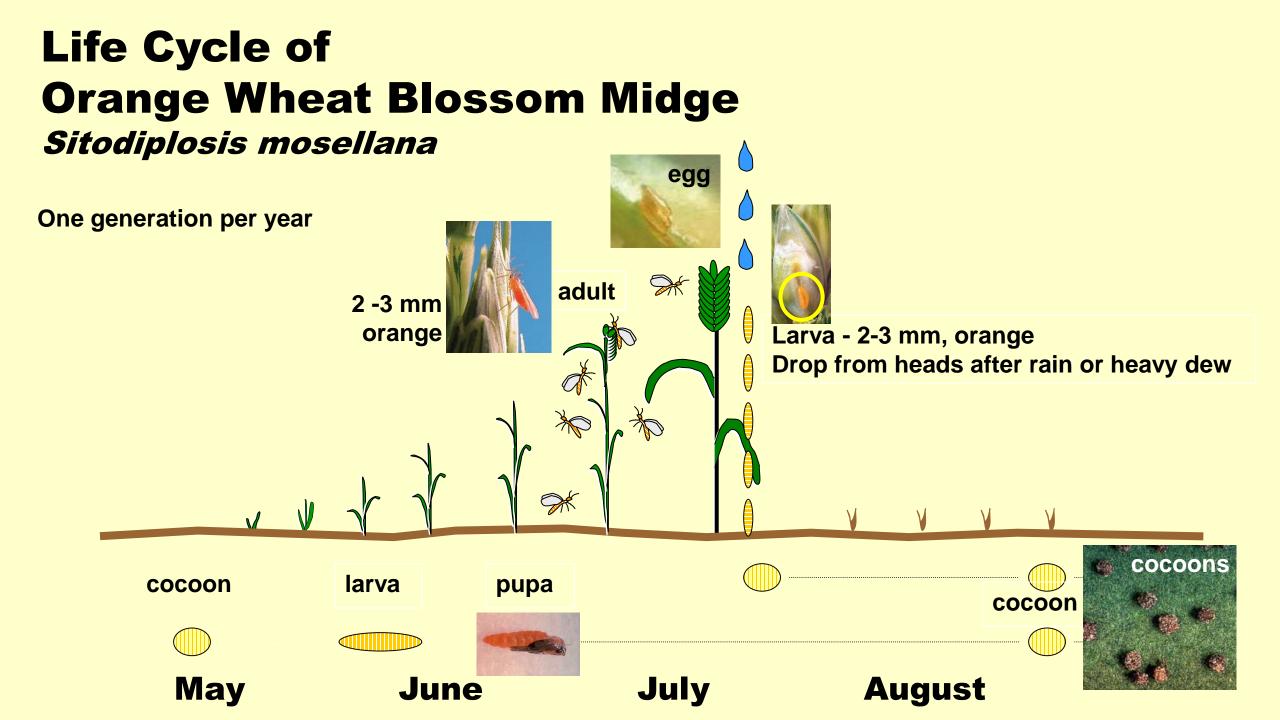
Forecast for Wheat Insect Pests in 2019



Travis J. Prochaska Janet Knodel

EXTENSION

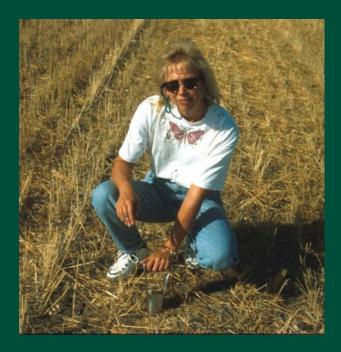
Crop Damage from Wheat Midge

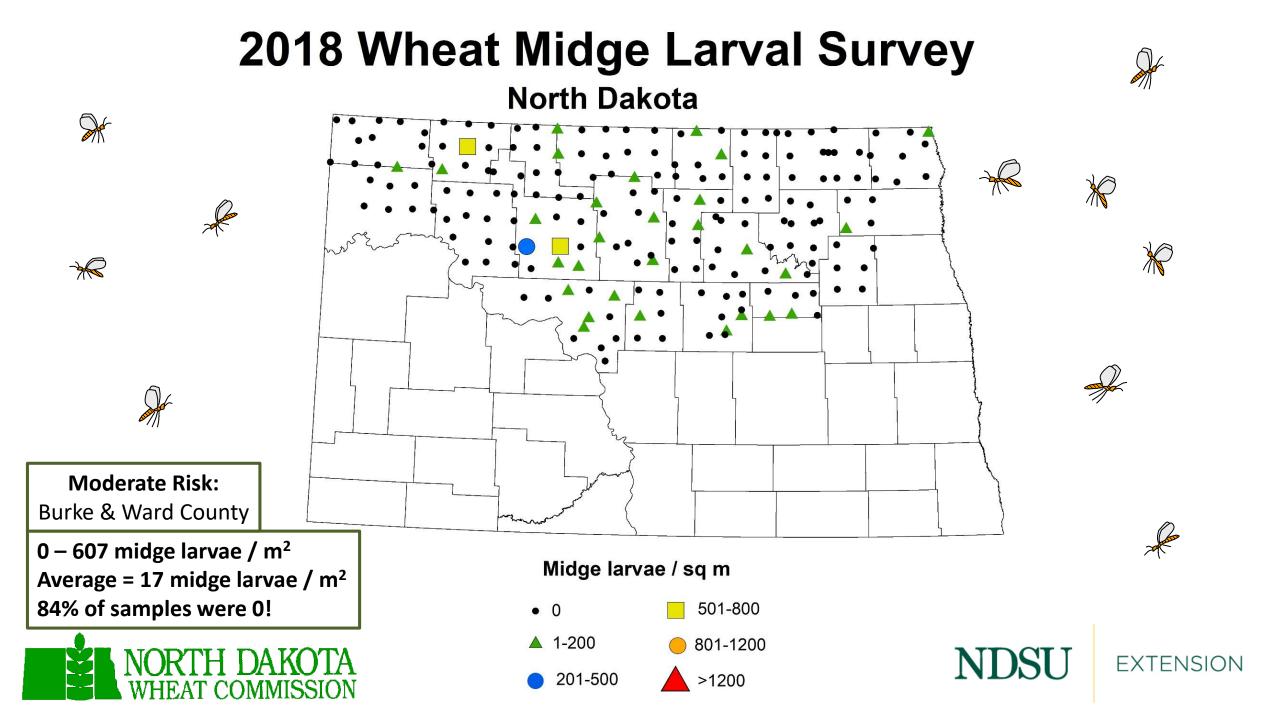
• Estimate losses of \$3 million per year without IPM

