Bringing Land in the Conservation Reserve Program Back Into Crop Production or Grazing

The U.S. Department of Agriculture (USDA) established the Conservation Reserve Program (CRP) to promote the long-term retirement of environmentally sensitive cropland from production by paying farmers to establish a permanent, long-term vegetative cover.

In July 2015, 1,521,447 acres were enrolled in CRP in North Dakota. Some contracts covering 326,277 acres will expire in 2017 and 379,904 acres will expire in 2022. Contracts covering more than 100,000 acres will expire each year during 2020, 2021 and 2023.

When CRP land being brought into crop production is classified as highly erodible, it must be managed under an approved conservation program if the operator wants to remain eligible for most USDA benefit programs.

General Policy
Participants on certain CRP contracts may obtain permission to destroy vegetative cover during the final year of the contract. The purpose of the cover destruction is to prepare a seedbed for the next year’s crop.

Filing a Request
CRP participants who want to prepare a seedbed during the final year of the CRP contract period must file a request on Form CRP-1G before cover destruction begins.

The purpose of this publication is to provide suggestions and recommendations on how to successfully crop or graze land that was previously in CRP.

Because the objectives and resources of farmers vary considerably, this publication focuses more on guiding principles than on listing specific recommendations.
Eligible Acreage
Cropland enrolled in certain practices is ineligible for early land preparation. Those practices include:

- CP5A........... Field Windbreak
- CP8A........... Grass Waterways
- CP9............. Shallow Water Areas for Wildlife
- CP16A......... Shelterbelt Establishment
- CP21.......... Filter Strips
- CP22.......... Riparian Buffer / Riparian Forest
- CP23.......... Wetland Restoration
- CP27.......... Farmable Wetlands
- CP28.......... Farmable Wetland Buffer

In addition to the practices listed above, the following cropland is ineligible:

- Land within 120 feet of a stream or permanent water body
- Wetlands
- Buffer areas adjacent to wetlands
- Environmental Protection Agency-designated wellhead protection areas

Land Preparation
Participants with an approved request may destroy the vegetative cover mechanically or chemically beginning Aug. 2 (early land preparation has to be done after the primary nesting season) of the final contract year to prepare for seeding a crop. A prorated payment reduction will be assessed for this activity from the date of destruction through Sept. 30.

Haying or grazing the vegetative cover is allowed. A 25 percent payment reduction will apply if commercial use is made of the harvested forage.

A reduction will not apply if the harvested forage is donated to a third party or if the harvested forage is destroyed. Farm Service Agency personnel must witness the destruction of the forage.

Continuous CRP
Participants may re-enroll portions of the expiring acreage under a continuous CRP sign-up practice. Wetlands and adjacent buffer areas, filter strips adjacent to streams and saline areas may be re-enrolled.

What factors should I consider when selecting a crop to follow CRP?
In addition to factors that are more economic in nature, such as crop price and equipment requirements, the following agronomic factors also should be considered when deciding on which crop would be the best fit after CRP. Most data would suggest that yields will be lower for all crops following CRP than is common for cropped lands grown in recommended rotations. This “yield drag” is associated with a number of factors, such as soil moisture levels, high carbon-nitrogen ratios that tie up nitrogen, pests and reduced soil temperatures associated with high levels of residues.

Residue
Depending on the level of tillage used and the type of equipment available for planting, the heavy residues following CRP can be a challenge in establishing an adequate crop stand. Because most land following CRP is prone to erosion, retaining some residue is considered highly desirable.

Of the crops likely to be considered for establishment after CRP, corn is probably the most sensitive to cool soil temperatures that are associated with excessive crop residues because it normally is planted in early May. Although corn generally will establish best after some level of tillage to reduce the amount of residue shading the ground, tillage can reduce the amount of moisture in the soil, which may be needed for optimal crop growth in the drier regions of the state.

Soybean, which is planted later in the spring, and cool-season crops, such as wheat and barley, are better able to handle the cooler soils when heavy residues are retained on the soil surface. Small-seeded crops may be difficult to establish under heavy residue situations if little or limited tillage is performed.

Haying the CRP ground can be a cost-effective way to remove excessive vegetation without destroying surface residues needed for erosion control. It also can encourage plant regrowth prior to chemical application, thus improving the effectiveness of the burn-down chemical.
However, haying is not permitted prior to the expiration of the CRP contract without a managed haying and grazing plan filed with the USDA. With a managed haying and grazing plan, haying or grazing is permitted one out of three years and only after Aug. 1. Therefore, it must not have been hayed or grazed the previous two years. Haying or grazing also will result in a 25 percent reduction in the annual rental payment.

Weed control
Perennial CRP grasses, quackgrass, broadleaf weeds and perennial woody plants must be killed for a successful transition from CRP to crop production. The best weed control is achieved when glyphosate is applied to actively growing plants with at least 6 inches of new growth in the fall and the spring prior to planting. Control from fall applications of glyphosate will be reduced greatly if the application is made under dry conditions when plants are hardened off and dormant from dry and hot weather.

