Emerald Ash Borer

Biology and Integrated Pest Management in North Dakota

Janet J. Knodel, Extension Entomologist
Joseph D. Zeleznik, Extension Forester
James S. Walker, Graduate Student
Gerald M. Fauske, Collection Manager
Patrick B. Beauzay, Research Specialist

The Emerald ash borer (EAB), *Agrilus planipennis*, is an invasive, metallic, wood-boring beetle (Coleoptera: Buprestidae) that is a major cause of ash tree decline and mortality in the Midwest. This highly destructive pest attacks only species of ash (*Fraxinus* spp.). Emerald ash borer was introduced to North America accidentally in the mid-1990s and was detected first in southeastern Michigan in 2002. Unlike native borer insects, which typically only attack trees already in decline, EAB attacks stressed and healthy trees. Emerald ash borer has been responsible for killing more than 25 million ash trees in less than a decade.

Distribution
Emerald ash borer is native to Asia, where it can be found on several species of ash and is not considered a pest. Emerald ash borer most likely was transported to North America as larvae or pupae embedded in ash pallets, crates or packing material transported by cargo ships. As of Dec. 3, 2012, EAB has spread to 18 states and two Canadian provinces (Figure 1). Information on EAB’s most current distribution can be found at these websites:

- www.emeraldashborer.info/map.cfm
- www.emeraldashborer.info/surveyinfo.cfm

Figure 1. Distribution of emerald ash borer as of December 2012 (USDA APHIS PPQ and USDA Forest Service)
Identification

Adults are recognized as metallic, wood-boring beetles (Family Buprestidae) by their short saw-toothed antennae, blunt head and elongate yet compact body with metallic coloration.

The adult EAB is distinguished from other North Dakota Buprestidae by its size (about ½ inch or 13 millimeters [mm]), overall metallic green with coppery reflections on the pronotum (shieldlike body segment behind the head), and the bright metallic red of the upper surface of the abdomen (Figures 2 and 3).

The elytra (hard front wing covers) and membranous hind wings must be spread apart completely to view the dorsal surface of the abdomen. The abdomen projects beyond the elytra as a blunt-ended spine.

Eggs are oval to round, less than 0.039 of an inch (1 mm) in diameter, and although white when laid, they rapidly turn red-orange (Figure 4). Because eggs are laid in bark crevices, they are not readily observed.

Larvae create characteristic serpentine tunnels beneath the bark of their host ash trees (Figure 5). Tunnels curve at near right angles so that the tunnel length, as measured in a straight line from start to end point, is less than half of the actual total tunnel distance through the wood.

EAB larvae (Figure 6) are recognized by their enlarged and flattened pronotum, elongate body shape with abdominal segments one to seven trapezoidal, abdominal segment eight bell-shaped, and the last abdominal segment round with two spines (urogomphi, Figure 7).

Table 1. Larvae of ash-boring insects in North Dakota: comparison with emerald ash borer.

<table>
<thead>
<tr>
<th>Character</th>
<th>Emerald ash borer</th>
<th>Red-headed ash borer</th>
<th>Carpenterworm</th>
<th>Ash/lilac borer</th>
<th>Ash bark beetles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (late instar)</td>
<td>0.71 inch (18 mm)</td>
<td>0.51 inch (13 mm)</td>
<td>0.39 inch (10 mm)</td>
<td>0.59 inch (15 mm)</td>
<td>0.12 inch (3 mm)</td>
</tr>
<tr>
<td>Shape</td>
<td>thin and wormlike</td>
<td>thick and wormlike</td>
<td>thick and caterpillarlike</td>
<td>caterpillarlike</td>
<td>grublike</td>
</tr>
<tr>
<td>Thoracic legs</td>
<td>absent</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Prolegs</td>
<td>absent</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Urogomphi</td>
<td>present</td>
<td>present</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
</tbody>
</table>
Overwintering larvae excavate a deeper chamber at the end of their tunnel and take on a compact appearance, with body segments somewhat telescoped together. At this point, they are called prepupae. A comparison of common wood-boring ash insect larvae is provided in Table 1.

Pupae have the characteristic shape of the adult beetle, with short, serrate antennae and blunt spine at the tip of the last abdominal segment (Figure 8). Newly formed pupae are white.