Reduced grain quality

•Vectors *Fusarium* head blight (scab)

Healthy kernels

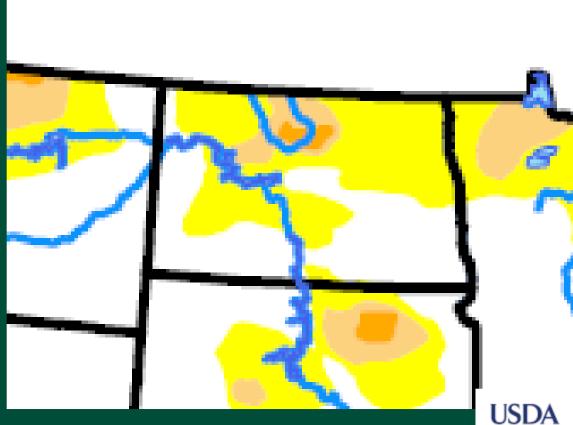

Wheat midge damaged kernels


Saskatoon Research Centre, Canada

2018 Wheat Midge Larval Soil Survey

- NDSU Extension agents collected a total of 2,000 soil core samples (10 cores per field) from 200 fields in 21 counties in fall.
- Wheat midge cocoons and number of parasitized cocoons counted in Knodel's laboratory
- Maps are posted on the NDSU Entomology website and news releases.
- Supported by:
 NDSU EXTENSION

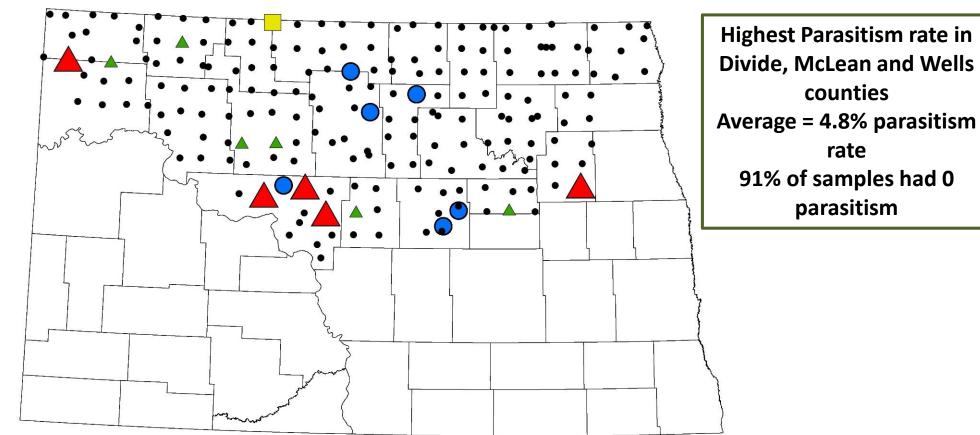



Drought Monitor – August 14, 2018

Intensity:

NDSU

EXTENSION


http://droughtmonitor.unl.edu/

Macroglenes penetrans egg-larval parasite of the Wheat Midge

2018 Wheat Midge Larval Survey

Percent Parasitism North Dakota

51-75

76-100

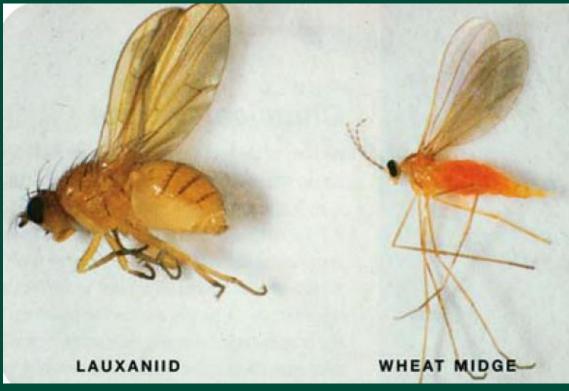
EXTENSION

Percent parasitized midge larvae

26-50

1-25

IPM: Scouting for Wheat Midge in Field



- Regular field scouting on multiple nights in succession
- Inspect wheat heads after dusk after 9 pm
- •Temperatures >60°F for midge to be active
- •Wind speeds >5 mph limit activity of midge
- •Use Degree Day Model for forecasting wheat midge emergence NDAWN