Wheatgrasses and quackgrass can be killed by spring glyphosate at 0.75 pound of acid equivalent per acre (lb ae/A). Bromegrass is the most difficult CRP grass to control and requires fall and spring application of glyphosate at 1.5 lb ae/A.

Spring-planted grass crops, such as wheat and barley, will not compete with uncontrolled CRP grass stands, and lack of effective in-crop chemical control does not allow for control of volunteer grass. If small grains are planted no-till, farmers usually have insufficient time to apply a glyphosate as a burn-down application in the spring before seeding.

Soybean and sunflower offer the longest period of time in the spring for an effective burn-down because of their later planting dates. These broadleaf crops also allow for postemergent grass herbicides to control volunteer CRP grasses. The later planting date of sunflower may allow for two spring preplant applications of herbicides. Nevertheless, competition from volunteer CRP plants may not make sunflowers the best crop for breaking out CRP.

Glyphosate applied in Roundup Ready corn, soybean, canola and sugar beet will control in-season infestations of most all grass and broadleaf plants, regardless of how effective the weed control was in the fall and early spring. Combining tillage with herbicides improves control of perennial species. Broadleaf control from glyphosate often is improved with 2,4-D, but some reduction in grass control may occur.

Soil water
In the fall, soils in CRP ground generally have very low levels of stored moisture because the established plants have been extracting water actively from the soil during the growing season. Therefore, if rainfall has been minimal in the fall before crop establishment, probably very little stored soil water is available down to depths for use by crops.

In the drier regions of the state where water likely will be a major limiting factor to crop production, avoid using crops such as corn and sunflower that have a high water requirement. Pea and barley are among the least water demanding, with wheat and soybean being intermediate in their water requirements.

How can CRP lands be converted to land for grazing most effectively?
Conservation Reserve Program lands can be used effectively as grazing lands. However, several issues must be addressed before grazing can be initiated. These issues are similar for various types and classes of livestock (for example, cattle, bison, sheep or alternative species).

Water
Water and fencing are probably the two biggest limitations for using CRP lands for grazing by any livestock species. Adequate water must be supplied to graze these lands. This can be supplied through sloughs, dugouts, wells or pipelines. In some cases, the cost of water development can be quite high.

Fencing
Many CRP lands are not fenced or fences are in a state of disrepair. Fencing options range from the use of simple single- or double-strand electric fences to four- or five-wire barbed fences.

A number of factors will influence the type of fencing you choose for these lands. Factors to consider include the size of the tract of land, species to be grazed, the season of use and whether the tract is owned or leased. In some cases, cost-share dollars may be available for a portion of the cost of perimeter fencing. In addition, temporary fencing and water sources may provide a short-term solution for residue removal via grazing.
Previous Use
Lands that have had a history of haying or grazing likely will have less litter and standing dead material. This will increase the nutritive value of the grazed or hayed forage and improve livestock performance. Be sure to match nutrient requirements of livestock with feed supplied. In some cases, the nutrient content of CRP forages is quite low and supplemental protein and/or energy sources must be provided.

Renovating Pastures
Grasses in the CRP may be low in vigor due to the lack of nutrient cycling, low tiller development and excess litter buildup. Applying some nitrogen (N) at a rate of 40 to 60 lb/A of actual N will improve yield and quality.

Mowing, once permitted, also can improve vigor and pasture quality. Generally, cool-season grasses will predominate in land that has been in CRP for any period of time. Producers may need to provide for additional pastures or other sources of feed to augment these cool-season type pastures in late summer and early fall. The addition of legume species (for example, alfalfa) would increase the nutritive quality of CRP pasture mixes.

What are the options for managing heavy residues following CRP?
Surface residue has value because it contains nutrients that eventually can be available to a crop and carbon for soil organic matter, catches snow that might otherwise blow off the field, moderates temperatures, helps reduce erosion and improves the infiltration rate of rainfall. Too much surface residue, however, makes planting difficult and keeps the soil cool in the spring. Residue management should focus on the balance of retaining sufficient cover to optimize the beneficial effects with the detrimental effects of too much residue.

On CRP fields with plant growth taller than 12 inches, cutting and removing plant materials may be necessary prior to planting or other tillage operations. Haying CRP prior to any management is one way to reduce residues and is recommended for no-till systems.

Although fire can be an effective means of removing excessive residues, it is discouraged because it will cause the loss of N and some sulfur, as well as the organic carbon that can be beneficial to soil tilth and biological health. Furthermore, fire bans frequently make burning residues unfeasible.

 Volunteer tree growth larger than 1 inch in diameter also should be removed prior to planting or tillage. Smaller trees can be mowed, while larger trees that later will interfere with tillage or harvesting equipment may require cutting with a dozer blade.

Some form of tillage with or without haying can reduce surface residues significantly. For crops that are small-seeded and difficult to establish in rough seedbeds, and for crops such as corn that benefit from warm soils in the spring, some form of tillage is probably beneficial.