As the beetle within develops, the pupa takes on the adult form. When the adult emerges, the pupal exuvia (shed skin) remains in the pupal chamber. By contrast, two other common ash-boring insects, ash/lilac borer (Podosesia syringae) and carpenterworm (Prionoxystus robiniae), have the pupal skin partially or mostly extruded from the adult exit hole. Buprestids of the genus Agrilus, such as EAB, leave D-shaped emergence holes (Figure 9).

Life Cycle

The EAB is a holometabolous insect, meaning it undergoes complete metamorphosis. The EAB has four life stages: egg, larva, pupa and adult. The life cycle of the EAB is completed in about one to two years. In northern states, such as North Dakota, larvae are expected to take two years to mature and complete development due to the colder climate and shorter growing season.

Females can lay 60 to 90 eggs in their lifetime. They deposit individual eggs on the bark surface or in bark cracks and crevices from mid-May through July. Eggs hatch one to two weeks later.

Larvae bore into the tree by chewing into the inner bark and cambium, creating serpentine (S-shaped) galleries. Larvae feed during the summer, usually from late June through October. These galleries increase in size as the larvae grow and feed. Larval galleries have been found in trunks and branches measuring as small as 1 inch in diameter.

When EAB larval densities are high, the tree’s water and nutrient flow can be interrupted, causing crown dieback and death during a two- to five-year period, depending on the tree’s size and relative health.

Larvae overwinter in a small gallery and pupate in early spring (April or May) of the following year. Based on the degree day (DD) accumulations, adults first emerge at 450 to 550 DD (using a base temperature of 50 F or 10 C), which in North Dakota is from mid-June through mid-July. Peak emergence is at 900 to 1,100 DD, from mid- to late July.

Adults live for only three to six weeks and feed on foliage for one to two weeks prior to mating. Foliar feeding by EAB adults causes little damage to the ash tree (Figure 10). They mate and repeat the life cycle.
Potential Hosts

Emerald ash borer attacks and kills all of the North American ash species in native woodlands, shelterbelts and urban forests.

In North Dakota, the most common ash species is green ash (*Fraxinus pennsylvanica*, Figure 11). Black ash (*F. nigra*, Figure 12), Manchurian ash (*F. mandshurica*) and white ash (*F. americana*) are uncommon in urban areas; however, these species also are susceptible to EAB, although Manchurian ash does have some level of resistance to this pest.

Note that EAB will infest healthy and unhealthy ash trees, large and small (down to 1 inch or 2.54 centimeters [cm] in diameter), and all of the named cultivars. Mountain-ash (*Sorbus* spp.) is not susceptible to EAB because it is not a true ash tree.

Damage

The vast majority of damage comes from feeding by the larvae in the phloem tissue, just under the bark. EAB larval galleries (Figure 13) also can extend into the sapwood. This feeding behavior damages the vascular system of the tree, blocking water and nutrient transport.

Visible symptoms of damage are dieback of the tree crown (Figure 14) and excessive sprouting (epicormic branches) along the main stem of the tree (Figure 15). However, these symptoms are unlikely to be seen during the first year of infestation. Instead, dieback probably will be observed only in trees that have been infested for three years or longer.
Keep in mind that environmental stress and diseases, such as ash yellows, commonly are responsible for symptoms similar to EAB infestation. Woodpeckers are attracted to EAB-infested trees, and excessive pecking damage by woodpeckers may be another visible symptom of EAB presence (Figure 16).

The potential economic cost incurred by EAB is enormous. The most basic expenses will be those of tree removal and replacement. Finding a qualified contractor who holds a North Dakota contractor’s license and has liability insurance for tree removal is important. For more information, see “Why Hire an Arborist” at www.treesaregood.org/treecare/hire_arborist.aspx.

Beyond removal and replacement, the loss of benefits provided by ash trees will be enormous and expensive. Shelterbelts protect farmsteads, fields and livestock from harsh, drying winds in the summer and they capture snow in the winter, acting as living snow fences along highways and around many communities. In urban EAB-infested areas where ash trees have been destroyed, the loss of shade/protection from ash trees has resulted in increased costs associated with summer air conditioning and lawn watering, and home heating in the winter.

Integrated pest management involves pest monitoring and the use of multiple control strategies (cultural control, plant resistance, biological control and pesticides) to mitigate losses from insect pests.

Monitoring and Surveying
Several methods are being used in survey efforts for EAB. Large purple prism traps (Figure 17) are used in government-sponsored survey programs for EAB and are very visible to the public in parks and recreation areas.