NDSU Extension Service

Identification Lauxanid fly versus Wheat midge fly

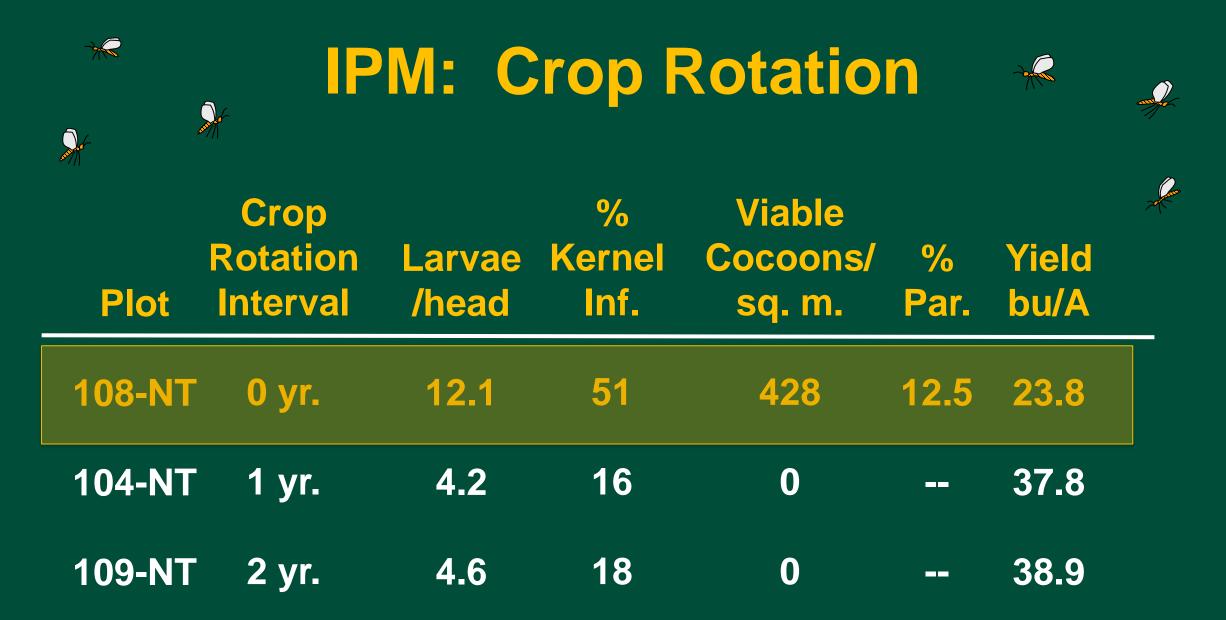
Saskatoon Research Centre, Canada

Degree Days as a Tool for Wheat Midge Scouting

DD Biological Event

- 450 Wheat midge breaks larval cocoons and move close to soil surface to form pupal cocoons.
- 1,300 10 percent of females will have emerged.
- 1,475 About 50 percent of females will have emerged.
- 1,600 About 90 percent of females will have emerged.

Threshold Temperature = 40 F


NDAWN – https://ndawn.ndsu.nodak.edu/wheat-growing-degree-days.html

NDAWN Wheat GDD / Growth Stages & Midge DD

	<u>Minot</u>							Entered 'May 18	, 2018' planting date			
Date	Max Air Temp (°F)	Air	Total Rain fall (inch)		Wheat AGDD (°F)	Est. Haun Growth Stage	Growth Stage Comment	Wheat Suscept. to Midge	Midge DD (°F)	Midge ADD (°F)	C	Midge omment
2018-06-29	76	60	0.61	36	1394	9.0		No	28	1581		
2018-06-30	73	56	0.00	33	1427	9.2	Boot Swell	No	25	1606	~ 90% females emerged	
2018-07-01	77	55	0.00	34	1461	9.5		No	26	1632		
2018-07-02	79	53	0.00	34	1495	9.7		No	26	1658		
2018-07-03	80	58	0.37	37	1532	10.0		Yes	29	1687		
2018-07-04	73	59	0.06	34	1566	10.2	Boot Cmplt.	Yes	26	1713		
2018-07-05	76	51	0.00	31	1597	10.4	Head Beg.	Yes	23	1736		
2018-07-06	84	58E	0.00	39E	1636	10.7		Yes (E)	31E	1767E		
2018-07-07	90	68	0.00	47	1683	11.0	Head Compl.	Yes	39	1806	Female numbers decline	 no action required except no till
2018-07-08	84	60	0.00	40	1723	11.3		Yes	32	1838		
2018-07-09	84	56	0.00	38	1761	11.6	Flwr. Beg.	Yes	30	1868		
2018-07-10	84	65	0.44	42	1803	11.9	Flwr. Compl.	No	34	1902	Activity ceases even in no	o or min till field
2018-07-11	81	65	0.00	41	1844	12.1	Wtry. Ripe	No	33	1935		
2018-07-12	83	61	0.00	40	1884	>12		No	32	1967		

NDSU EXTENSION

https://ndawn.ndsu.nodak.edu/wheat-growing-degree-days.html

NDSU

FXTENSION

HRSW cv. Alsen, planted on May 10, 2001 Sprayed with 16 oz./A Lorsban on July 10, 2001

