# Weed management at the landscape scale; A review of control actions for temperate grasslands

Dr. Talia Humphries



Accepted: 21 October 2020

DOI: 10.1002/ldr.3802

#### REVIEW ARTICLE

WILEY

# Weed management for landscape scale restoration of global temperate grasslands

Talia Humphries<sup>1</sup> | Singarayer K. Florentine<sup>1</sup> | Kim Dowling<sup>2</sup> | Chris Turville<sup>2</sup> | Steve Sinclair<sup>3</sup>

<sup>1</sup>Centre for Environmental Management, School of Science, Physiology and Sport, Federation University Australia, Mount Helen, Victoria, Australia

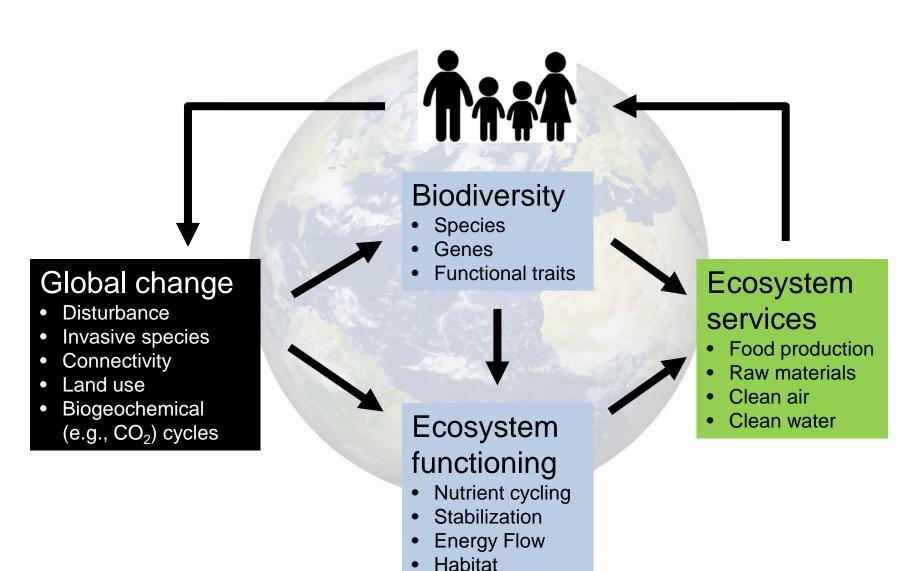
<sup>2</sup>Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria, Australia

<sup>3</sup>Department of Environment, Land, Water and Planning, Arthur Rylah Institute, Environment and Climate Change, Heidelberg, Victoria, Australia

#### Correspondence

Singarayer K. Florentine, Centre for Environmental Management, School of Science, Physiology and Sport, Federation University Australia, Mount Helen, Victoria, Australia.

