Summary of Cultivation Research in Sugarbeet

Nathan Haugrud and Tom Peters, NDSU

Sugarbeet Weed Management in 2018

- Limited POST control options
 - Herbicide resistant pigweeds
 (waterhemp and Palmer amaranth)
 - Loss of historical herbicides
 (des+phenmedipham, "Betamix")
- Chloroacetamide herbicides soil applied (layby)
 - POST to sugarbeet, PRE to weeds
 (Peters et al. 2017)
- Renewed interest in cultivation

T. Peters (2018)

Inter-row Cultivation

Benefits:

- Non-selective mode of action
- No risk of resistance
- Incorporation of fertilizer and herbicide

Potential yield damage (Dexter et al. 2000; Giles et al. 1990)

Increased disease risk
 (Schneider et al. 1982)

Drawbacks:

Limited area

Cultivation Research Questions

- Cultivation to remove herbicideresistant weeds?
- Effects on weed emergence?
- Interactions with residual herbicide?
 - Incorporation and activation
 - Damage to an established herbicide barrier?
- Negative effects on sugarbeet yield and quality?

Haugrud (2018)

NDSU Extension (2016)

Herbicide applied at standard rates, volume, & pressure

- Herbicide: Four/six levels
 - Glyphosate alone
 - Gly + Dual Magnum
 - Gly + Outlook
 - Gly + Warrant
 - Gly + Treflan
 - Gly + Ro-neet

Haugrud (2018)

Cultivation at 4 MPH and 1.5 - 2" depth

Cultivation immediately after herbicide resulted in 50-75% less waterhemp, 14 DAT

	Cultivation			Herbicide	C X H Interaction
ANOVA	Renville, 2017	Hickson, 2018	Nashua, 2018	Allen	, ironments
P-value	0.009	0.002	0.019	NS	NS

Early cultivation generally had no effect on new waterhemp emergence control

	Cultivation			Herbicide	C X H Interaction
ANOVA	Renville, 2017	Hickson, 2018	Nashua, 2018	All environments	
P-value	0.008	0.002	0.041	NS	NS

Early cultivation increased common lambsquarters emergence, Galchutt-2018, 28 DAT

Cultivation Efficacy Summary

- Cultivation can remove about 2/3rds of weeds
- Generally no effect on waterhemp emergence
- Cultivation improved season-long waterhemp control by 6 to 19%
- No effect on lambquarters control, but risk for reduced seedling control if timed too early
- Take advantage of crop canopy by cultivating later

Cultivation Effect on Sugarbeet Yield

• Past research from 1980s and 1990s indicate yield loss from cultivation in certain environments

Grove 2017

- Increased *Rhizoctonia solani* infection
 - Moving soil-borne pathogen nearer its host

Khan and Bolton 2016

Cultivation Safety: Experimental Procedures

- Cultivation every 2 weeks from June
 21 to August 16
- 'Crystal 355' planted early-May
- 4 MPH speed and 1.5-2 inches deep
- Quadris (azoxystrobin) for *Rhizoctonia* control

Cultivation timing had no effect on stand mortality or visual disease at any environment

		Stand mortality ^a	
Cultivation timing	Prosper	Hickson	Glyndon
		%%	
Control	15	32	-14
June 21	20	37	-1
July 5	15	37	4
July 19	20	41	-10
August 2	11	32	-1
August 16	13	30	10
June 21 + July 19	13	31	-7
July 5 + Aug 2	19	36	4
July 19 + Aug 16	21	39	7
June 21 + July 19 + Aug 16	16	37	7
ANOVA		p value	
Treatment	0.082	0.435	0.848

Harvest stand

Cultivation timing had no effect on sugarbeet yield across all environments in 2018

	Yield Components			
Cultivation timing	Root yield	Sucrose content	RSA	
	Tons/acre	%	Lbs/acre	
Control	24.3	15.0	6,817	
June 21	24.1	14.8	6,773	
July 5	24.7	14.9	6,934	
July 19	23.5	14.9	6,563	
August 2	25.4	14.7	6,899	
August 16	24.4	14.5	6,529	
June 21 + July 19	24.3	14.5	6,679	
July 5 + Aug 2	24.7	14.6	6,698	
July 19 + Aug 16	23.5	14.8	6,472	
June 21 + July 19 + Aug 16	23.5	14.8	6,540	
ANOVA	p valuep			
Treatment	0.944	0.062	0.947	

Conclusion: Cultivation timing had no effect on sugarbeet yield, stand density, or disease in 2018

- Differences between our experiments and previous research
 - Similar cultivation methods, but different timing and intervals
 - Dexter et al. (2000) and Giles et al. (1990) implemented weekly cultivation from mid-June to late-July
- Differences in production practices in 2018 vs the 1990s
 - Seed treatments and soil-applied Quadris (azoxystrobin)
 - 'Crystal 355', a diploid, is relatively resistant to *R. solani*

The Future of Cultivation: 2019 and Beyond

- Valuable tool to removal weeds that herbicide did not/will not control
- Timing is key: cultivate near crop canopy closure
 - No effects on weed emergence if shade is present
- Research on sugarbeet likely applicable to other row crops e.g. soybean

Acknowledgements and questions

- Sugarbeet Research and Education Board of Minnesota and North Dakota for funding this research
- NDSU Sugarbeet Extension program for trial establishment and maintenance

Contact information

- Nathan Haugrud
 - Nathan.haugrud@ndsu.edu
 - Twitter: @nathanhaugrud
- Tom Peters
 - Thomas.j.peters@ndsu.edu
 - Twitter: @beetweedcontrol