Glyphosate Residues, Variety Performance and Protein Variability: Research Results from 2019

Features of glyphosate

- Mobile in plants, moves to active sinks
- Deactivated in the soil almost immediately
- Considered one of the safest pesticides from a toxicological perspective (LD₅₀ ~5,000 mg/kg)
- Use rates on a per acre basis are relatively high compared to many herbicides
- Glyphosate is metabolized slowly in soil, with a reported half life of 2 to 197 days, 47 days considered typical
- Little metabolism in the plant

Glyphosate residues in wheat

- Though considered safe from a toxicological point of view, claims that it causes cancer has increased scrutiny of residues in food
- Likely sources of glyphosate residues in small grains
 - From pre-harvest applications
 - Drift from nearby fields
 - Uptake from the soil (minimal?)

Established maximum residue levels

- USA:
- Codex:
- EU:
- Japan, Canada and China:

30 ppm
30 ppm
10 ppm
5 ppm

- Other chemicals for comparison
 - DON = 1 ppm in flour,
 - Atrazine = 0.5 ppm in grain,
 - -2,4-D=2 ppm,
 - Propiconazole = 0.09 ppm

Current recommendations for glyphosate as a pre-harvest

- Up to 0.75 lb ae per acre rate
- Do not apply to crop intended for seed
- Do not apply to barley for malting
- Can be tank mixed with 2,4-D, dicamba, and saflufenacil
- Apply at hard dough stage or <30% moisture
- 7 day pre-harvest interval

NDS

Impact of rate and timing on glyphosate residue in spring wheat grain, average of five site/years (adapted from Cessna et al., 1994)

Experience from 2018

- Experiment where glyphosate was applied to the soil
 - All samples of grain were positive including the check, range was 0.021 to 0.054 ppm
 - Soil level in the spring after a fall burndown –
 0.04 ppm
 - Soil level in fall in plots receiving spring application none detected
- Samples from the center of six fields no detectable amounts

Conclusions

 Detectable levels of glyphosate in the wheat are likely with a pre-harvest application

- Applying too early may result in residue levels that exceed currently accepted limits
- Glyphosate that enters the plant may accumulate in the grain if the plant is still growing
- Drift during the season may result in detectable residues in the grain

Trends in HRSW variety use in ND

2015 2016 2017 2018

Considerations when using data to select varieties

- Yield and protein content are negatively correlated – need to consider both yield and protein
- Yield stability a variety that maintains relatively good performance across many environments is a desirable trait
- Genotype by environment interaction occurs when the ranking in yield of varieties change when environment changes

Relationship between yield and protein content of spring wheat varieties, average of eastern locations, 2018.

Relationship between the yield of a variety at a given location and the average yield at that location, North Dakota locations, 2018.

Example of a genotype by environment interaction, three varieties and three environments, North Dakota, 2018.

Steps to using data for selecting spring wheat varieties.

- Rank varieties by yield (averaged over location that are similar to farm, i.e. eastern locations (stability, >confidence)
- 2. Select the highest yielding with protein values you are comfortable with
- 3. Look at selected varieties over other locations and look at three year means
- 4. Examine other important traits (disease resistance, maturity, lodging resistance)

Varieties with yields > mean, western North Dakota, 2018

Varieties with protein > mean, all locations North Dakota, 2018

Rank of gross income, using average yield and protein of western locations, \$5/bu wheat <u>+</u> premium/discount, 2018

	\$.25 per % <u>+</u> 14%		\$.50 per % <u>+</u> 14%
Lanning	\$345	Lanning	\$353
WB9719	\$328	Caliber	\$348
<u>Caliber</u>	\$327	TCG-Climax	\$345
TCG-Climax	\$326	Glenn	\$341
Shelly	\$326	WB9479	\$337
<u>Glenn</u>	\$326	HRS 3616	\$334
SY Rockford	\$325	Rollag	\$333
LCS Trigger	\$324	Elgin-ND	\$331
WB9479	\$322	WB9590	\$330
Elgin-ND	\$321	SY Rockford	\$328

Rank of gross income, using average yield and protein of eastern locations, \$5/bu wheat <u>+</u> premium/discount, 2018

	\$.25 per % <u>+</u> 14%		\$.50 per % <u>+</u> 14%
HRS 3530	\$435	HRS 3530	\$453
<u>WB9590</u>	\$425	WB9590	\$451
<u>Surpass</u>	\$424	Surpass	\$442
WB9653	\$424	LCS Rebel	\$436
<u>Prosper</u>	\$422	SY Ingmar	\$435
Faller	\$420	Bolles	\$434
SY Valda	\$417	WB9479	\$434
LCS Rebel	\$415	AAC Brandon	\$432
HRS 3419	\$413	HRS 3616	\$430
SY Ingmar	\$411	Prosper	\$427

Optimum Seeding Rates for New Spring Wheat Varieties J Stanley, NDSU Joel Ransom, NDSU Extension NDSU EXTENSION

Results from Recent MN/ND Study

- Optimum seeding rate (SR) is variety dependent
 Derived from SR vs. Yield response curve
- Tillering capacity differs among varieties

 Increasing seeding rate decreases stems per plant
- Yield models are complicated by environment
 The SR that is optimum <u>increases</u> as <u>YP decreases</u>
 - Inferences limited as lowest yields were >50 bu ac⁻¹

Experiment Locations

- Minnesota

 Crookston
 Lamberton
- North Dakota
 - Prosper
 - Minot

NDS

- Dickinson
- Hettinger

Yield by Seeding Rate

All locations

Response of spring wheat cultivars to seeding rate, average of all varieties, three locations, 2018.

Seeding Rate

Yield

■ 1.0 ■ 1.5 ■ 2.0

Identifying Causes of Within-Field Protein Variability in Spring Wheat Melissa Geiszler

Why Look at Protein Variability?

- Which are the most influential factors influencing protein?
 H2O and N → OM and soil texture
- Can the causes of variability can be managed?
 - Account for target protein content in VRN application?
 - Can we turn low protein zones into higher protein zones?

How Does it Work?

• Next Instruments: CropScan 3000H

NDSU

EXTENSION

Diagram produced by Next Instruments

NDSU EXTENSION

EXTENSION

NDSU EXTENSION

Conclusions

- Preliminary results show promise in identifying "protein zones" that might benefit from specific management
- Can help quantify the effects of variation in the field and management practices on protein as well as yield
- What are some addition question we should be considering?