Updates on Wheat Stem Sawfly, Wheat Midge and Wireworm

Dr. Janet Knodel
Extension Entomologist

NDSU Extension Service
Wheat Stem Sawfly
Cephus cinctus Norton (Cephidae)

Adult
Live 5-10 days

Pupa

Egg

Larva

Seasons

- **Spring**
- **Summer**
- **Fall**
- **Winter**
Wheat Stem Sawfly Hosts

• *Cephus cinctus* is native to North America and lives in grasses

• Cultivated hosts include wheat (spring, winter, and durum), rye, triticale, and some barley (larvae don’t live long in barley)

• Wild grasses – Timothy, Quackgrass, Smooth broome, wheatgrass

• Oats, corn and broadleaf crops are not suitable hosts
Damage Caused by Wheat Stem Sawfly

- Reduced yield
- Stunted head with fewer kernels and lower kernel weight
- Reduced protein content
- Lodging

Lodging Losses

- Lost grain
- Volunteer wheat
 - uses water
 - herbicide
- Decreased snow retention
- Slower harvest
 - more fuel
 - more time
- Equipment damage
- Not good estimate of actual larval infestation
Acreage Affected and Production Lost Due to Wheat Stem Sawfly in ND 2009

<table>
<thead>
<tr>
<th>District</th>
<th>Range of Damage</th>
<th>Total Acres SW, Durum, WW</th>
<th>% Acres Affected</th>
<th>Acres Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW 6 counties</td>
<td>10-25%</td>
<td>1,988,000</td>
<td>15</td>
<td>298,200</td>
</tr>
<tr>
<td>NC 5 counties</td>
<td>Trace to 15%</td>
<td>853,000</td>
<td>5</td>
<td>42,650</td>
</tr>
<tr>
<td>WC 5 counties</td>
<td>10-40%</td>
<td>795,000</td>
<td>25</td>
<td>198,750</td>
</tr>
<tr>
<td>Central 6 counties</td>
<td>None to 10%</td>
<td>681,000</td>
<td>5</td>
<td>34,050</td>
</tr>
<tr>
<td>SW 7 counties</td>
<td>50-85%</td>
<td>990,000</td>
<td>65</td>
<td>643,500</td>
</tr>
<tr>
<td>SC 5 counties</td>
<td>10-40%</td>
<td>722,000</td>
<td>25</td>
<td>180,500</td>
</tr>
<tr>
<td>NE 7 counties</td>
<td>None</td>
<td>1,592,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SE 7 counties</td>
<td>None</td>
<td>479,000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total acres affected: 1,405,682

- **40 bu/a**
- **$5.00/bushel**

- **10% loss =** $28 million
- **25% loss =** $70 million
Cultural Strategies

• Crop Rotation
 – Plant immune or resistant crops
 • Oats immune
 • Barley – sawfly do not thrive
 • Durum – less cutting due to tougher outer stems tissues and increased pith
 • Broadleaf crops = non-hosts
 – Wheat on wheat favors increases in sawfly populations
Cultural Strategies

• Delay seeding
 – Late planting date produces a crop that is unattractive to females for egg-laying
 • Stem elongation begin after the annual sawfly flight
 – Negative - Yield and grade losses associated with delayed seeding, and increase risk to hail
• **Trap crops**
 - Plants on edge concentrate adult sawflies, which lay eggs in trap crop
 - Then, destroy trap crop (cultivate, mow, hay) before larvae move down into base of plant prior to plant maturity

Source: D. Weaver, MSU
Host Plant Resistance

- **Solid-stemmed Varieties**
 - Viable IPM tool for over 60 years
 - First variety – ‘Rescue’ (released in 1946, Agric. Canada)
 - Larvae bore less extensively and reduced negative effects on yield
 - Antibiosis
 - Mortality due to physical resistance of pith (Holmes and Peterson 1962, Beres et al. 2007)
 - Solidity of lower internodes important (Wallace 1966)
 - Female WSS Host preference
Host Plant Resistance

