HRSW											L	angdon
								Grain Yield			Average Yield	
	Days to	Plant	Lodging	Tomb-		Test	Hail*			*	2	3
Variety	Head	Height	Score	stone	Protein	Weight	Shatter	2002	2003	2004	year	year
· · · ·		in	0-9	%	%	lbs/bu	seeds/ft2			bu/a		
AC Amazon	76	49	4.8	0.5	13.9	58.0	40	54.4	71.2	64.1	67.7	63.2
AC Superb	72	33	1.0	3.8	14.0	58.0	100	64.1	83.0	63.0	73.0	70.0
Alsen	72	39	0.0	0.0	14.1	59.8	140	56.2	75.1	66.1	70.6	65.8
Banton	71	40	0.0	2.3	14.2	60.6	130			64.3		
Briggs	72	42	0.0	1.0	14.1	59.6	80	64.2	78.6	75.3	77.0	72.7
Dandy	73	42	0.0	1.5	13.2	60.9	220	64.0	87.0	71.7	79.4	74.2
Dapps	71	45	0.3	1.1	15.6	60.1	90		78.2	67.2	72.7	
ES54	75	48	2.8	1.3	14.5	59.0	30		82.1	72.7	77.4	
Freyr	73	40	0.3	0.3	13.8	58.4	130			68.2		
Granger	71	44	1.3	1.9	13.9	58.5	120			66.9		
Granite	76	38	0.0	0.9	14.7	60.1	100	57.7	77.3	65.6	71.5	66.9
Gunner	74	41	1.5	0.5	14.3	60.5	130	57.1	70.6	59.9	65.3	62.5
Hanna	73	45	0.3	0.1	14.2	60.1	70	68.0	80.8	77.5	79.2	75.4
HJ98	74	38	0.0	0.8	13.0	57.9	140	66.7	81.2	75.6	78.4	74.5
Ingot	70	45	0.3	0.4	13.5	61.8	180	53.1	77.4	61.6	69.5	64.0
Keystone	73	42	0.0	0.0	13.4	60.8	170	59.1	75.2	67.7	71.5	67.3
Knudson	74	39	1.8	0.1	13.0	57.2	90	62.5	81.9	66.4	74.2	70.3
Mercury	73	35	0.0	4.4	13.2	58.2	160	66.9	83.2	62.8	73.0	71.0
Norpro	75	37	0.0	3.8	13.8	56.5	140	62.2	75.9	73.0	74.5	70.4
Oklee	71	40	4.0	1.4	14.6	59.9	150		80.3	65.0	72.7	
Oxen	72	40	0.3	2.8	13.5	56.0	100	64.0	76.2	59.8	68.0	66.7
Parshall	72	47	0.3	2.1	14.2	60.0	80	62.7	82.6	63.6	73.1	69.6
Polaris	79	40	0.0	0.9	13.0	56.9	80	59.4	80.8	70.1	75.5	70.1
Reeder	72	41	0.0	3.5	14.3	58.3	80	67.0	81.0	67.2	74.1	71.7
Russ	72	43	3.8	1.6	14.1	57.3	120	68.2	83.3	61.9	72.6	71.1
Saturn	77	43	0.0	2.1	14.1	56.3	90	58.4	70.2	65.2	67.7	64.6
Steele-ND	73	41	2.8	0.9	14.2	59.3	80	63.3	78.5	70.0	74.3	70.6
Trooper	71	34	0.0	1.5	13.3	59.4	60			72.9		
Trial Mean	73	41	1.0	1.3	13.9	58.9	118	59.6	79.7	67.1		
C.V. %	1	6	137.2	70.9	2.2	1.6	27	7.3	4.9	9.2		
LSD 5%	1	3	1.9	1.2	0.4	1.3	45	6.1	5.5	8.6		

Lodging: 0=No lodging, 9=Completely flat Planting Date: April 28, 2004

Harvest Date: September 8, 2004

* A brief hailstorm occurred 11 days prior to harvest of this trial. There was very little stem breakage and almost all yield loss was the result of hail shattering. A rough estimate of shatter on each plot was recorded. A 1000 KWT of 31 grams would require 20 seeds/ft² to equal one bushel per acre. This number would vary depending on the kernel size of the variety. Differences in hail shatter between varieties may have been due to the varieties genetic susceptibility to shatter and/or its maturity. The LSD 5% for hail shatter is 45, so for example, a variety with a shatter of 100 or 140 would not be significantly different from one another. Please observe both the hail shatter and yield data carefully when using this data.