Email: s.florentine@federation.edu.au

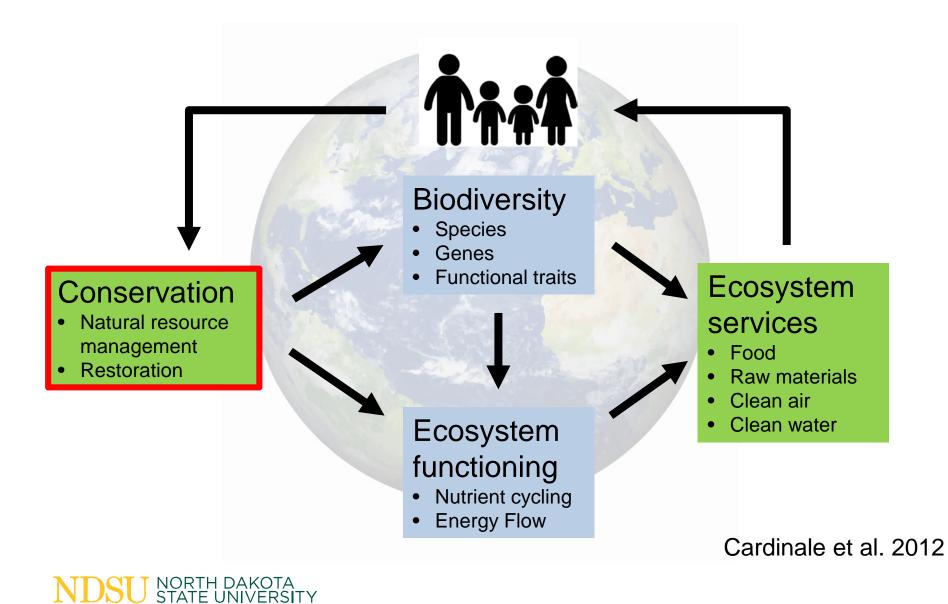

#### Abstract

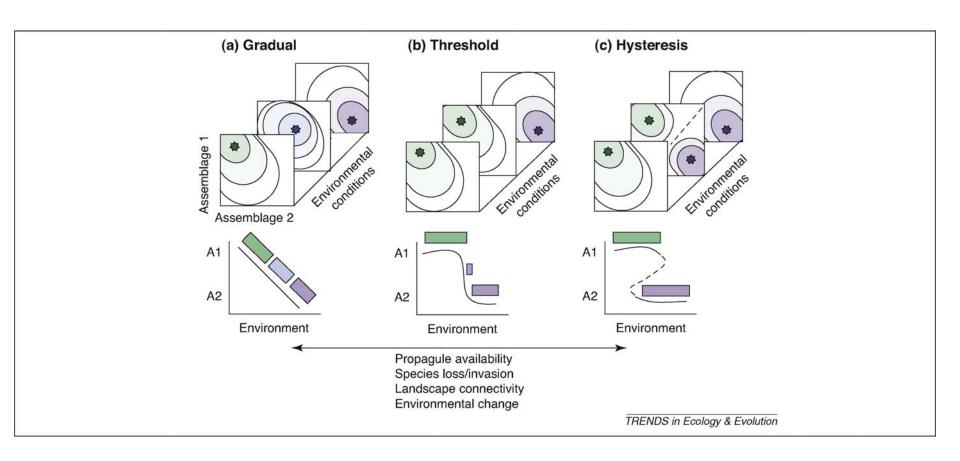
Globally, temperate grasslands have been significantly degraded as a result of urbanisation, grazing and agriculture. Weeds now dominate most of these ecosystems, resulting in the loss of ecosystem services, reduced carrying capacity for farmers, and reduction of habitat for native plants and animals. This paper reviews the literature relating to temperate grassland restoration efforts across the globe, noting which techniques and combinations have been used successfully to reduce weed dominance and promote native recruitment and establishment. This review concludes that, using a combination of four restoration techniques, provided the highest level of success, with the caveat that, ongoing weed management should be budgeted for in all projects. There is no single optimal method for restoration and weed control, with success depending on specific site conditions and the scope and aims of particular projects. However, any form of target plant transfer was observed to significantly enhance the restoration's success and reduce exotic plant biomass. There is clearly a need for an increase in long-term monitoring of restoration projects in order to make more confident assumptions.