• Solid-stemmed Varieties
 – Older solid-stemmed varieties had negative yield drag (<10%) and lower seed quality
 • Producer reluctant to use solid-stemmed varieties (Weiss and Morrill 1992, Beres et al. 2009)
 – Do newer solid-stemmed varieties yield more and have better agronomic traits?
 • Mott (NDAES 2009) Choteau (MAES 2003)
Materials and Methods – HRSW Varieties

- Mott – North Dakota, 2009
- Choteau – Montana, 2003
- AC Lillian – Saskatchewan, 2003
- Vida – Montana, 2006
- Glenn – North Dakota, 2005
- Reeder – North Dakota, 1999
- Steele ND – North Dakota, 2004
Material and Methods – Site-Years

- Locations
 - Grenora, Hettinger, Makoti, Regent, Scranton

- Years

- Hettinger 2009 lost to hail
- Grenora 2011 not planted due to excess soil moisture
- Total of 13 site-years
Relationship Between Adult Female WSSF Density and Proportion Damaged Stems Across All Varieties and Site-Years

\[Y = \frac{e^{-1.8870 + 2.7075 \times \text{Density}}}{1 + e^{-1.8870 + 2.7075 \times \text{Density}}} \]
Materials and Methods – Solidity and Sawfly Infestation

- Data collected at each of the first three above-ground internodes
 - Stem solidity at center of internode (1-5 scale)
 - Presence/absence of sawfly infestation (larva or frass)
Mean Stem Solidity for Steele ND for Each Site-Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>1.34 a</td>
</tr>
<tr>
<td>2010</td>
<td>1.34 a</td>
</tr>
<tr>
<td>2011</td>
<td>1.06 a</td>
</tr>
</tbody>
</table>

Mean Stem Solidity for AC Lillian for Each Site Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>2.77 a</td>
</tr>
<tr>
<td>2010</td>
<td>2.26 b</td>
</tr>
<tr>
<td>2011</td>
<td>1.59 c</td>
</tr>
</tbody>
</table>

Mean Stem Solidity for Mott at Each Site Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>3.85 a</td>
</tr>
<tr>
<td>2010</td>
<td>3.29 b</td>
</tr>
<tr>
<td>2011</td>
<td>3.40 b</td>
</tr>
</tbody>
</table>
Conclusion

- Wheat stem sawfly infestation is influenced by
 - Wheat stem sawfly density
 - Solidity of stem
Test Weight for HRSW Varieties Across All Site-Years

- Glenn: 60.4 a
- Mott: 58.6 b
- Steele ND: 58.0 bc
- Reeder: 57.3 cd
- Choteau: 56.9 d
- Vida: 56.5 d
- AC Lillian: 55.6 e

For Test Weight (g/0.5 L):
- Glenn: 389.0 a
- Mott: 378.0 b
- Steele ND: 374.0 bc
- Reeder: 369.0 cd
- Choteau: 366.0 d
- Vida: 364.0 d
- AC Lillian: 358.0 e
Percent Grain Protein for HRSW Varieties Across All Site-Years

<table>
<thead>
<tr>
<th>Variety</th>
<th>% Grain Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Lillian</td>
<td>16.0 a</td>
</tr>
<tr>
<td>Glenn</td>
<td>15.1 b</td>
</tr>
<tr>
<td>Steele ND</td>
<td>15.0 bc</td>
</tr>
<tr>
<td>Mott</td>
<td>14.8 cd</td>
</tr>
<tr>
<td>Reeder</td>
<td>14.8 cd</td>
</tr>
<tr>
<td>Choteau</td>
<td>14.7 cd</td>
</tr>
<tr>
<td>Vida</td>
<td>14.5 d</td>
</tr>
</tbody>
</table>
Yield for HRSW Varieties Across All Site-Years

Variety:
- Mott
- Vida
- Reeder
- Steele ND
- Choteau
- Glenn
- AC Lillian

Yield (bu/acre):
- Mott: 46.1 a
- Vida: 46.1 a
- Reeder: 44.6 ab
- Steele ND: 42.4 bc
- Choteau: 40.6 cd
- Glenn: 40.1 cd
- AC Lillian: 38.1 d