Prism traps are pre-coated with an insect-trapping adhesive. Lures are attached to the trap and are effective in the field for 60 days as an attractant. The chemical component of the lure has gotten better in recent years but still has room for improvement. Prism traps are hung over sturdy branches in the mid to lower canopy of ash trees of at least 8 inches (20 cm) in diameter before EAB emergence is expected.

In addition to the prism traps, girdled “trap trees” also have been used for locating EAB, but this method is time-consuming and, therefore, expensive. Simple visual monitoring by the general public is also critical because the trapping materials and techniques have not been perfected yet. If you suspect that EAB is in your ash trees, contact one of the organizations listed at the end of this publication.

Cultural Control
One of the main cultural methods for preventing the spread of EAB is NOT MOVING INFESTED FIREWOOD, LOGS OR NURSERY STOCK to uninfested areas. Much of the rapid spread of EAB outside of its original detection sites near Detroit, Mich., was due to direct movement of these products. Larvae of EAB are hidden underneath the bark of living trees or boards cut from infested logs where they can be transported easily into non-EAB-infested areas.

Another cultural control method is TIMELY REMOVAL OF EAB-INFESTED TREES and then chipping the trees to a small size - less than 1 inch (2.54 cm) - on each of two sides or burning the trees that were removed. This will kill EAB and help prevent further spread.

Plant Resistance
In North America, all native species of Fraxinus are susceptible to EAB, although some species are preferred more than others. For example, blue ash (F. quadrangulata) is a less-preferred species. However, researchers have observed that ash trees native to Asia have reduced larval tunneling and only stressed trees (for example, from drought) are colonized.

Ash trees in the native range of EAB may be more resistant because their natural defenses have co-evolved throughout time. Researchers are studying Asian ash species as a possible source of resistance genes against EAB. Identification of resistant ash genotypes is important for reforestation and maintaining a market demand for ash in the nursery industry.
INTEGRATED PEST MANAGEMENT of EAB

Biological Control

Biological control involves the use of natural enemies (predators or parasitoids) to control insect pests naturally. Biological control primarily is being targeted at EAB in forests. The EAB has no known predators other than woodpeckers that occasionally feed on larvae.

In 2007, three species of hymenopteran parasitoids (wasps) from China were released for biocontrol of EAB by the U.S. Department of Agriculture (USDA) Forest Service and USDA’s Animal Plant Health Inspection Service (APHIS). Two introduced parasitoids, *Spathius agrili* (Braconidae, Figure 18) and *Tetrastichus planipennisi* (Eupelmidae), attack EAB larvae. The other introduced parasitoid, *Oobius agrili* (Encyrtidae), parasitizes EAB eggs.

In addition, researchers are surveying extensively for indigenous natural enemies of EAB. A native wasp, *Atanycolus* sp. (Braconidae, Figure 19), has been found parasitizing EAB larvae in Michigan. Another native solitary wasp, *Cerceris fumipennis* (Crabronidae), captures buprestid beetles, including EAB, as prey and provisions its ground nest with the beetle prey as food for its developing young. This solitary wasp also is used as a new biosurveillance tool for the detection and survey of EAB populations.

Although what role exotic and indigenous parasitoids will play in suppression of EAB is not clear, researchers hope these parasitoids will become established and reduce infestations and the spread of EAB in North America.

Insecticide Control

Research has demonstrated that insecticides can protect individual ash trees from EAB effectively. Insecticides are recommended only if the EAB infestation is within 15 miles (24 kilometers), or the ash trees are in an EAB-infested (or quarantined) area.

Making insecticide applications when EAB has not been detected in your area is a waste of time and money. Trees that show more than a 25 percent canopy decline are not likely to recover from EAB damage and should not be treated with insecticides. The guidelines in the position statement by the North Dakota Department of Agriculture, North Dakota Forest Service and NDSU Extension Service on the use of insecticide treatment for EAB should be followed. Visit the following website for the position statement:

Four types of insecticide applications are available for controlling existing infestations and/or preventing EAB infestations (Table 2):

- Soil-applied systemic insecticides
- Trunk-injected systemic insecticides
- Basal trunk sprays of systemic insecticides
- Broadcast foliar sprays applied to trunk, main branches and foliage

Results of efficacy testing are available at www.emeraldashborer.info. The insecticides available for the homeowner are limited, so tree care professionals may be needed for the application of insecticidal control of EAB.

When using any pesticide, remember to **ALWAYS READ, UNDERSTAND AND FOLLOW ALL CURRENT LABEL DIRECTIONS**.