KEYWORDS

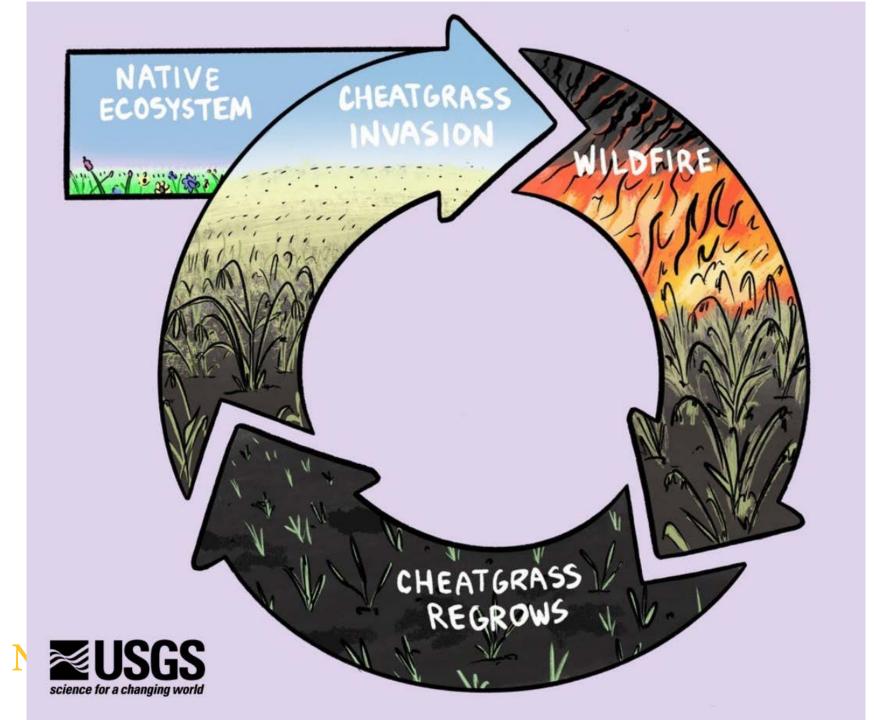
grassland degradation, pampas, prairie, restoration ecology, steppe, veldt







NDSU NORTH DAKOTA STATE UNIVERSITY Cardinale et al. 2012

| Country/region      | Grassland name    | Historic<br>(km²) | Current<br>(km²) | Total loss<br>(km²) | Reference                                                             |
|---------------------|-------------------|-------------------|------------------|---------------------|-----------------------------------------------------------------------|
| America             |                   |                   |                  |                     |                                                                       |
| North America       | Prairies          | 2,679,900         | 107,196          | 2,572,704           | Henwood, 2010                                                         |
| South America       | Pampas and Campos | 2,325,700         | 109,600          | 2,216,100           | Henwood, 2010                                                         |
| Africa              |                   |                   |                  |                     |                                                                       |
| South Africa        | Veld              | 360,590           | 234,383          | 126,207             | Henwood, 2010; Cadman, deVilliers, Lechmere-Oertel, & McCulloch, 2013 |
| Eurasia             |                   |                   |                  |                     |                                                                       |
| China               | Steppe            | 3,386,000         | 1,794,580        | 1,591,420           | Henwood, 2010; Ye & Feng, 2011                                        |
| Mongolia            | Steppe            | 822,760           | 740,484          | 82,276              | Henwood, 2010                                                         |
| Eastern Europe      | Steppe            | 440,000           | 43,120           | 296,880             | Henwood, 2010; Fuchs, Herold, Verburg, & Cleavers, 2013               |
| Russia              | Steppe            | 600,000           | 50,000           | 550,000             | Henwood, 2010; Ponomarenko, 2019                                      |
| Oceania             |                   |                   |                  |                     |                                                                       |
| Southeast Australia | Tussock grassland | 60,000            | 12,000           | 48,000              | Henwood, 2010                                                         |
| New Zealand         | Tussock grassland | 83,700            | 23,300           | 60,400              | Mark, 2007; Henwood, 2010                                             |


*Note*: The approximate current cover is based on most recently published works but it is postulated that this coverage is likely to have diminished below these levels in most cases given lack of restoration action.













