Delayed Cultivation to Supplement Chloroacetamide Herbicides in Sugarbeet

Nathan H. Haugrud and Thomas J. Peters, North Dakota State University and University of Minnesota

Weed management in sugarbeet

- Limited POST control options
 - Herbicide resistance: glyphosate (SOA 9) and ALS (SOA 2)
 - Failure to re-register Betamix
- Chloroacetamides soil applied (layby)
 POST to crop, PRE to weeds
- Renewed interest in cultivation

Objective: Evaluate cultivation's effect on weed control and emergence

- How effective is cultivation at removing emerged weeds?
- Will cultivation stimulate new weed emergence?
 - Does cultivation affect chloroacetamides?
- Does cultivation increase overall control?

Materials and Methods

- Four locations across ND and MN
 - Sugarbeet producer fields
 - Indigenous weed pressure
 - Data from two sites: Renville, MN and Wheaton, MN will be reported
 - Factorial split-block RCBD, six replicates
 - Cultivation and herbicide

NDSU NORTH DAKOTA STATE UNIVERSITY

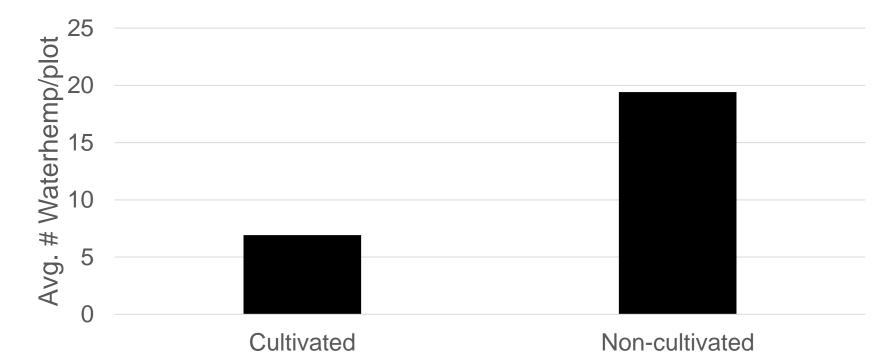
Herbicide applied to 4-6 leaf beets

- Standard rates, volume, and pressure
 - Untreated control
 - Glyphosate
 - Gly + S-metolachlor
 - Gly + Outlook
 - Gly + Warrant

Cultivation occurred 2 weeks after spray application

- Equipment and procedures standard of sugarbeet producers in ND and MN
 - Single shank
 - 15-inch sweeps
 - 3-4 mph speed
 - 2 inches deep

Cultivation near canopy closure

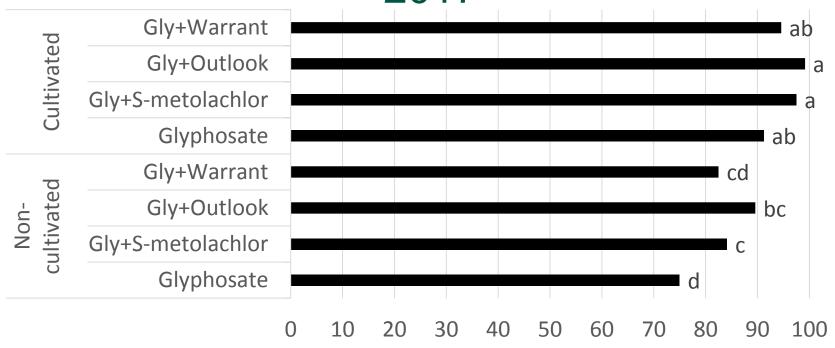

NDSU NORTH DAKOTA STATE UNIVERSITY

Evaluation methods

- 14 day intervals after cultivation
 - Number of waterhemp per plot
 - Percent control of new weed emergence
 - Percent overall visual control
 - 0-100 scale; 0 = no control, 100 = complete control

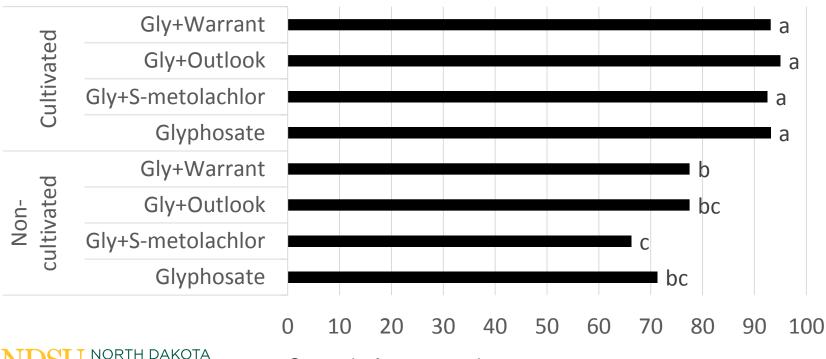
65% of waterhemp removed by cultivation, 14 DAT, averaged across locations, July 24, 2017