Mention of any trade names does not imply endorsement of one product versus another or discrimination against any product by the North Dakota State University Extension Service or the authors.

Soil-applied Systemic Insecticides

Systemic insecticides are applied to the soil as a drench or through an injection technique, absorbed by the roots and then translocated throughout the tree.

Imidacloprid is one of the most popular active ingredients in systemic insecticides. Imidacloprid formulations are available to homeowners as Bayer Advanced Tree & Shrub Insect Control, Optrol Insecticide, Ortho Max Tree and Shrub Insect Control and to professional applicators as Merit (75WP, 75WSP, 2F) or Xytect (2F, 75WSP). Dinotefuran (Safari 20 SG for use by the tree care professionals, and Zylam Liquid Systemic Insecticide and Green Light Tree and Shrub Control with Safari 2G for use by homeowners) is another active ingredient that can be applied to the soil.

The best timing for soil injection and drenches is likely early to mid-May in North Dakota. A fall application also can be made as an alternative timing, but generally is not as effective.

Insecticide uptake and translocation may take up to four to six weeks in trees with trunks smaller than 12 inches (30.5 cm) in diameter. Larger trees with trunks greater than 12 inches (30.5 cm) in diameter require more time for uptake, so treatment should be initiated earlier.
Table 2. Insecticides registered in North Dakota for control of emerald ash borer by professionals and homeowners.

<table>
<thead>
<tr>
<th>Application Method</th>
<th>Active Ingredient</th>
<th>Example of Trade Name(s)</th>
<th>Professional (P) or Homeowner (H) Use</th>
<th>Life Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-applied systemic as</td>
<td>imidacloprid</td>
<td>Merit (75WP, 75WSP, 2F)</td>
<td>P</td>
<td>L</td>
</tr>
<tr>
<td>drench or injection</td>
<td></td>
<td>Xylect (2F, 75WSP)</td>
<td>P</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bayer Advanced Tree & Shrub Insect Control</td>
<td>P or H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optro Insecticide</td>
<td>P or H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ortho Max Tree & Shrub Insect Control</td>
<td>P or H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>imidacloprid</td>
<td>Safari 20 SG</td>
<td>P</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>dinotefuran</td>
<td>Zylam Liquid Systemic Insecticide</td>
<td>P or H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green Light Tree & Shrub Insect Control with Safari 2G</td>
<td>P or H</td>
<td>L</td>
</tr>
<tr>
<td>Trunk injection</td>
<td>bidrin</td>
<td>Inject-A-Cide B</td>
<td>P</td>
<td>L or A</td>
</tr>
<tr>
<td></td>
<td>emamectin benzoate</td>
<td>Tree-äge</td>
<td>P</td>
<td>L or A</td>
</tr>
<tr>
<td></td>
<td>imidacloprid</td>
<td>IMA-jet 10, Imicide</td>
<td>P</td>
<td>L or A</td>
</tr>
<tr>
<td>Systemic trunk spray</td>
<td>dinotefuran</td>
<td>Safari 20 SG</td>
<td>P</td>
<td>L or A</td>
</tr>
<tr>
<td>Broadcast foliar sprays</td>
<td>bifenthrin</td>
<td>Onyx</td>
<td>P or H</td>
<td>A</td>
</tr>
<tr>
<td>applied to trunk, main</td>
<td>carbaryl</td>
<td>Sevin SL</td>
<td>P or H</td>
<td>A</td>
</tr>
<tr>
<td>branches and foliage</td>
<td>cyfluthrin</td>
<td>Tempo</td>
<td>P or H</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>permethrin</td>
<td>Astro</td>
<td>P or H</td>
<td>A</td>
</tr>
</tbody>
</table>

Larger trees also may require two different treatment techniques for effective EAB control. Homeowners trying to treat trees larger than 15 inches (38 cm) in diameter should consider having a professional treat their trees because higher rates and multiple applications may be necessary for effective EAB control.

For soil drenches, only a bucket or watering can is needed for application. Any mulch or leaf debris should be removed before applying the soil drench because imidacloprid binds to organic materials.

Soil injections place the insecticide near the root zone 2 to 4 inches (5 to 10 cm) below the soil surface and about 18 inches (46 cm) from the trunk near the highest density of tree roots. Specialized equipment is needed to perform soil injections, and applications primarily are conducted by professionals.

Soil drenches/injections should be applied when soils are moist but not saturated or extremely dry. When droughty, water the soil around the base of the tree prior to application.