#### Methods

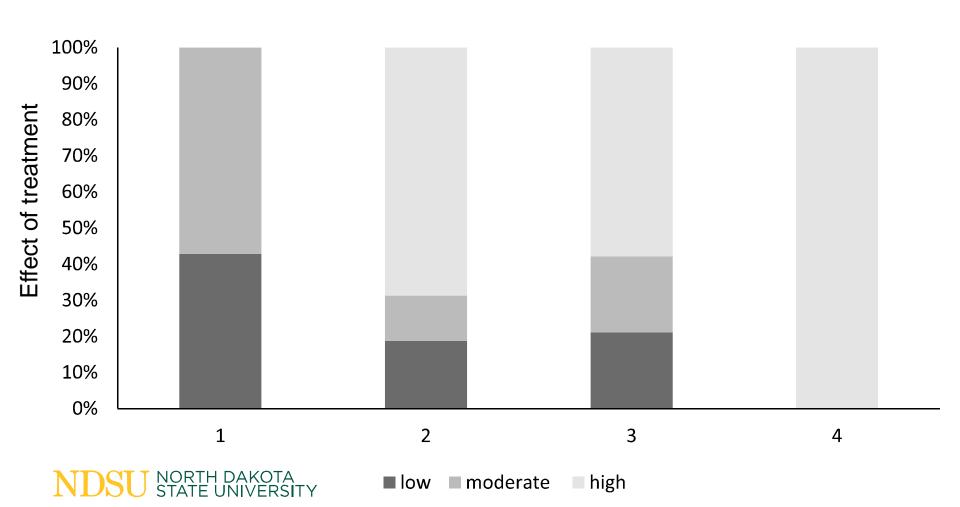
- Search requirements were limited to the English language and selected literature must be:
- (a) field-based ecological restoration
- (b) study conducted within a temperate grassland
- (c) manipulation and measurement of the standing vegetation in the attempt to facilitate target species.
- Searched terms included "Ecological Restoration" plus one of; temperate grassland(s); prairie(s); tussock grassland(s); veldt; veld; steppe(s); pampa(s); weeds; invasive plants; exotic plants.
- Effect describes as:
- High significant improvements in weed control and target species establishment.
- Moderate significant improvements in either target species establishment or weed control.
- Low no changes observed to either weed control or target species establishment.