Yield (kg/hectare):
- Mott: 3,101.5 a
- Vida: 3,097.7 a
- Reeder: 2,997.1 ab
- Steele ND: 2,851.4 bc
- Choteau: 2,733.0 cd
- Glenn: 2,699.2 cd
- AC Lillian: 2,565.7 d

Note: Values with different letters indicate significant differences.
Conclusion

• Solid-stemmed Mott higher test weight except for hollow-stemmed Glenn and Steele ND
• Semi solid-stemmed AC Lillian has the highest protein with Mott in the middle
• Mott had the highest yield and comparable to Reeder and significantly higher than Steele ND, Choteau, Glenn and AC Lillian.
Biological Control

- *Bracon cephi* (Gahan)
 - Wheat
 - Effective in solid-stemmed wheat varieties

- *Bracon lissogaster* Muesebeck
 - Native grasses

Source: D. Weaver, UMT
Bracon cephi and Bracon lissogaster
(Hymenoptera: Braconidae)

- Paralyze host, deposit egg on or near host
- Ectoparasites
- 1+ parasitoid / sawfly
- Development time = 2-3 weeks
- 1+ generations / yr
- Overwinter as pupa
Biological Control

- *Bracon* spp.
 - Bivoltine (2 generations a year)
 - Female wasp locates sawfly larvae in stem, inject venom and paralyzes it (Beres et al. 2011)
 - Terminates feeding and stems are NOT cut
 - Parasitoids reduce sawfly survival and head damage
 - Parasitism rate can exceed >80% in some fields and caused declines in sawfly populations over several years (Peterson et al. 2011)
 - In high sawfly populations, parasitoids are not sufficient to prevent economic losses (Morrill et al. 1998)
Parasitoid Conservation

Cutting Height

- 1/3 Chopped: 110.6
- 1/3 Whole: 125.6
- 2/3 Heads-Off: 129.7
- Standing: 149.1
- Parasitoids Emerged: 163.2

Taller residue is better

Source: D. Weaver, MSU

Parasitoid pupa in stem
Negative – Destroy parasitoids!
Survey of *Bracon* spp. 1999-2001

Wheat Stem Sawfly Parasitoids

- Found in 50% of fields surveyed where WSS was present
- Parasitism levels: MT = 6.9%, NE = 7.7%, ND= 3.1%
- Positive linear regression between parasitism and WSS larvae infested stems

Sawfly Damaged Stems, Parasitism Occurrence, and Parasitism Success Across Five Site-Years With Sawfly and Parasitoid Occurrence

![Graph showing proportion of sawfly infested stems, parasitism occurrence, and parasitism success across different site-years and varieties.]

- **Varieties:** Steele ND, Reeder, Glenn, Choteau, AC Lillian, Vida, Mott
- **Proportion values:**
 - Sawfly Infested Stems: 0.83 a, 0.83 a, 0.80 a, 0.64 b, 0.62 b, 0.58 b, 0.42 c
 - Parasitism Occurrence: 0.44 a, 0.42 a, 0.44 a, 0.38 ab, 0.37 ab, 0.39 ab, 0.39 ab
 - Parasitism Success: 0.36 a, 0.32 b, 0.33 ab, 0.28 abc, 0.23 cd, 0.21 cd, 0.17 d

Note: Proportion values followed by the same letter are not significantly different.
Relationship Between Sawfly Occurrence and Parasitism Occurrence

\[y = 0.3572x + 0.0206 \]

\[R^2 = 0.6937 \]
Summary

• Solid-stemmed spring wheat varieties did not negatively impact parasitism of wheat stem sawfly by *Bracon* spp.

• Parasitism rates were positively correlated to wheat stem sawfly infested stems.
Insecticide Usage in Wheat Increased in North Dakota

- **2004**
 - 218.9 acres treated (2.6%)
 - 1.3% OP, 0.3% Pyrethroids, 1% other

- **2008**
 - 718.4 acres treated (7.9%)
 - 3.9% OP (Chlorpyrifos), 1.6% Pyrethroids, 2.4% others

- **2012**
 - 1586.8 acres treated (20.2%)
 - 6.6% OP (Chlorpyrifos), 4.9% Pyrethroids, 8.7% others

- **7x Increase in Insecticide use from 2004 to 2012**
 - Cereal aphids
 - Wheat midge
 - Grasshoppers
 - Wheat stem maggot
 - Wheat stem sawfly?

