Moving Wheat Yields Upward: Key Research Findings from 2017

Joel Ransom, NDSU Extension Agronomist for Cereal Crops

Trends in yield in North Dakota for spring wheat

Steps to sustaining yield gains (and profitability) in wheat – recent research findings

- Careful selection of new varieties that offer improved yield, protein and other traits
 - Balancing yield and protein
 - Consider other traits
- Adjust seeding rate to the environment and variety used
- Carefully manage inputs
 - Fertilizer N
 - Fungicides
 - Growth regulators

Variety selection

- Foundational for yield improvement
- Many new varieties to choose from, meeting requirements of most environments
- Key steps to variety selectin
 - Yield and yield stability (> environments > ability to predict stability)
 - Balance yield with protein requirements and extrapolate based on results from your farm
 - Consider for other traits (i.e. disease and lodging resistances)

Relationship between yield and protein for varieties in state yield trials, Langdon and Williston, 2017.

Relationship between yield and protein content of spring wheat varieties, average of all U of M variety trials and average of higher yielding sties in ND, 2017.

Rank of varieties for yield and partial returns, average of lower yielding environments in ND variety trials, 2017

Cultivar	Yield	Protein	Cultivar	Yield	Protein	Return
TCG-Spitfire	46.4	15.6	TCG-Climax	41.1	17.3	303
WB9719	45.4	15.6	TCG-Spitfire	46.4	15.6	303
Shelly	45.0	15.5	Bolles	40.3	17.4	298
WB9653	44.2	15.9	WB9719	45.4	15.6	295
Prevail	43.7	15.2	WB9653	44.2	15.9	294
Prosper	43.3	15.2	Shelly	45.0	15.5	291
SY-Valda	42.7	15.9	SY Ingmar	41.9	16.5	291
WB-Mayville	42.7	15.7	SY-Soren	42.0	16.4	289
WB9590	42.6	16.1	WB9590	42.6	16.1	289
AFK-Astro	42.6	14.4	HRS 3616	42.0	16.3	288
LCS Trigger	42.5	15.4	Rollag	42.5	16.1	287
Rollag	42.5	16.1	Lang-MN	41.0	16.6	286
Elgin-ND	42.4	16.1	Elgin-ND	42.4	16.1	285
Barlow	42.3	16.0	SY-Valda	42.7	15.9	285
SY-Soren	42.0	16.4	HRS 3419	41.8	16.2	285

\$5.7 per bu and \$0.10 per fifth protein

VARIETY TRIAL RESULTS

NDSU > Variety Trial Results > Spring Wheat Variety Trial Tool > Search Results

test_weight	Search Results																	
protein_percent *bushels acre	Clear head-to-head comparison																	
-	This data is for the	e time p	eriod	last_3	_years													
*2017	Yield: Bushels per	r Acre																
2016 2015	The average number of bushels that can be expected from each acre of farmed land.																	
	Variety	1- yr (×)	2- yr (×)	3- yr (≍)	Prosper Ca	sselton	Dazey Ca (x) (x)	arrington	Park W River (x)	ishek Ca (×)	valierLa	ngdon Ca (×)	ando	McLean M County @ (×)	linot	Mohall ×	Hettinger [(x) (/	Dickinsor
	Bolles	60	.2 60.	0 60.3	3 74.8	97.8	83.5	60.0	85.5	37.1	76.2	74.1	50.3	18.6	48.6	68.7	32.8	34.4
	Elgin	63	7 65.	0 64.3	3 81.5	91.3	90.5	57.7	90.0	32.8	80.3	81.4	61.2	20.3	50.8	79.1	38.4	36.2
	Shelly	68	.0		93.6	101.1	96.7	66.3	86.9	42.3	88.3	81.4	62.8	19.9	47.1	82.4	43.9	39.3
	L Compare Select	.SD: ed								-			-				-	
>s://www.ag.ndsu.edu/varietys	electiontool/view/1	ast_3_y	ears/p	rotein	_percent/?zipcod	de=581038	<pre>cscope=NEA</pre>	AR¬_locat	ion=Crool	ston¬_l	ocation=Fer	gus+Falls&	not_loc	ation=Oklee8	kno	¶ <u>6</u> ☆ _	0 F	1