IPM - Chemical Control

• Economic Threshold =


Hard Red Spring Wheat = one or more wheat midge for every four or five heads

Durum Wheat = one or more wheat midge for every seven or eight wheat heads

• Best timing: 70% of wheat heads are at late heading to early flowering

• Evening application

• Okay to tank-mix with fungicides for scab

NDSU Extension Service

Small Grain Management Recommendations

Registered Insecticides

Chlorpyrifos: Lorsban 4E-SG* & generics **Chlorpyrifos + lambda-cyhalothrin: Cobalt Advanced* Chlorantraniliprole + lambda-cyhalothrin:** Besiege* Lambda-cyhalothrin: Warrior* & generics **Gamma-cyhalothrin:** Delcare*

* restricted use insecticide

IPM – New Tool Use of Resistant Wheat Varieties Against Wheat Midge

- Sm1 gene tolerance
- "Refuge in the Bag" to prevent development of resistance
 - No other known source of midge tolerance
 - 90% midge tolerant variety and 10% susceptible variety
 - Canada Varieties AC[®] Unity, AC[®] Goodeve VB, AC[®] Glencross VB, AC[®]
 Fieldstar VB, AC[®] Shaw VB, AC[®] Utmost VB, AC[®] Conquer VB, AC[®] Vesper VB
 - Montana Variety Egan (released in 2014)
- New NDSU wheat breeder, Dr. Andrew Green

Extension Outreach – Wheat Midge

E1479 - IPM of Wheat Midge in ND

- http://www.ag.ndsu.edu/publications

NDSU Extension Website:

- ND Wheat Midge Risk Maps (1995-present)
- <u>https://www.ag.ndsu.edu/extensionentomol</u> <u>ogy/field-crops-insect-pests/nd-wheat-</u> <u>midge-risk-maps</u>

Revised by Janet Knodel, Extension Entomologist and Associate Professor

Introduction and Distribution

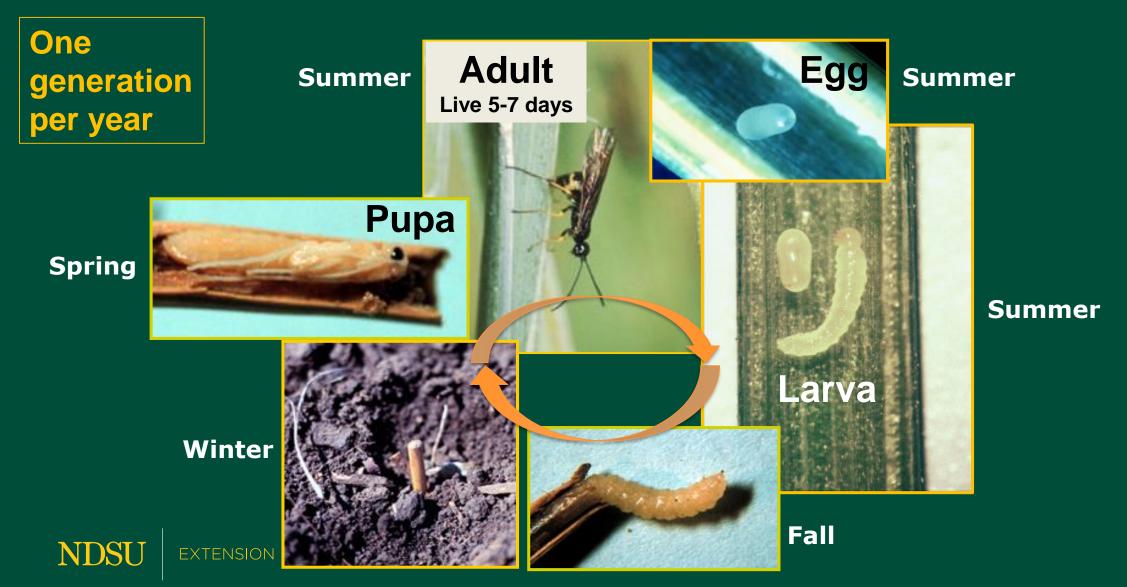
Wheat is the most widely cultivated plant in the world, providing more than 20 percent of the food calories consumed. The wheat midge (or orange wheat blossom midge), Sitodiplosis mosellana (Géhin) (Diptera: Cecidomviidae), is one of the most destructive pests of wheat. The first reference to a wheat midge larva in wheat was in 1741 in England, although researchers are uncertain if it is the same midge causing trouble today. Wheat midge originated in Europe, and the first record of its occurrence in North America was from Quebec in 1828. Since then, it has been recorded in various locations throughout the Old World and New World, especially in North America, Europe and China. In recent years, wheat midge infestations have been reported in Minnesota, Montana North Dakota, Alberta, Saskatchewan, Manitoba and British Columbia. In North Dakota, wheat midge occurs throughout the wheat-producing areas and has caused economic damage in the northern tier of the state.

Host Plants Wheat midge is an oligophagous insect. Common wheat, *Triticum aestivum* L., is the primary host of the

wheat, Triticum aestivum L., is the primary host of the wheat midge throughout its modern distribution in Europe, Asia and North America. All 17 species in the genus Triticum are hosts for wheat midge. Other grass hosts include durum wheat (Triticum durum Desf.), occasionally rye (Secale cereale L.) and barley (Hordeum vulgare L.). Wheat midge also will deposit eggs on some grassy weeds, such as quackgrass (Elymus repens (L.) Gould), slender meadow foxtail, (Alopecurus myosuroides Huds.) and other grasses, but larval development on these grassy hosts is questionable.