Cultivation plots had less waterhemp/plot 42 DAT, averaged across locations, August 24, 2017



Cultivated

Non-cultivated

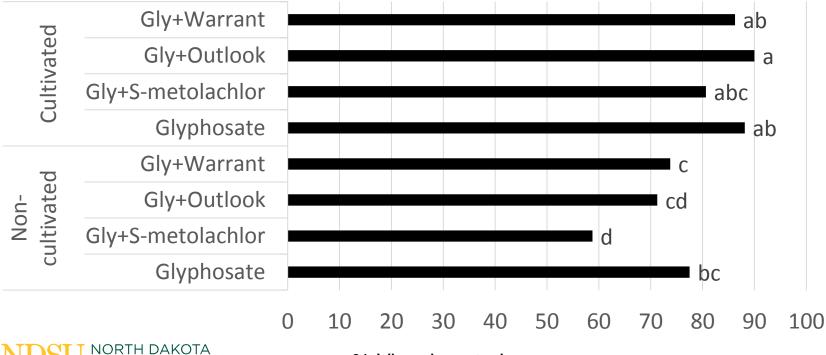

Cultivated plots tended to have less weed emergence 14 DAT, across locations, July 24, 2017

DSU NORTH DAKOTA STATE UNIVERSITY %

% Control of new weed emergence

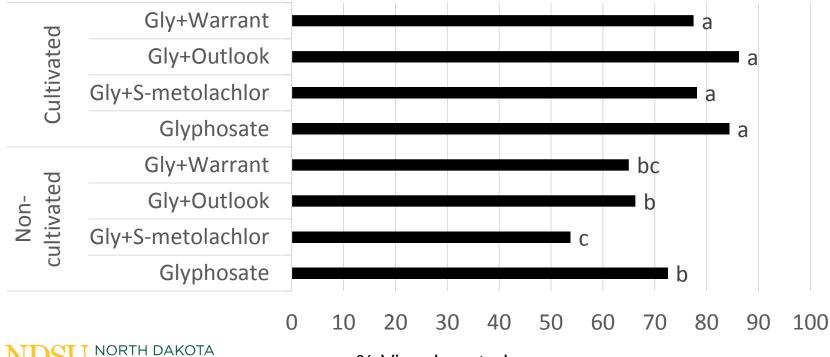
Less weed emergence 28 DAT, across locations, August 8, 2017

% Control of new weed emergence


F UNIVERSITY

Percent new emergence control

- Cultivation did not stimulate new weed emergence
- Non-significant interaction between cultivation and herbicide
 - Herbicides were not affected by cultivation



Cultivation gave 10% better visual weed control 28 DAT across locations, August 8, 2017

% Visual control

Cultivated and non-cultivated plots have similar trends 42 DAT, across locations, August 24, 2017

% Visual control

Percent visual weed control

- Cultivated plots had significantly better weed control at all evaluation dates
 - Non-significant interaction between cultivation and herbicide
 - No particular herbicide seemed to do best
 - Possible antagonism with S-metolachlor
 - Weed emergence was not affected

NDSU NORTH DAKOTA STATE UNIVERSITY Cultivation removed 65% of waterhemp from plots

- Average waterhemp was 4-6 inches tall at time of spray application
 - At harvest, waterhemp that escaped spray was >3 feet tall
- No yield data, but yield loss was likely reduced by removing large weeds early

Cultivation did not increase emergence of new weeds

- New flushes of weeds did not emerge after disturbance
- Tillage doesn't effect temperature or moisture in top inch of soil (Oryokot et al. 1997)
- Crop canopy is an effective weed suppressor
- Loosening of soil reason for less emergence?

Cultivation resulted in overall cleaner plots

- Control immediately after cultivation increased, 15-20%
- Positive effects were observed up to six weeks after cultivation
 - Cultivated plots were 10% better on average
- Herbicides with cultivation performed similarly

Cultivation appears to be a valid rescue treatment

- Cultivator was effective in removing 65% of emerged weeds
- Cultivation did not stimulate emergence of new weeds
 - Herbicide was not affected
- Cultivation results in overall better control

We did not see more Rhizoctonia pressure in cultivated plots
No yield data, but visually cultivation

- appeared to have no effect
- Cultivation increases rhizoctonia pressure by pruning roots and moving soil closer to the crown

- Crop stage and speed are factors

"Am I going to mess up my layby by cultivating?"

- Chloroacetamide half-life is 2-3 weeks
- Pigweed emergence is probably not affected by the cultivator
- Cultivation is a good tool to reduce potential weed seeds for next year

Future research

- This experiment will be repeated in 2018
 - Emphasis on heavy and more consistent waterhemp pressure
- Cultivation likely has a place in our future integrated approach

Questions?

- Thanks to the Sugarbeet Research and Education Board for funding this research
- Contact information
 - Nathan.Haugrud@ndsu.edu
 - -701-446-6878