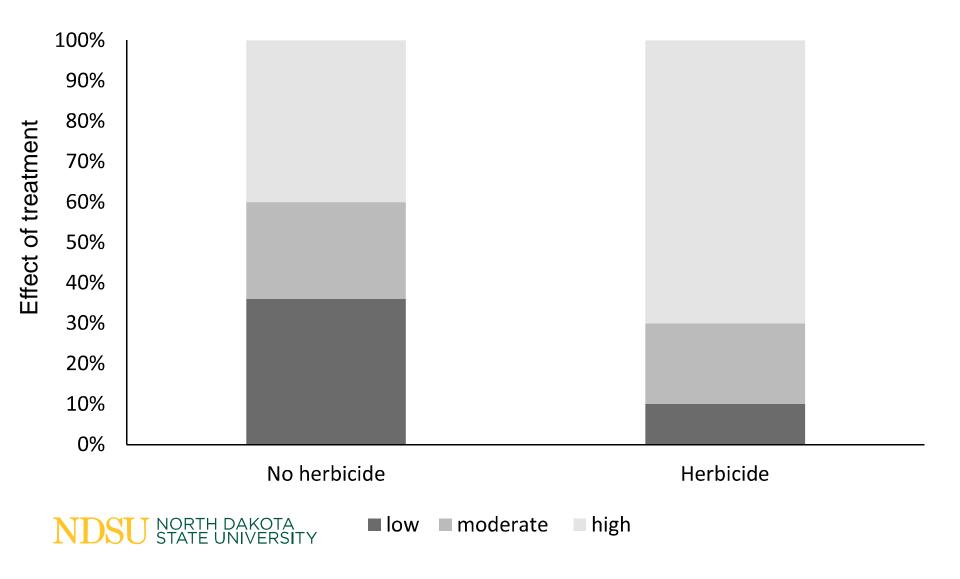
|       | Tikla, Heikkilä, Heiskanen, & Finland Applied Vegetation 3 Fragmentation, agriculture, invasive weeds Kuitunen, 2001 Science | Sengel et al., 2016 Austria Bosic and Applied 3 Agriculture, altered soil nutrients / Ecology | Rupercht et al., 2016 Romania Applied Vegetation 9 Fragmentation, agriculture / Science | Radloff, Ladislav, & South Africa Applied Vegetution 6 Altered file regimes, agriculture, loss of Snyman, 2014 Science native seedbank | Page & Bork, 2005 United States Restoration Ecology 1 Altered fire regimes, agriculture, local / extinction of keystone grazers (dephant and rhino) | O'Dwyer & Attiwil, 2000 Australia Restoration Ecology 1 Grazing, bush encroachment, altered fire regimes | Musil et al., 2005 South Africa South African Journal of 2 Fragmentation, invasive weeds / / / Science | McManamen, Nelson, & United States Restoration Ecology 1 Grazing, invasive weeds / / / Wagner, 2018 | Marushia & Allen, 2011 United States Restoration Ecology 2 Invasive weeds / / | Klaus et al., 2018 Germany Restoration Ecology 9 Invasive weeds / | Johnson, Catford, Drissoll, & Australia Applied Vegetation 1 Invasive weeds, loss of target species from / Gibbons, 2018 Science seedbank | John, Dullau, Bassch, & Germany Ecological Engineering 1 Invasive weeds, altered fire regimes Tischew, 2016 | Jaunatre, Buisson, & Dutoit, 2014 France Applied Vegetotion 3 Agriculture, fragmentation, loss of target / Science species seedbank | Foster et al., 2007 United States Restoration Ecology 6 Grazing, invasive weeds | Cuevas & Zalba, 2010 South Restoration Ecology 4 Fragmentation, grazing America | Brown et al., 2017 Australia The Rangeland Journal 1 Shrub and woody weed encroachment 🗸 🏑 | Blumenthal, Jordan, & United States Ecological Applications 2 Agriculture, invasive weeds Russelle, 2003 | Baasch, Engst, Schmiede, May, & Germany Ecological Engineering 6 Grazing Tischew, 2016 | Averett et al., 2004 United States Restoration Ecology 1 Agriculture, fragmentation, loss of target / / species from seedbank | Ansley & Castellano, 2006 United States Restoration Ecology 8 Agriculture, invasive weeds / / | Author Location Journal (years) Degrading pressures H F PSA |
|-------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|       | S                                                                                                                            |                                                                                               | _                                                                                       |                                                                                                                                        |                                                                                                                                                     |                                                                                                          |                                                                                                        | •                                                                                                   | •                                                                             |                                                                   |                                                                                                                                           |                                                                                                             |                                                                                                                                     |                                                                                 |                                                                                 | ~                                                                                          |                                                                                                          |                                                                                        | •                                                                                                                             |                                                                                               | H F                                                         |
|       |                                                                                                                              | •                                                                                             |                                                                                         |                                                                                                                                        |                                                                                                                                                     |                                                                                                          |                                                                                                        | _                                                                                                   | _                                                                             | _                                                                 |                                                                                                                                           | •                                                                                                           | •                                                                                                                                   |                                                                                 |                                                                                 | ′ ′                                                                                        | _                                                                                                        |                                                                                        | •                                                                                                                             |                                                                                               | PSA CSA                                                     |
|       | •                                                                                                                            |                                                                                               | ~                                                                                       |                                                                                                                                        |                                                                                                                                                     | ~                                                                                                        | ~                                                                                                      | _                                                                                                   | •                                                                             |                                                                   | ~                                                                                                                                         | ~                                                                                                           |                                                                                                                                     | •                                                                               | ~                                                                               |                                                                                            |                                                                                                          | _                                                                                      |                                                                                                                               |                                                                                               | 累                                                           |
|       | ~                                                                                                                            | _                                                                                             |                                                                                         |                                                                                                                                        | •                                                                                                                                                   | _                                                                                                        |                                                                                                        |                                                                                                     | •                                                                             | _                                                                 | ~                                                                                                                                         |                                                                                                             | ~                                                                                                                                   | _                                                                               |                                                                                 | •                                                                                          | •                                                                                                        |                                                                                        | •                                                                                                                             |                                                                                               | GM ST                                                       |
| Cont. | Mode                                                                                                                         | 호<br>ontinued)                                                                                | Moder                                                                                   | Moder                                                                                                                                  | 냚                                                                                                                                                   | Moder                                                                                                    | High                                                                                                   | Moder                                                                                               | High                                                                          | Low                                                               | Moder                                                                                                                                     | High                                                                                                        | Low                                                                                                                                 | Moder                                                                           | Moder                                                                           | 냚                                                                                          | Low                                                                                                      | Moder                                                                                  | High                                                                                                                          | Moder                                                                                         | _ Effect                                                    |