ABOUT NDSU ACADEMICS ADMISSION ATHLETICS

Accessibility

VARIETY TRIAL RESULTS

NDSU > Variety Trial Results > Spring Wheat Variety Trial Tool > Search Results

test_weight	Search Results															
*protein_percent bushels_acre	Clear head-to-head	lear head-to-head comparison														
	This data is for the ti	his data is for the time period last_3_years														
*2017	Protein: Percent of M	rotein: Percent of Mass														
2016 2015	The average percen	he average percentage of protein usable for baking. 12% or greater is required for export to many countries.														
	Variety	1- 2 yr y	2- 3- /r yr ×) (×)	ProsperCas	sselton D	azey a í	Carrington (x)	Park V River (x x)	Vishek Ca (x)	valier Lan (x)	gdon (ប្រ	Candol ຢູ່	McLean County x)	Minot (x) (Mohall He	ettinger Dickir (x)
	Bolles	17.7	16.8	16.3	16.6	16.9	16.1	14.9	37.1	15.3	15.0	16.3	16.7	17.3	15.5	15.5
	Elgin	16.0	15.2	14.9	14.9	14.9	14.8	14.3	32.8	13.8	13.5	14.3	15.5	15.8	14.0	13.8
	Shelly	16.1		14.0	13.7	13.6	14.5	13.4	42.3	13.2	13.0	14.3	15.5	15.2	13.1	13.0
	LSC Compare Selected):														

This extent is supported by NDCU 10081, and the Missourts Wheat Descents and Demotion Council

Accessibility

Know the strengths and weaknesses of your varieties and have a strategy for dealing with weakness (i.e. susceptibility to diseases, lodging potential, etc.)

Relationship between stripe rust rating and yield on winter wheat varieties, Langdon, 2017

What did we learn about variety selection?

- We can expect increased productivity from newer varieties (for yield and protein)
- Select a yield an protein profile that matches your farm and expected market value
- Use multi-locational data when possible
- Know the disease and lodging traits of potential varieties.
- Routinely add new varieties to your farm to capture the value from newer genetics

To sustain yield gains with new varieties, do we need higher seeding rates?

- Gains in yield potential in corn hybrids achieved only with higher populations
- Wheat is a smaller plant and regulates crowding or gaps with tillering
 - Does having fewer tillers increase yields by having more larger main stems
 - With fewer tillers can we get better coverage of FHB fungicides
- Several on station and on-farm seeding rate trials were conducted in 2017

Effect of seeding rate on yield of spring wheat, average of higher yielding environments in MN and ND, 2017

Effect of seeding rate on yield of spring wheat, average of lowering yielding locations in ND, 2017

Effect of seeding rate on yield of selected HRS wheat varieties, average of lower yielding locations, 2017. 40.0 ■ 0.75 ■ 1.25 ■ 1.75 ■ 2.25 35.0 30.0 25.0 Yield (bu/acre) 20.0 15.0 10.0 5.0 0.0 Anchor Linkert Prevail Shelly Surpass Valda Vit-Pro Wildfire Lang

Effect of seeding rate on percent emergence, average of locations, SY Valda and Linkert, 2017

Seeding Rate	Lin	kert	SY Valda								
	Average	Range	Average	Range							
	(Percent of viable seeds that emerged)										
1.0 million	100	69-116	82	61-112							
1.5 million	93	77-104	76	65-106							
2.0 million	89	77-102	79	58-117							

Effect of seeding rate on stems per acre and stems per plant, average of locations, Linkert and SY Valda.

Seeding Rate		Linkert			SY Valda	
Seeds per acre	Stems/ acre (million)	Stems per plant	Spike weight (gm)	Stems/ acre (million)	Stems per plant	Spike weight (gm)
1.0 million	2.73	2.8	0.80	3.12	3.9	0.84
1.5 million	2.81	2.0	0.78	3.44	3.1	0.74
2.0 million	2.84	1.6	0.77	3.50	2.3	0.73

Summary on seeding rates

- Increasing seeding rate beyond current recommendation (1.2-1.6 million seeds) does not provide for a consistent biological response regardless of variety
- Varietal response to seeding rate not consistent (need more data), but propensity to lodging and optimum seeding rate appear to be negatively related
- Tillering potential of a variety was not a major factor in determining the optimum seeding rate this year, but high tillering varieties had lower optimum seeding rates last year.
- Higher seeding rates increase the proportion of main stems, but also reduces spike size and tends to increase lodging.

