A6. SPRAY CARRIER WATER QUALITY

Minerals, clay, and organic matter in spray carrier water can reduce the effectiveness of herbicides. Clay inactivates parquat, diquat, and glyphosate. Organic matter inactivates herbicides. Hard water cations or micronutrients such as calcium, magnesium, manganese, sodium, and iron reduce efficacy of all weak-acid herbicides. Cations antagonize glyphosate efficacy by complexing with glyphosate to form salts (e.g. glyphosate-Ca) that are not readily absorbed by plants. Antagonistic minerals can inactivate the activity of most POST herbicides, including glyphosate, growth regulators (not esters), ACCase inhibitors, ALS inhibitors, HPPD inhibitors, and Liberty. The antagonism is related to the salt concentration. At low salt levels, loss in weed control may not be noticeable under normal environmental conditions but will occur when weed control is marginal because of drought or partially susceptible weeds. The precise salt concentration in water that causes a visible loss in weed control is difficult to establish because weed control is influenced by other factors.

Ammonium nitrogen increases effectiveness of most weak-acid herbicides formulated as a salt. Fertilizers should always be used with herbicides unless prohibited by label. Ammonium ions greatly enhance herbicide absorption and phytotoxicity even in the absence of antagonistic salts in the spray carrier. However, enhancement of glyphosate and most other POST herbicides from ammonium is most pronounced when spray water contains large quantities of antagonistic cations. Herbicide enhancement by nitrogen compounds appears in most weed species but is most pronounced in species like volunteer corn and species that accumulate antagonistic salts on or in leaf tissue (lambquarters, velvetleaf, and sunflower).

AMS enhances phytotoxicity and overcomes salt antagonism for weak-acid herbicides formulated as a salt including glyphosate, growth regulators (not esters), ACCase inhibitors, ALS inhibitors, HPPD inhibitors, and Liberty. The antagonism may be overcome by increasing the glyphosate concentration relative to the cation content or by adding AMS and some water conditioners to the spray solution. Effective water conditioners include EDTA, citric acid, AMS, and some acidic AMS replacements. Of these, AMS has been the most widely adopted. When added to a spray solution, the ammonium (NH4+) ion complexes with the glyphosate molecule and reduces glyphosate interaction with the hard-water cations. The sulfate (SO4^2-) ion complexes with the hard-water cations (e.g. calcium sulfate), causing the salt to precipitate from solution. This combined effect increases absorption and efficacy. Natural sulfate in water can be disregarded but can reduce antagonism if the sulfate concentration is at least three times the calcium concentration.

Antagonism of glyphosate by calcium in a spray solution was overcome by sulfuric but not nitric acid, indicating that the sulfate ion was important, but not the acid hydrogen ion. The importance of the sulfate ion explains the effectiveness of ammonium sulfate, and not 28% UAN, in overcoming calcium antagonism of glyphosate. Other herbicides that become acid at a higher pH than glyphosate may realistically benefit from a reduced pH as has been shown for Poast. However, Poast does not require a low pH for efficacy. pH of 4 has overcome sodium antagonism of Poast, but nitrogen fertilizer or AMS also will overcome sodium antagonism of Poast without lowering the pH. The ammonium ion provided by these fertilizers is apparently the important ion.

AMS is recommended at 8.5 to 17 lb/100 gal spray volume (1 to 2%) on most glyphosate labels. However, AMS at 4 lb/100 gal (0.5%) is adequate to overcome most salt antagonism but 8.5 lbs/100 gal is generally required to fully optimize herbicides. AMS at 0.5% has adequately overcome antagonism of glyphosate from 300 ppm calcium. Use at least 1 lb/A of AMS when spray volume is more than 12 gpa. The amount of AMS needed to overcome antagonistic ions in the spray solution can be determined as follows: Lbs AMS/100 gal = (0.002 X ppm K) + (0.005 X ppm Na) + (0.009 X ppm Ca) + (0.014 X ppm Mg) + (0.042 X ppm Fe).

This does not account for antagonistic minerals on or in the leaf tissue in species like lambquarters, sunflower, and velvetleaf which may require additional AMS.

AMS may contain contaminants that may not dissolve resulting in plugged nozzles. Use spray grade AMS to prevent nozzle plugging. Commercial liquid solutions of AMS are available and contain approximately 3.4 lbs of AMS/gallon. For 8.5 lbs of AMS/100 gallons of water add 2.5 gallons of liquid AMS solution.