Identification

Adults (Figure 1)

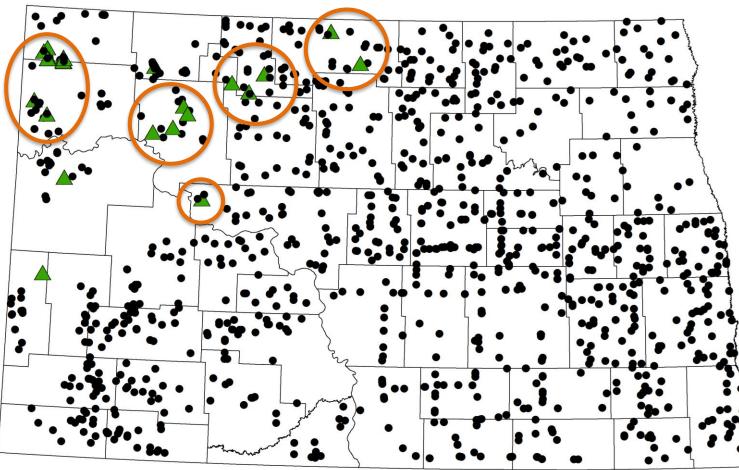

The adult wheat midge is an orange-colored, fragile, very small insect approximately half the size of a mosquito. It is about 0.08 to 0.12 inch (2 to 3 millimeters)

long with three pairs of long legs. It has a pair of wings, which are oval, transparent and fringed with fine hairs. Two eyes are conspicuous and black.

Figure 1. Adult wheat midge. (Extension Entomology, NDSU)

Wheat Stem Sawfly Cephus cinctus Norton (Cephidae)

Damage caused by Wheat Stem Sawfly


- Reduced yield
- Stunted head with fewer kernels and lower kernel weight
- Reduced protein content
- Lodging
 Harvest problems

XTENSION

Wheat Stem Sawfly

Season Final, 2018

Increased WSS populations in 2018 at: NC and NW ND NW MN

Drought favors WSS

United States Department of Agriculture National Institute of Food and Agriculture Number of adult sawflies per 20 sweeps

1-25

0

51-100

IPM: Cultural Strategies

Crop Rotation

- XTENSION

- Plant immune or resistant crops
 - Oats immune
 - Barley sawfly do not thrive
 - Durum less cutting due to tougher outer stems tissues and increased pith
 - Broadleaf crops = non-hosts
- -Wheat on wheat favors increases in sawfly populations

IPM: Cultural Strategies

- Early harvest before sawflyinfested wheat lodges
 - If more than 15 percent of stems are infested by sawflies, producers should swath early
 - Swathing as soon as kernel moisture drops <40%

Solid-Stemmed Wheat Cultivars with Resistance to Wheat Stem Sawfly

EXTENSION

NDSI

Dr. Andrew Green NDSU Wheat Breeder

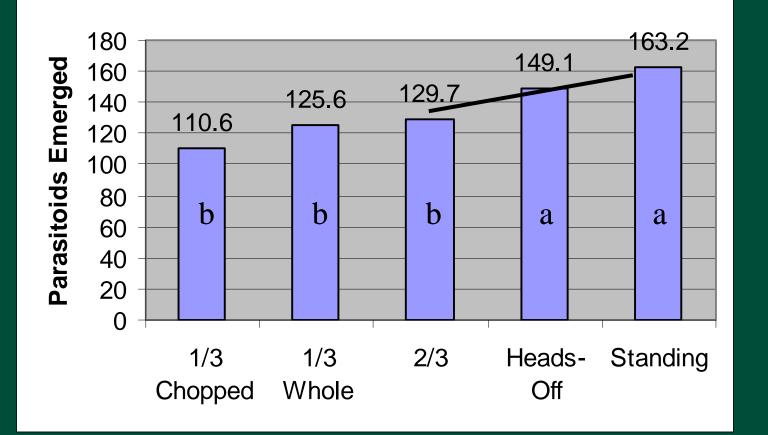
Table 1. Released wheat cultivars with resistance to wheat stem sawfly.

	Wheat cultivar	Туре	Year Released	Releasing Agency ²
	Choteau	HRS	2003	MAES
	AC Lillian	HRS	2005	AC
	Corbin	HRS	2006	WB
	Mott	HRS	2009	NDAES
	Duclair	HRS	2011	MAES
	SY Tyra	HRS	2011	AP
ſ	WB Gunnison	HRS	2011	WB
	WB 9879 CLP	HRS	2012	WB
	WB 9377	HRS	2014	WB
	WB9653	HRS	2015	WB
	Genou	HRW	2004	MAES
	Bearpaw	HRW	2011	MAES
	Judee	HRW	2011	MAES
	WB Quake	HRW	2011	WB
	Warhorse	HRW	2013	MAES
	Explorer	HWS	2002	MAES
	Agawam	HWS	2005	WB
	WB Prestea	HWS	2012	WB

¹ HRS = hard red spring wheat, HRW = hard red winter wheat, HWS = hard white spring wheat.

² AC = Agriculture Canada; AP = AgriPro; MAES = Montana Agricultural Experiment Station; NDAES = North Dakota Agricultural Experiment Station; WB = WestBred LLC.