Carefully mange inputs

- Nitrogen fertilizer, critical for yield and protein
- Can we gain efficiencies with inseason applications or with a slow release product like ESN?

Effect of N timing on yield of spring wheat, Hettinger, 2017.

Effect of N timing on protein of spring wheat, Hettinger, 2017.

Difference in yield of spring wheat when urea was applied inseason (30 lbs/acre) at two timings compared adding pre-plant.

Difference in protein % of spring wheat when urea was applied inseason (30 lbs/acre) at two timings compared adding pre-plant.

Release of N from ESN, Casselton, 2016

N management

- Response in yield to split applications of N variable
 - Depend on pre-plant rates and plan accordingly
- Increase in protein with boot stage application modest (bump from boot stage < that post anthesis
- ESN response depended on environment
- Useful for seasons and soils > N loss
- No data on impact splits and ESN on lodging

Growth regulators to reduce lodging

With higher yields & higher N rates, lodging can significantly reduce yield and increase time needed for harvest

Difference (treatment – no treatment) in yield and plant height with application of Palisade at Feekes 7 (two nodes visible), on-farm trials in northern MN, 2016 & 2017. 10 Difference in yield (bu/acre) 8 2016 2017 6 4 2 0 **Yield** -2 -4 2 2017 2016 Difference in height (inches) 0 Height: -2 -3 -4 -5

Small plot research, 2017, two locations in ND, two varieties and two fertilizer levels.

	Prosper						
	Ht (in)	Yield (bu/a)	Stem dia				
Control	28.2	61.5	2.58				
Palisade 14 oz, (1 st node)	27.5	61.8	2.65				
	Steele County						
Control	30	56.0	2.62				
Palisade 14 oz, (1 st node)	28	55.0	2.68				

Use of growth regulators

- Palisades has the potential for reducing height, thicken stems and reducing lodging
- Environment plays a significant role in the response of spring wheat to this treatment
- Given inconsistency, consider use of a more lodging resistant variety rather than PGR

Conclusions

- Excellent potential for continued increases in wheat productivity
- Research in 2017 demonstrated the value of careful variety selection (most especially when water not too limiting)
- Staying with current seeding rate recommendations
- Most N pre-plant carefully determine rate
 Splits and ESN for locations prone to losses
- Palisade can reduce plant ht, but variety selection and lower seeding rate may be more profitable way to managing lodging

Questions?

Effect of seeding rate on yield of selected HRS wheat varieties, average of higher yielding locations, 2017.

Rank of varieties for yield and partial returns, average of high yielding environments in ND variety trials, 2017

Cultivar	Yield	Protein	Cultivar	Yield	Protein	Return
LCS Trigger	97.4	12.5	Bolles	79.3	16.1	533.5
SY-Valda	92.9	13.7	WB9479	83.7	15.2	526.1
LCS Prime	90.2	13.2	Lang-MN	83.8	15.1	525.0
Shelly	88.8	13.9	LCS Rebel	86.7	14.6	518.8
WB9653	88.4	13.8	HRS 3530	88.1	14.3	516.6
HRS 3419	88.2	12.9	SY-Valda	92.9	13.7	514.2
HRS 3530	88.1	14.3	TCG-Climax	76.8	15.9	509.9
Faller	88.1	13.1	HRS 3616	79.5	15.3	503.5
Prosper	87.6	13.6	WB9590	82.8	14.7	501.8
HRS 3504	86.7	13.8	Shelly	88.8	13.9	500.3
LCS Rebel	86.7	14.6	Surpass	86.6	14.1	496.9
Surpass	86.6	14.1	WB9653	88.4	13.8	495.0
HRS 3100	85.7	14.0	Rollag	79.3	15.1	494.3
Prevail	85.5	13.9	LCS Breakaway	82.6	14.5	489.3
MS Chevelle	85.3	13.6	Elgin-ND	81.2	14.7	488.9
			\$5.70 per bu and	\$0.10	per fifth	protein