	1% v/v	POST			
5Dual II Magnum	1.5pt/a	PRE	38.5ab	34.9-	1842b-е
Tough	20oz/a	POST			
COC	1% v/v	POST			
6Authority Supreme	8oz/a	PRE	34.8bcd	34.0-	2099a-d
Tough	20oz/a	POST			
COC	1% v/v	POST			
7Pursuit	2oz/a	PRE	38.3ab	34.5-	2299a
Tough	20oz/a	POST			
COC	1% v/v	POST			
8Sharpen	2oz/a	PRE	41.8a	33.9-	1680e
Tough	20oz/a	POST			
COC	1% v/v	POST			
9Prowl H2O	32oz/a	PRE	30.3d	33.8-	2119a-d
Tough	20oz/a	POST			
COC	1% v/v	POST			
10Tough	20oz/a	POST	31.5cd	33.5-	2260a
Dual II Magnum	1.5pt/a	POST			
COC	1% v/v	POST			
11Tough	20oz/a	POST	36.3abc	32.9-	1805cde
Prowl H2O	32oz/a	POST			
COC	1% v/v	POST			
12Weed Free (hand weeded)			36.0bc	35.4-	2315a
LSD P=.10			5.56	1.96	395.5
CV			13.09	4.75	16.18
Treatment F			2.241	1.063	1.916
Treatment Prob(F)			0.0363	0.4187	0.0761

Table 1. Response of chickpea to preemergence and postemergence herbicides at Hettinger, ND.

PRE herbicide treatments were applied directly after planting on May 8, 2020.

POST herbicide treatments were applied on June 17, 2020, 3 weeks after chickpea emergence when chickpea were 3 to 4 inches in height.

Stand counts were measured on June 8 and heights were measured on July 2, 2020. Chickpea was harvested on September 1, 2020.

Means followed by same letter or symbol do not significantly differ (P=.10, LSD).

Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison.

Evaluation of Postemergence Herbicides on Flax

Caleb Dalley and Daniel Guimaraes Abe, Hettinger Research Extension Center

A trial was conducted to evaluate potential of various postemergence applied herbicides for use in flax. Herbicides applied in this trial are not labelled for use in flax, with the exception of Bison (MCPA plus bromoxynil) and cannot be applied to flax grown for commercial production as this would result in illegal crop residue. Flax 'York' was planted on May 2, 2020 into canola stubble using a no-till drill at a rate of 28 lb/acre and at a depth of 1.5 inches. Flax emerged on May 19. Postemergence herbicides were applied 1 week after flax emergence on May 26 using a tractormounted research plot spray at a spray volume of 10 gallons per acre using 8002XP flat fan nozzles. Flax was evaluated for injury at 1, 2, 3, 4, and 5 weeks after treatment application. Flax stand was measured using two 0.5 m² quadrats per plot on June 4, at 9 days after treatment application. Flax height was measure on July 22, at 7 weeks after treatment. Flax was harvested using a small plot combine (Kincaid XP) on September 4.

At 7 days after treatment (DAT), most of the herbicides applied resulted in some injury to flax. Treatments resulting in little or no injury to flax included Bison (MCPA plus bromoxynil), Basagran (bentazon), and Basagran plus Raptor (bentazon plus imazapyr). Treatments that resulted in minor injury included Armezon (topramezone) at 0.5 and 0.75 oz/acre, with 9.3 and 11% injury, respectively. Treatments resulting in moderate injury (16.3 to 18.3%) included Armezon plus Bison (topramezone plus MCPA plus bromoxynil), Raptor (imazapyr), Laudis (tembotrione) and Laudis plus Bison (tembotrione plus MCPA plus bromoxynil). Injury for most of the treatments lessened over time, with the exception of Raptor applied alone in which injury increased to 27.5% at 14 DAT, then reduced to 16.5% at 28 DAT, and then to 11.3% at 36 DAT. Injury to flax from Armezon plus Bison remained greater than 10% until after 28 DAT. While Raptor alone resulted in the greatest injury to flax, the combination of Raptor plus Basagran resulted in little or no injury. The type of injury that resulted from herbicide treatments varied. Raptor treatments resulted in stunted growth. Armezon and Laudis treatments resulted in bleaching injury as these herbicides inhibit pigment production in plants.