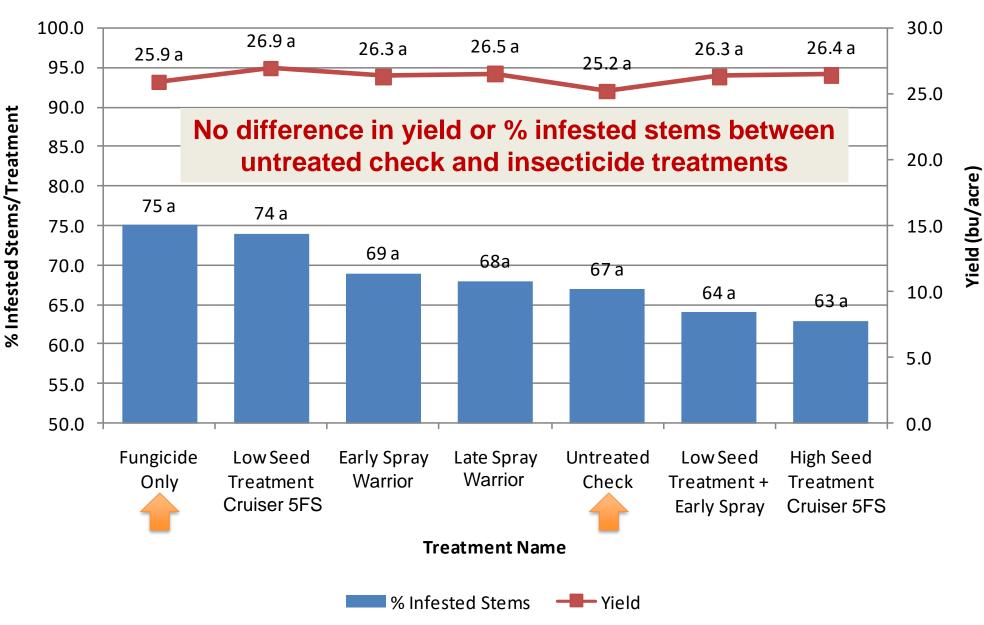
IPM: Biological Control


- Parasitic Wasps
- Bracon cephi (Gahan)
 - Wheat
 - Effective in solid-stemmed wheat varieties
- Bracon lissogaster Muesebeck
 - Native grasses
 - Stems are NOT cut
 - Parasitoids reduce sawfly survival and head damage
 NDSU EXTENSION

Parasitoid Conservation

Cutting Height

Taller residue is better


NDSU EXTENSION

Wheat Stem Sawfly Ward Co.

Warrior: Early Spray 4-6 leaf

Late Spray Flag leaf

2008 Makoti WSSF Stem Infestation

Why Do Insecticides Not Control Wheat Stem Sawfly (WSS)?

- Adult WSS emergence period is long (~1 month)
- Adult WSS has a short life span and spends little time feeding or imbibing water, so insecticides would only kill by 'contact' at time of application
- Eggs, larvae and pupae are protected inside stem
- Most foliar insecticides are short residual of <7-10 days
- Adult WSS prefer to oviposit in stems of spring wheat during stem elongation (60-70 days after planting)
 - Seed treatment Thiamethoxam residual = 30-40 days

Knodel et al. 2009. J. Agric. Urban Entomol. 26 (4): 183-197

Extension Outreach – Wheat Stem Sawfly

- E1479 IPM of Wheat Stem Sawfly in ND
 - http://www.ag.ndsu.edu/publications
- NDSU Extension YouTube Videos:

=XTENSION

- IPM of Wheat Stem Sawfly (17.36 minutes)
 - <u>http://www.youtube.com/watch?v=_4bhsCBj_u8</u>
- Swath Grain with Heavy Infestation of Wheat Stem Sawfly (3 minutes)
 - <u>http://www.youtube.com/watch?v=bFpiKCGzIWY</u>

Wheat stem sawfly adult (R.K.D. Peterson, Montana State University)

Janet Knodel Department of Plant Pathology NDSU, Fargo, N.D.

Thomas Shanower U.S. Department of Agriculture – Agricultural Research Service Center for Grain and Animal Health Research Manhattan, K.S.

Patrick Beauzay Department of Plant Pathology NDSU, Fargo, N.D.

North Dakota State University Fargo, NorthDakota Revised and reprinted Feb. 2016

Distribution and History

Wheat stem sawfly, *Cephus cinctus* Norton (Hymenoptera: Cephidae), is widely distributed across North America, from California to the Mississippi River and from British Columbia to Manitoba. It has been reported from as far south as Kansas and New Mexico.

Many authorities consider it a native North American insect that adapted to wheat as European settlers began large-scale cultivation of cereal crops. Alternatively, some researchers have suggested that the wheat stem sawfly may have been introduced into North America inadvertently from northeastern Asia. Whatever its origins, wheat stem sawfly is the most serious insect pest of spring wheat and durum wheat in North Dakota.

