Genetic Identification and Control of Weeds: An Update

Michael Christoffers, Ph.D. Department of Plant Sciences North Dakota State University

Genetic Identification of Pigweeds National Agricultural Genotyping Center (NAGC), Fargo

- 81 samples in <u>2019</u>
 - 31 Palmer amaranth
 - 24 waterhemp
 - 26 other pigweeds (monoecious)

Palmer amaranth

Genetic Identification of Pigweeds National Agricultural Genotyping Center (NAGC), Fargo

- 81 samples in <u>2019</u>
 - 31 Palmer amaranth
 - 24 waterhemp
 - 26 other pigweeds (monoecious)
- <u>Samples, not fields</u> (may be more than one sample from a field)

Palmer amaranth

Genetic Identification of Pigweeds National Agricultural Genotyping Center (NAGC), Fargo

- 81 samples in <u>2019</u>
 - 31 Palmer amaranth
 - 24 waterhemp
 - 26 other pigweeds (monoecious)
- <u>Samples, not fields</u> (may be more than one sample from a field)
- Most from North Dakota, Minnesota, and Montana

Genetic Identification of Pigweeds

National Agricultural Genotyping

Center

- NDSU campus (1616 Albrecht Blvd N)
- www.genotypingcenter.com
- megan.oneil@genotypingcenter.com

Genetic Identification of Pigweeds

National Agricultural Genotyping

Center

- NDSU campus (1616 Albrecht Blvd N)
- www.genotypingcenter.com
- megan.oneil@genotypingcenter.com

Development of this test funded by:

- North Dakota Soybean Council
- North Dakota Corn Council

If Genes were Coins

Chance of heads is 50%

United Soybean Board

If Genes were Coins

Chance of heads is 50%

Chance of heads is 100%

Mosquitoes

• Vectors of diseases such as malaria, dengue fever, and Zika virus

Mosquitoes

 Vectors of diseases such as malaria, dengue fever, and Zika virus

Interested groups include:

Malaria No More

• Target Malaria

Mammalian pests such as rodents

- Predators of native species
- Reservoir of diseases such as Lyme

Mammalian pests such as rodents

- Predators of native species
- Reservoir of diseases such as Lyme

Interested groups include:

Island Conservation

- Genetic Biocontrol of Invasive Rodents
- Predator Free NZ

Fruit fliesAgricultural pest

Interested groups include:

• California Cherry Board

Weeds

- Agricultural pest
- Allergens

Agricultural pest

• Allergens

Research approaches include:

- University of Illinois
 - Females to males
- NDSU
 - Resistant to susceptible

Waterhemp Tissue Culture

Germinated seeds

Waterhemp Tissue Culture

Waterhemp Tissue Culture

Next Steps

• CRISPR-based gene editing of the acetolactate synthase (ALS) gene in yeast as a model

Next Steps

- CRISPR-based gene editing of the acetolactate synthase (ALS) gene in yeast as a model
- Establish transformation protocol for waterhemp suspension cultures

Next Steps

- CRISPR-based gene editing of the acetolactate synthase (ALS) gene in yeast as a model
- Establish transformation protocol for waterhemp suspension cultures
- Editing of the ALS gene in waterhemp

Acknowledgments

- ND Agricultural Experiment Station
- ND Corn Council
- ND Soybean Council
- ND State Board of Agricultural Research and Extension – Soybean
- USDA National Institute of Food and Agriculture