Stand counts taken one week after treatment did not show any difference between herbicide treatments. Crop heights measured 35 DAT showed a reduction in flax height compared to both the untreated control and to the Bison treatment following application of Armezon plus Bison, Raptor alone, Laudis, and Laudis plus Bison. Even while application of Raptor resulted in the greatest amount of injury and reduced flax height, seed yield of flax was greatest in this treatment and yield was similar to the Bison treatment. Flax yield was least in the untreated control. Flax is a very adaptable crop that is able to recover from early season injury from herbicides. This season most of the rainfall occurred during the last week of June and the first week of July. Prior to this rainfall, flax was extremely drought stressed and had limited growth. The timing of this rainfall allowed for flax growth after most of the injury to the flax had diminished and didn't give an advantage to herbicide treatments that didn't cause injury to the flax. On a year with more normal rainfall distribution, this early-season crop injury that occurred may have resulted in reduced yields. Further evaluations are needed under different environments to verify the results of this trial.

Treatment			Injury				
Product name	Rate	7 DAT	14 DAT	28 DAT	Stand Count	Height	Yield
			%		#/m ²	cm	lb/acre
1Armezon	0.5fl oz/a	9.3b	4.8d	0.0c	314.3-	34.1ab	455c
COC	1% v/v						
2Armezon COC	0.75fl oz/a 1% v/v	11.0b	4.5d	1.8bc	246.8-	34.0ab	466bc
		0.0.	251	0.0.	077.0	25 4-	CO1- h
3Bison	1pt/a	0.0c	3.5de	0.0c	277.0-	35.4a	601ab
4Armezon	0.75fl oz/a	18.3a	18.8b	13.0a	293.8-	30.4cd	497bc
Bison	1pt/a						
COC	1% v/v	0.0	0.0	0.0			1 = 0
5Basagran	1pt/a	0.0c	0.0e	0.0c	219.0-	36.4a	453c
COC	1% v/v						
6Raptor	4oz/a	16.3a	27.5a	16.5a	292.3-	28.8d	693a
NIS	0.25% v/v						
28% N	2.5gal/100 gal						
7Basagran	1pt/a	0.0c	4.8d	0.0c	304.5-	34.9a	596ab
Raptor	4oz/a						
MSO	1% v/v						
8Basagran	1pt/a	1.3c	4.0de	0.0c	291.3-	35.1a	500bc
Raptor	6oz/a						
MSO	1% v/v						
9Laudis	3oz/a	17.8a	10.0c	4.5b	262.8-	32.1bc	476bc
MSO	1% v/v						
10Laudis	3oz/a	18.0a	11.0c	5.5b	265.3-	31.7bc	431c
Bison	1pt/a						
MSO	1% v/v						
11Untreated		0.0	0.0	0.0	269.0-	36.4a	427c
LSD P=.10		2.64	4.14	3.95	60.64	2.72	137.89
CV		26.39	42.79	87.84	18.31	6.76	22.59
Treatment F		56.073	23.708	12.539	1.180	4.858	2.016
Treatment Prob(F)	0.0001	0.0001	0.0001	0.3418	0.0004	0.0703

Table 1. Response of flax to postemergence herbicides.

Note: all of the above treatments, with the exception of Bison, are experimental and are not labelled for use in flax. Application of these treatments to flax is against the label and would result in illegal residues on the crop seed that could result in rejection of harvested seed by the purchaser.

Flax was planted on May 2 and emerged on May 19, 2020.

POST herbicide treatments were applied on May 26, 2020, 1 weeks after flax emergence. Stand counts were measured on June 4 and heights were measured on June 23, 2020. Flax was harvested on September 4, 2020.

Means followed by same letter or symbol do not significantly differ (P=.10, LSD). Mean comparisons performed only when AOV Treatment P(F) is significant at mean

Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison.

Disclaimer: The information given herein is for educational purposes only. Any reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement is implied by the Hettinger Research Extension Center Staff.

NDSU does not discriminate in its programs and activities on the basis of age, color, gender expression/identity, genetic information, marital status, national origin, participation in lawful off-campus activity, physical or mental disability, pregnancy, public assistance status, race, religion, sex, sexual orientation, spousal relationship to current employee, or veteran status, as applicable. Direct inquiries to: Vice Provost, Title IX/ADA Coordinator, Old Main 201, NDSU Main Campus, Fargo, ND, 58108, 701-231-7708, ndsu.eoaa@ndsu.edu.