Insecticide Treatments and Timings

- Untreated check (naked seed)

- Foliar insecticide
 - **Warrior** ® (lambda-cyhalothrin), 22 g ai/ha (2.56 fl oz/A)
 - 4-6 leaf
 - Flag leaf

- Seed treatment (ST)
 - **Cruiser 5FS** ® (thiamethoxam), Syngenta Crop Protection
 - Low rate = 39 g ai/100 kg (1 fl oz/cwt)
 - High rate = 50 g ai/100 kg (1.33 fl oz/cwt)
 - Foliar insecticide on top of low rate ST at 4-6 leaf

- **Dividend Extreme** ® (difenoconazole + mefenoxam), Syngenta Crop Protection
 - 15 g ai/100 kg (2 fl oz/cwt)
Treatment Means for Wheat Stem Sawfly at Each Location in 2008-2009

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Wheat stem sawfly – % damaged stems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hettinger 2008</td>
</tr>
<tr>
<td>Untreated check</td>
<td>28.0 ± 6.3a</td>
</tr>
<tr>
<td>Low seed treatment</td>
<td>33.0 ± 8.5a</td>
</tr>
<tr>
<td>High seed treatment</td>
<td>25.0 ± 9.4a</td>
</tr>
<tr>
<td>4–6 leaf foliar treatment</td>
<td>27.0 ± 6.8a</td>
</tr>
<tr>
<td>Flag-leaf foliar treatment</td>
<td>22.0 ± 3.5a</td>
</tr>
<tr>
<td>Low seed treatment + 4–6 leaf foliar</td>
<td>31.0 ± 6.2a</td>
</tr>
</tbody>
</table>

Means within a column followed by the same letter are not significantly different (Tukey’s HSD, \(P < 0.05\)).

\(^1\)Data transformed using square root transformation prior to analysis. Actual means are presented in the table.

\(^2\)Data transformed using arcsine square root transformation prior to analysis. Actual means are presented in the table.
Treatments Means for Grain Yield

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2008 Grain yield (bu/acre)</th>
<th>2009 Grain yield (bu/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated check</td>
<td>25.9 ± 1.0a</td>
<td>42.3 ± 1.4a</td>
</tr>
<tr>
<td>Low seed treatment</td>
<td>26.9 ± 0.7a</td>
<td>42.3 ± 0.8a</td>
</tr>
<tr>
<td>High seed treatment</td>
<td>26.4 ± 1.3a</td>
<td>43.9 ± 2.3a</td>
</tr>
<tr>
<td>4–6 leaf foliar treatment</td>
<td>26.3 ± 1.5a</td>
<td>41.2 ± 2.1a</td>
</tr>
<tr>
<td>Flag-leaf foliar treatment</td>
<td>26.5 ± 1.3a</td>
<td>42.8 ± 2.5a</td>
</tr>
<tr>
<td>Low seed treatment + 4–6 leaf foliar treatment</td>
<td>26.3 ± 1.2a</td>
<td>43.2 ± 1.9a</td>
</tr>
</tbody>
</table>

Means within a column followed by the same letter are not significantly different (Tukey’s HSD, $P < 0.05$).
Wheat Stem Sawfly (WSS) Conclusions

• Different insecticide mode of actions, application methods and timings were **NOT** effective for WSS pest management

• Using crop growth stages for timing of insecticide applications were not always associated with WSS emergence and flights

• Why?
 – Adult WSS emergence period is long (≈1 month)
 – Adult WSS has a short life span and spends little time feeding or imbibing water, so insecticides would only kill by ‘contact’ at time of application (Wallace & McNeal 1966)
Wheat Stem Sawfly (WSS) Conclusions

• Why?
 – Eggs, larvae and pupae are protected inside stem (Criddle 1923)
 – Most foliar insecticide short residual of <7-10 days
 – Adult WSS prefer to oviposit in stems of spring wheat during stem elongation (60-70 days after planting) (Criddle 1923)
 • Seed treatment - Thiamethoxam residual = 30-40 days

• Extension outreach
 – Against unnecessary use of insecticides for WSS control

Odds good for drought extending into 2018

Adnan Akyuz, state climatologist and professor of climatological practice at NDSU
2015 Wheat Midge Larval Survey
North Dakota

Low Risk:
Burke, Divide, Renville, Sheridan, Ward

0 – 429 midge larvae / m²
Average = 25 midge larvae / m²
0 – 2,071 midge larvae / m²
Average = 42 midge larvae / m²
69% of samples were 0!