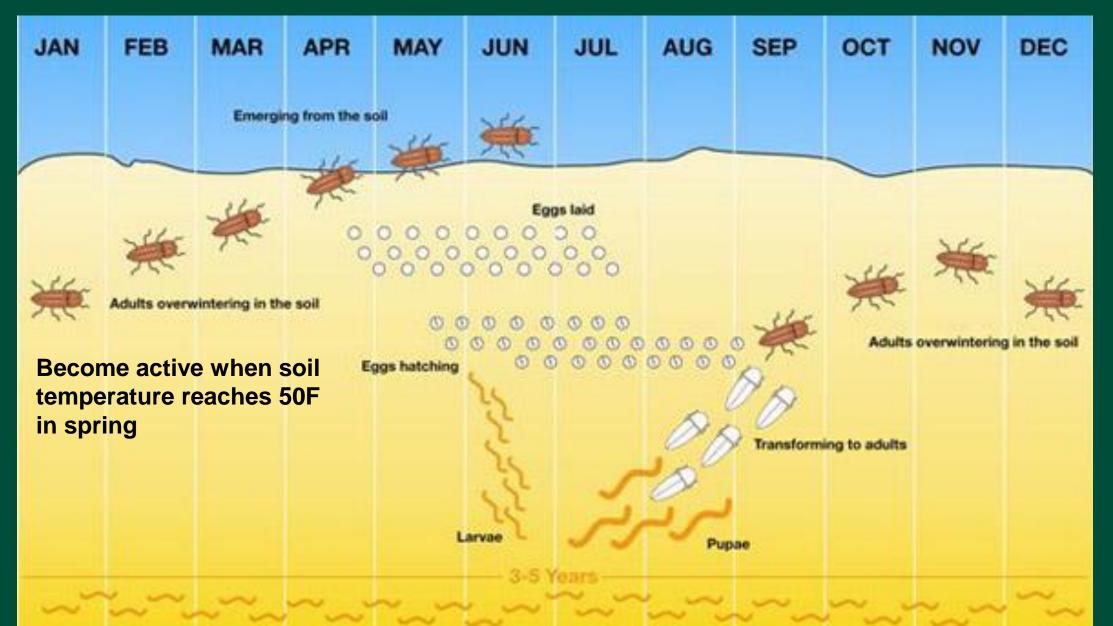
Wheat stem sawfly first was reported as a pest of wheat in Saskatchewan and Manitoba in the late 1890s. In 1906, larvae were found attacking wheat in south-central North Dakota. By 1909, losses of up to 25 percent were reported around Minot and in the Red River Valley near Fargo.

The North Dakota infestation reached epidemic levels in 1916 but receded rapidly, and by the early 1920s, wheat stem sawfly was a pest of minor importance. During the 1940s, wheat stem sawfly again became a problem, with as much as 50 percent crop loss reported in northwestern North Dakota.

Sawfly populations have fluctuated across years and locations, although infestation levels and damage are greatest in western North Dakota. Wheat stem sawfly has increased steadily in the past 10 years, with the heaviest economic loss occurring in southwestern North Dakota.

In 2009, a survey of wheat producers statewide revealed that crop loss due to wheat stem sawlly ranged from 10 to 25 percent. However, some fields in southwestern North Dakota had severe lodging, and 100 percent of the spring wheat fields were lost due to wheat stem sawlfy in 2009. Based on current production totals and crop values, North Dakota wheat producers lost between \$25 million and \$70 million in 2009.

Wireworms


- Family Elateridae (click beetles)
- 885 wireworm species in N.A.
 - Prairie grain wireworm (Selatosumus aeripennis destructor)
 - Sugarbeet wireworm (Limonius californicus)
- 3 to 5 year life cycle
- Larvae feed on roots and tunnel in roots/stems

S. Brown, Univ. GA, bugwood.org


Wireworms Life Cycle

Wireworm Crop Damage

- Plant losses due to wireworm feeding are increasing!
- Stand loss blank spots or 'skips' in the rows
- Make sure the problem is actually caused by wireworms

Wheat Insecticides Registered for Wireworm

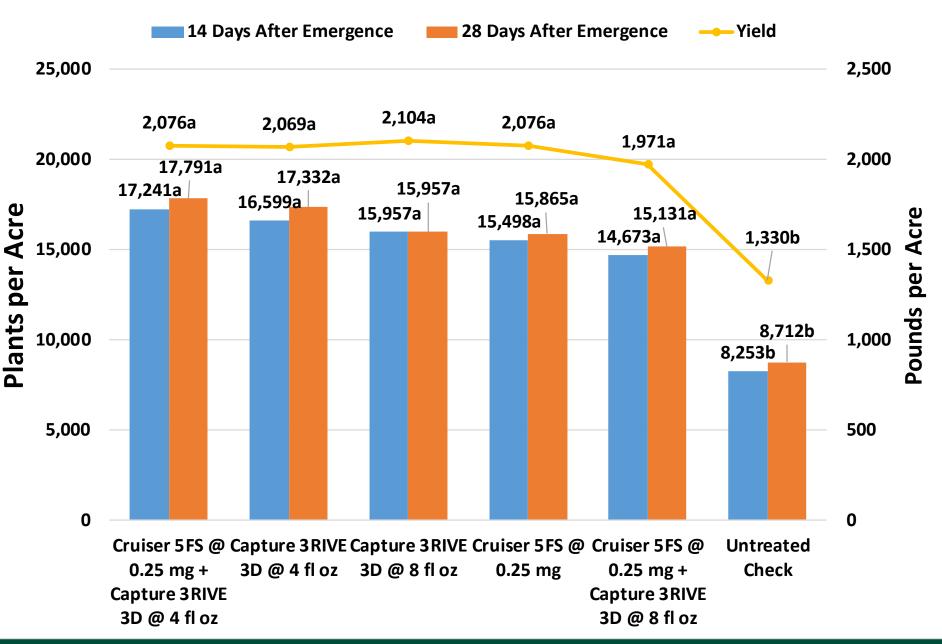
IRAC Group	Class	Active Ingredient	Products
4A	Neonicotinoid	Clothianidin	Intego SUITE Cereals OF, Nipslt SUITE Cereals OF
4A	Neonicotinoid	Imidacloprid	Dyna-Shield, Gaucho 600, Senator 600FS
4A	Neonicotinoid	Thiamethoxam	Cruiser 5FS, Cruiser Maxx Cereals, Cruiser Vibrance Quattro, Warden Cereal VR II

* Only neonicotinoid seed treatments for control of wireworms in wheat!