28% UAN fertilizer is effective in enhancing weed control and overcoming mineral antagonism of most POST herbicides, but not calcium antagonism of glyphosate. Sodium bicarbonate antagonism of Poast is overcome by 28% UAN and AMS. AMS or 28% UAN does not preclude the need for an oil adjuvant with lipophilic herbicides. Generally, 4 gal of 28% UAN/100 gal of spray has been adequate. AMS and 28% UAN enhance herbicide control of most weeds even in water without antagonistic salts. Nitrogen fertilizer/surfactant blends may enhance weed control of most herbicides formulated as a salt.

Analysis of spray water sources can determine water quality effects on herbicide efficacy. Water samples can be tested at the NDSU Soil and Water Laboratory:

USPS: NDSU Dept 7680, Fargo, ND 58108-6050, UPS and Physical Address: Waldron Hall 202, 1360 Bolley Dr. NDSU, Fargo, ND 58102. 701 231-7864.

Analysis is approximately $25.00 to $29.00.

The analysis may report salt levels in ppm or grains. To convert from grains to ppm, multiply by 17 (Example: 10 grains calcium X 17 = 170 ppm calcium). AMS at 2% (17 lb/100 gallons water) will overcome antagonism from the highest calcium and/or sodium concentrations in North Dakota water. However, AMS at 4 to 8 lb/100 gal is adequate for most North Dakota water. Iron is the most antagonistic to many herbicides but not abundant in ND water.

Water conditioner adjuvants are liquid for user preference, applied at low use rates, may contain no or very little AMS, may lower spray solution, and are advertised to replace AMS, and thus are called AMS replacement adjuvants. Pesticide applicators prefer the convenience of low use rate water conditioners, but performance has been inconsistent. Glyphosate plus commercial water conditioner products that included AMS at the equivalent rate of 1% w/w can give similar control to 1% w/w (8.5 lbs/100 gal) AMS. Commercial water conditioners that do not provide an equivalent amount of AMS give less control than glyphosate with 1% or 2% w/w AMS and are often no better than glyphosate alone.

Acidic AMS replacement (AAR) adjuvants have been developed for use with glyphosate and other weak acid herbicides. Claims are made to enhance activity, negate affects of antagonistic salts in spray water and the antagonism from micronutrient solutions added for crop health. Most adjuvants in this class contain monocarbamide dihydrogen sulfate or AMADS (urea plus sulfuric acid) which lowers spray solution pH to 1.4 to 3. The low pH is below the pKa of postemergence herbicides causing most herbicide molecules to be in the acid state which results in fewer molecules binding to positively charged salts.

*Or generic equivalent.

Some water conditioner adjuvants and acidic AMS replacement adjuvants (AAR) are marketed to modify spray water pH, but low pH is not required for herbicide efficacy. The type of acid or components of buffering agents and the specific herbicide all need to be considered.
before using pH-modifying agents. Several commercial AAR adjuvants applied with glyphosate in distilled water were tested and ranked as follows: surfactant + AMS > AMS > NIS = AAR. A commercial AAR adjuvant composed primarily of sulfuric acid was much less phytotoxic than most AAR adjuvants which support the concept and use of ammonia to enhance weak acid herbicides. Generally, AAR adjuvants applied with glyphosate in 1000 ppm hard water (Ca and Mg) gave similar weed control as when applied in distilled water supporting the theory of non-binding herbicide molecules when pH is below the pKa of the herbicide. Clearly, commercial adjuvants vary greatly in function, use, and chemical and biological effect.

Low spray volumes (5 to 10 gpa) have been equally or more effective than higher spray volumes for many herbicides. Low spray volume originally was considered important to glyphosate efficacy because it would reduce the ratio of glyphosate and antagonistic cations in the spray solution. However, low spray volumes have enhanced glyphosate efficacy because of higher glyphosate concentration in the spray deposit. Greater efficacy from higher concentrated droplets has been shown with many other herbicides but is logical that the highly concentrated droplets with low volume would be positive for translocated herbicides (NDSU Pile Theory). Contact herbicides (Cobra, Cadet, Liberty, Flexstar/Reflex, paraquat, Sharpen) require higher spray volume for adequate and thorough coverage to enhance control.

Low spray volumes usually imply use of low-volume nozzles that produce small droplets which can increase off-target movement. However, drift-reducing nozzles have been developed that produce large droplets at low volume. In low spray volumes, larger droplets produced by drift-reducing nozzles have been equally effective as small droplets with several translocating herbicides. However, coarse or larger droplets may be less phytotoxic than fine and medium size droplets for sethoxydim, imazethapyr, tembotrione, and 2,4-D. Research on spray quality and herbicide efficacy will become important as regulation requires larger droplet size to mitigate drift from small droplets.

*Or generic equivalent.