High Risk: Burke, Divide
2017 Wheat Midge Larval Survey
North Dakota

High Risk:
Only Rolette County

0 – 1,321 midge larvae / m²
Average = 93 midge larvae / m²
75% of samples were 0!
Highest Parasitism rate in Bottineau, Burke and McLean counties
Average = 4.8% parasitism rate
89% of samples had 0% parasitism
Egan Wheat Variety

- MSU Spring wheat breeder
 - Dr. Luther Talbert
- Semi-dwarf
- Resistance to strip rust
- High grain protein
- Available at Montana Seed Program for production and certification
 - Certified blend
 - Lake Seed, Inc. in Ronan, MT. (http://lakeseedinc.com)
RIB...Refuge In Bag

Non-resistance wheat
Data from MSU - NW Ag. Res. Center

Effect of Sm1 genetic resistance on OWBM, 2012.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>OWBM no./spk</th>
<th>Yield bu/A</th>
<th>Protein %</th>
<th>TWT lb/bu</th>
<th>FN sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>REEDER</td>
<td>46</td>
<td>34</td>
<td>16.7</td>
<td>59</td>
<td>180</td>
</tr>
<tr>
<td>HANK</td>
<td>102</td>
<td>15</td>
<td>16.1</td>
<td>52</td>
<td>193</td>
</tr>
<tr>
<td>EGAN</td>
<td>0</td>
<td>52</td>
<td>17.8</td>
<td>56</td>
<td>326</td>
</tr>
</tbody>
</table>

Source: Bob Stougaard, Montana State University Northwestern Agricultural Research Center
Wireworms

- Family Elateridae (click beetles)
- Several species in our area
- 3 to 5 year life cycle
- Adults and larvae overwinter in soil from 9” to 24” deep

S. Brown, Univ. GA, bugwood.org

M. Boetel, NDSU
Wireworms Life Cycle

- Become active when soil temperature reaches 50F
If more than one wireworm per trap, use soil insecticide (t-band or in furrow) or insecticide seed treatment!

No soil insecticides registered in wheat or barley

Insecticide treated seed

T-band system
• In-furrow foam system from FMC
• Cover more ground in less time with fewer water refills
• Saves water, fuel, labor and time
Treatment Means for Plant Population at Location 1, 2017

<table>
<thead>
<tr>
<th>Treatment</th>
<th>V2</th>
<th>V8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture 3RIVE 3D *</td>
<td>17250a</td>
<td>17250a</td>
</tr>
<tr>
<td>Cruiser 5FS @ 0.25</td>
<td>16640a</td>
<td>16444a</td>
</tr>
<tr>
<td>Capture LFR *</td>
<td>17337ab</td>
<td>17969ab</td>
</tr>
<tr>
<td>F4120-2 3RIVE 3D</td>
<td>15769a</td>
<td>15072ab</td>
</tr>
<tr>
<td>Mustang Maxx</td>
<td>17337ab</td>
<td>17337ab</td>
</tr>
<tr>
<td>Cruiser 5FS @ 0.375 *</td>
<td>14985ab</td>
<td>16204bc</td>
</tr>
<tr>
<td>Ethos XB *</td>
<td>11674b</td>
<td>13678c</td>
</tr>
<tr>
<td>Untreated Check</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seeding rate = 22,650 seeds per acre
* Not labeled in sunflowers
Wireworm Root Injury

Untreated check
Damaged by wireworm

Insecticide treated
Not damaged by wireworm

Rating 10
Rating 1

Photo by J. Knodel
Treatment Means for Wireworm Root Injury Rating
at Location 1, 2017