EXTENSION

Wireworm 'Insecticide Control'

- Insecticide use is a preventive strategy there are <u>no rescue</u> treatment options
- Insecticide seed treatments neonicotinoids (IRAC 4A)
- Applications provide seedling protection they do not provide significant wireworm mortality
 - Neonicotinoid seed treatments (such as thiamethoxam) cause 'temporary' morbidity
 - Pyrethroids (such as bifenthrin) are repellents and non-lethal


Wireworm Insecticide Control in Sunflowers

Untreated check: 35% lower yield 48% lower stand

NDSI

EXTENSION

Treatment Means for Plant Population at Mohall, 2018

Wireworm Pest Management

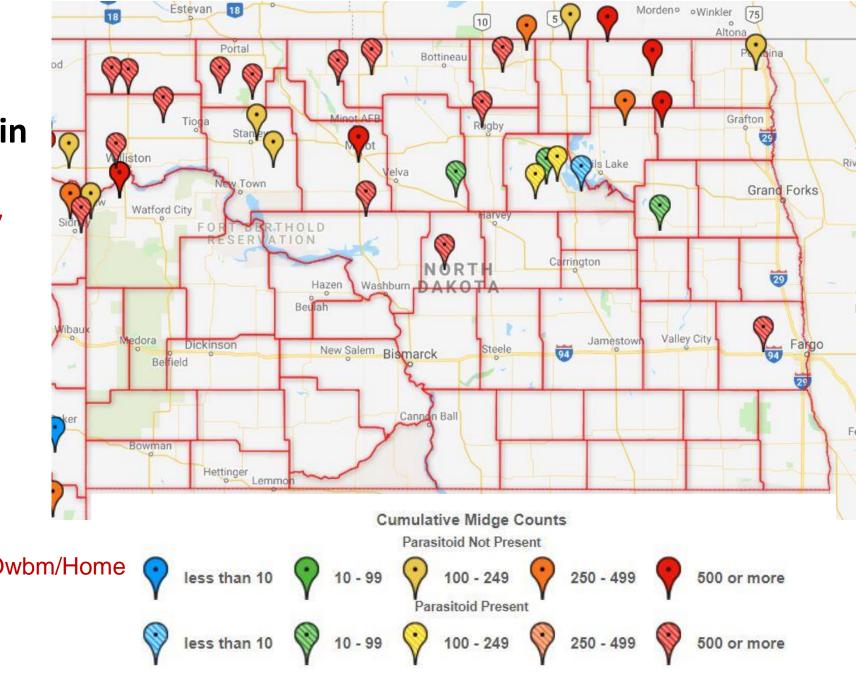
- Neonicotinoid seed treatments provided 'acceptable' protection
- *New Modes of Action in wheat Syngenta and BASF
 - Knodel testing new products look promising
- Consider your crop rotation (wireworms prefer grasses to lay eggs)
- Know your field history and wireworm infestations
- Weed management
- Adjust seeding rate +10% to compensate for wireworm stand loss

EXTENSION

Wheat Midge Pheromone Trap

- Place traps in field during heading (at wheat head height)
- Three traps per 160 acres
 - 75 ft in field and at least 300 ft apart
- Examine every 1-2 days
- Threshold = >10 captured males per trap indicate NEED TO SCOUT FIELDS
- Available for \$7.20/ trap unit (trap + pheromone)
- Great Lake IPM (source of insect trap supplies)
- http://www.greatlakesipm.com/

2018 Pheromone Trapping for Wheat Midge and Parasitoid in North Dakota


NDSU Ext. IPM Survey

PestWeb Montana State University

https://pestweb.montana.edu/Owbm/Home

United States Department of Agriculture National Institute of Food and Agriculture

Wireworm Field Sampling

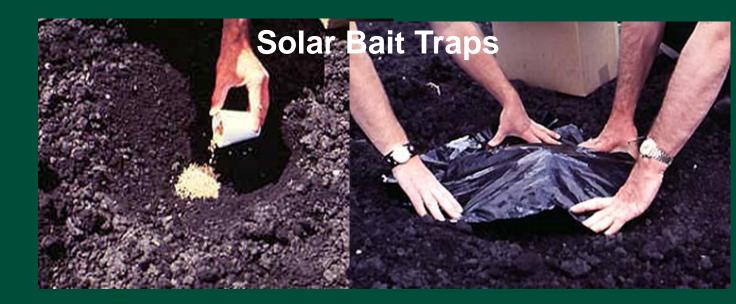

- Difficult to survey and to predict whether wireworms will be a problem
- Wide host range, but grasses are preferred
- Crops most at risk following small grains, corn or CRP/non-crop

Photo credit: Dr. Wanner, Montana State University

FXTENSION

NDSI

If more than <u>one wireworm per trap (threshold)</u>, use soil insecticide at plant or insecticide seed treatment!

NDSI

XTENSION

T-band system