| Author                                        | Location      | Journal                             | Study length<br>(years) | Degrading pressures                                                                                         |   | Treatments |     |     |    |    |    |        |  |
|-----------------------------------------------|---------------|-------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------|---|------------|-----|-----|----|----|----|--------|--|
| radio                                         | Eccution      | Journal                             | (years)                 | Deglacing pressures                                                                                         | Н | F          | PSA | CSA | BR | GM | ST | Effect |  |
| Tognetti & Chaneton, 2012                     | Argentina     | Biological Invasions                | 2                       | Invasive weeds, native seedbank depletion,<br>local extinction of large herbivores,<br>altered fire regimes |   |            |     |     | 1  |    | 1  | High   |  |
| van Dyke, Van Kley, Page, & Van<br>Beek, 2004 | United States | Restoration Ecology                 | 14                      | Fragmentation, agriculture, invasive weeds, shrub encroachment, altered fire regimes                        |   | 1          |     |     | 1  |    |    | Low    |  |
| Waller, Anderson, &<br>Allsopp, 2016          | South Africa  | South African Journal of<br>Science | 2                       | Invasive weeds                                                                                              | 1 | 1          | 1   |     |    | 1  | 1  | High   |  |
| Wilson & Pärtel, 2003                         | United States | Restoration Ecology                 | 7                       | Invasive weeds, agriculture                                                                                 | 1 |            |     |     | 1  |    | 1  | High   |  |
| Wohlwend, Schutzenhofer, &<br>Knight, 2019    | United States | Restoration Ecology                 | 7                       | Grazing, agriculture                                                                                        | 1 |            | 1   | 1   | 1  |    | 1  | High   |  |
| Zhou, Wilson, Cobb, Yang, &<br>Zhang, 2019    | China         | Land Degradation and<br>Development | 2                       | Agriculture, invasive weeds                                                                                 |   |            |     | 1   | 1  |    | 1  | High   |  |

Note: The ✓ is used to show what treatments were used in each of the reviewed papers


### Top degrading pressures:

- 1) Exotic plants
- 2) Agriculture
- Altered grazing/fire regimes


Most frequently used control actions for grassland restoration were:

- 1) seeding
- 2) mowing/clipping
- physical soil manipulation/herbicide

# Effect of integrating treatments



#### Effect of herbicide



#### Effect of fire



# Management strategy recommendation

- 1. Reduce/remove weed biomass
- 2. If necessary, manipulate the soil
- 3. Incorporate revegetation of native propagules
- 4. Implement site-specific grazing management
- 5. Ecological corridors



#### Dependent factors

#### Specific actions are dependent on:

- 1. Weed biology
- 2. Site history
  - soil conditions
  - seed mixture
  - natural disturbance
- 3. Reintroducing grazing will be determined by the rate of recovery



#### NORTH DAKOTA STATE UNIVERSITY

#### Questions