Although soil-applied systemic insecticides have demonstrated effective control of EAB in some studies, results have been inconsistent. Some university studies of soil-applied systemic insecticide have shown poor control due to differences in pest pressures, tree sizes and other conditions in field.

Trunk-injected Systemic Insecticides

Active ingredients of insecticides available for trunk injections include imidacloprid (IMA-jet 10, Imicide), emamectin benzoate (Tree-äge) and Bidrin (Inject-A-Cide B). Trunk injections are available for use only by tree professionals (Figure 20 and 21).

Trunk-injected insecticides are used frequently in situations in which soil treatments are not practical due to saturated soil conditions, porous sandy soils or other sensitive environments.

The recommended treatment timing is when the ash leaves are starting to emerge but before EAB eggs hatch, usually mid-May to mid-June. Although trunk injections are absorbed quicker than soil treatments, they still require three to four weeks to translocate throughout the tree.

Trunk injections should be performed when temperatures are not hot (greater than 90 F or 37 C) and soil conditions are not dry. Morning is typically the best application time.

One of the negatives of using this technique is that it wounds the tree, which can affect the tree’s long-term health. However, researchers found that a single injection of emamectin benzoate applied mid-May or early June provided excellent (greater than 99 percent) control of EAB for at least two years, even under high pest pressures.

Imidacloprid trunk injections resulted in less mortality and varying degrees of EAB control. Overall, trunk-injected emamectin benzoate provided the highest level of EAB control when compared with other insecticide products and application techniques.

Figure 20. Trunk injection for control of emerald ash borer (D. Cappaert, Michigan State University, www.Bugwood.org)

Figure 21. Mauget capsule injection for control of emerald ash borer (D. Cappaert, Michigan State University, www.Bugwood.org)
Basal Trunk Sprays of Systemic Insecticides

Dinotefuran (Safari 20 SG for use by the tree care professionals, and Zylam Liquid Systemic Insecticide for use by homeowners) is a systemic insecticide labeled for bark sprays for control of larval or adult stages of EAB. Applications are made to the lower 5 to 6 feet of the trunk using a regular garden sprayer. Dinotefuran penetrates the bark and then is translocated throughout the tree.

Studies found that efficacy of basal trunk sprays of dinotefuran were variable and similar to trunk-injected imidacloprid. Efficacy was better and control was more consistent on smaller trees than on larger trees.

Broadcast Foliar Sprays Applied to Trunk, Main Branches and Foliage

Insecticides are sprayed on the trunks, branches and foliage to kill EAB adults as they feed on foliage and newly hatched EAB larvae before they bore into the tree. This technique does not kill larvae already feeding internally in the tree. Examples include permethrin (Astro), bifenthrin (Onyx), cyfluthrin (Tempo) and carbaryl (Sevin SL). They are available to homeowners and professional applicators, depending on the label restrictions.

For good control, insecticide sprays need to have complete coverage and be properly timed for adult EAB emergence. Using the DD accumulations, entomologists recommend two applications, one at 500 DD and a second spray four weeks later to account for the long period of adult EAB activity.

Efficacy studies found that bifenthrin, cyfluthrin and carbaryl all provided good control (greater than 75 percent mortality) of EAB. No efficacy data was available for permethrin.

What to Do if You Suspect EAB

If you suspect that your ash trees are infested with EAB, getting an official confirmation is critical. Individuals from the following organizations or agencies are able to help you determine if EAB is infesting trees:

- North Dakota Forest Service (701) 231-5138
- North Dakota Department of Agriculture (701) 328-4765 or (701) 239-7295
- NDSU Extension Service (701) 231-8143
- NDSU Plant Diagnostic Laboratory (701) 231-7854 or (701) 231-7064
- Local city forester
- Local county Extension agent

Note that other insect pests, diseases or stresses can cause dieback of tree crowns and sprouting along the main stem. True confirmation of EAB can come only by locating insects and having them identified by experts. Suspected larvae and adults of EAB will be forwarded from the North Dakota Department of Agriculture to experts at the USDA-APHIS in Michigan for official confirmation.

For additional information on EAB, visit the following:

- [Websites](http://www.aphis.usda.gov/plant_health/plant_pest_info/emerald_ash_b/downloads/multistateeab.pdf)
- www.dontmovefirewood.org/
- www.stopthebeetle.info
- www.nd.gov/ndda/pest/emerald-ash-borer-eab
- www.cerceris.info/index.html

References