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture 3RIVE 3D</td>
<td>2.88c</td>
</tr>
<tr>
<td>Cruiser 5FS @ 0.25</td>
<td>3.00c</td>
</tr>
<tr>
<td>Mustang Maxx</td>
<td>3.08bc</td>
</tr>
<tr>
<td>Cruiser 5FS @ 0.375</td>
<td>3.52abc</td>
</tr>
<tr>
<td>F4120-2 3RIVE 3D</td>
<td>3.61abc</td>
</tr>
<tr>
<td>Ethos XB</td>
<td>3.86ab</td>
</tr>
<tr>
<td>Capture LFR</td>
<td>4.12a</td>
</tr>
<tr>
<td>Untreated Check</td>
<td>4.26a</td>
</tr>
</tbody>
</table>
Wireworm Management

• Thiamethoxam seed treatment and in-furrow pyrethroid applications provided acceptable protection
• Consider your crop rotation and know your field history
• Weed management
• Adjust seeding rate +10% to compensate for wireworm stand loss
Integrated Pest Management of the Wheat Midge in North Dakota

Distribution and History
Wheat stem sawfly, *Gyphus curtatus* (Hymenoptera: Cephidae), is widely distributed across North America, from California to the Mississippi River and from British Columbia to Manitoba. It has been reported from as far south as Kansas and New Mexico.

Many authorities consider it a native North American insect that adapted to wheat as European settlers began large-scale cultivation of cereal crops. Alternatively, some researchers have suggested that the wheat stem sawfly may have been introduced into North America inadvertently from northeastern Asia. Whatever its origins, wheat stem sawfly is the most serious insect pest of spring wheat and durum wheat in North Dakota.

Wheat stem sawfly first was reported as a pest of wheat in Saskatchewan and Manitoba in the late 1880s. In 1906, larvae were found attacking wheat in south-central North Dakota. By 1909, losses of up to 25 percent were reported around Minot and in the Red River Valley near Fargo.

The North Dakota infestation reached epidemic levels in 1916 but receded rapidly, and by the early 1920s, wheat stem sawfly was a pest of minor importance. During the 1940s, wheat stem sawfly again became a problem, with as much as 50 percent crop loss reported in northwestern North Dakota.

Sawfly populations have fluctuated across years and locations, although infestation levels and damage are greatest in western North Dakota. Wheat stem sawfly has increased steadily in the past 10 years, with the heaviest economic loss occurring in southwestern North Dakota.

In 2009, a survey of wheat producers statewide revealed that crop loss due to wheat stem sawfly ranged from 10 to 30 percent. However, some fields in southwestern North Dakota had severe lodging, and 100 percent of the spring wheat fields were lost due to wheat stem sawfly in 2008. Based on current production totals and crop values, North Dakota wheat producers lost between $25 million and $70 million in 2009.

Host Plants
Wheat midge is an oligophagous insect. Common wheat, *Triticum aestivum* L., is the primary host of the wheat midge throughout its modern distribution in Europe, Asia and North America. All 17 species in the genus *Triticum* are hosts for wheat midge. Other grass hosts include durum wheat (*Triticum durum* Desf.), occasionally rye (*Secale cereale* L.) and barley (*Hordeum vulgare* L.).

Wheat midge also will deposit eggs on some grassy weeds, such as quackgrass (*Elymus repens* L. Gould), slender meadow foxtail, (*Elymus elymoides* Hitch.) and other grains, but larval development on these grassy hosts is questionable.

Identification
Adults (Fig. 1)
The adult wheat midge is an orange-colored, fragile, very small insect approximately half the size of a mosquito. It is about 0.08 to 0.12 inch (2 to 3 millimeters) long with three pairs of long legs. It has a pair of wings, which are milky, transparent and fringed with fine hairs. The eyes are conspicuous and black.

![Adult wheat midge](https://www.ag.ndsu.edu/extensionentomology/field-crops-insect-pests/wheat)
NDSU Crop & Pest Report

• Free to subscribers with email but **MUST SIGN-UP ON WEBSITE!!!**
 –http://www.ag.ndsu.edu/cpr/