Moldboard plowing is the most effective method of incorporating residues, but it leaves the soil completely exposed to wind and water erosion and, therefore, is not recommended. Disking with a heavy discs, such as a Wishek, is probably the best way to till the land to ensure that some level of residue is retained to allow for snow catch and reduce losses from erosion.

Although fall tillage is preferred to spring tillage, some years the soil may be too dry in the fall to till effectively, necessitating early spring tillage or planting no-till. Aerators also can be effective in preparing CRP fields for crop production or grazing because they cut plant material into short enough lengths, allowing no-till planters to function effectively. The aerator rolle sufficiently smooths the soil surface to allow effective tractor and machinery operation.

Some aerator rollers have blades mounted on the rollers to cut the standing or matted residue into 10-inch sections, which allows for direct seeding with single-disc, no-till planters; other models use 1-inch tubes or rollers to penetrate the soil. Aerator rollers level mounds created in CRP fields by rodents and other animals or other uneven field conditions. (See photo.)

Double-chisel plowing followed by disk or harrowing will prepare CRP fields effectively for seeders with hoe or disc openers. A single double-disc operation also is effective to smooth uneven field conditions and would be the only operation necessary to precede planting with no-till single-disc planters.

When using row planters for corn or soybean, using row cleaners may be necessary in heavy-residue areas.

Strip tillage may be a viable option for fields when row crops will be planted subsequently. Strip tillage generally is performed in the fall and can reduce residues effectively in the tilled strip, thus improving early season stand establishment and vigor while leaving substantial residue between the rows to aid in soil conservations and rainfall infiltration.
What pests and weeds are likely to be problematic after CRP?

Wireworms and white grubs are the most common economic insect pests in cropland that was in CRP. These soil insects feed on the roots of crops and tunnel into seedlings, causing significant stand loss.

For wireworms, solar bait traps can be used three weeks prior to planting to detect populations that may cause economic loses. If more than one wireworm per trap is present, then a soil insecticide or insecticide seed treatment is warranted.

For white grubs, look for grubs in the upper 6 inches of soil during the late summer or fall before a freeze. The current economic threshold for white grubs in North Dakota is one larva per square foot.

Skunks and moles often cause secondary damage to grub-infested crops by digging for grubs just below the soil surface. The presence of mole tunnels or skunk diggings are symptoms of a white grub problem in the field.

Other occasional insect pests of land coming out of CRP include cutworms, seed corn maggots and grasshoppers.

Cutworms should be scouted routinely when crops are in the seedling to the early vegetative stages for signs of cut or wilted plants. Follow the pest management and economic threshold recommendations in the NDSU Extension Service’s “Field Crop Insect Management Guide” (http://tinyurl.com/NDSUInsectGuide).

Adult seed corn maggots are attracted to fields with green manure or decaying organic matter for egg laying. Maggots feed on the germinating seeds and seedlings. When CRP cover is burned down in the spring and cultivated, the freshly decaying organic matter is attractive to adult flies and more likely to cause a stand loss problem. In contrast, CRP cover that is burned down chemically in the fall is less likely to have problems from seed corn maggots.

Grasshoppers can be a pest problem when populations exceed eight or 14 adults or 30 to 45 nymphs per square yard in the field and weather conditions are favorable (hot, dry) for grasshopper development.

If grasshoppers are present at high densities early in the spring, the immature (nymph) stages are easier to control than adults, and nymphs usually still are within hatching sites (CRP, roadsides, fence rows, etc.). Treating immature grasshoppers early has some advantages: (1) fewer acres will have to be treated and a lower rate of insecticide is necessary for effective control; (2) grasshoppers are killed before they have had the opportunity to cause significant crop loss; (3) smaller grasshoppers are more susceptible to pesticides than larger grasshoppers; and (4) early treatment before grasshoppers reach maturity prevents egg deposition, which may help reduce the potential grasshopper threat for the following crop year.

Broad-spectrum insecticides have been approved for control of these insect pests. Refer to the NDSU Extension Service’s most recent “Field Crop Insect Management Guide” (see link above for Web access) for a current list of approved insecticides by crop in North Dakota.

Banding insecticides are easier to apply with corn-planting equipment than with a drill when planting soybean or small grains. Commercially applied seed treatments, such as Gaucho, Cruiser or Poncho, are effective in controlling wireworms and seed corn maggots but provide only suppression of white grubs and cutworms. The high rate of seed treatment is recommended when insect pressure is high.
Weeds that will be most problematic are perennial grasses and broadleaf perennial weeds, such as Canada thistle.

Cultivation alone will not give satisfactory control of CRP vegetation. A herbicide treatment applied several weeks prior to tillage will reduce the amount of vegetation. Fall-applied herbicides are needed if conventional tillage methods will be used to prepare a seedbed the following year. Fall application allows the breakdown of foliage and root plant biomass.

Application needs to take place on actively growing green plant tissue. Prior removal of excess plant biomass will stimulate green tissue development. Cultivators and some tillage equipment tend to plug during spring tillage when a fall-applied herbicide is not used.

Mechanical and cultural vegetation control methods should be followed by a vigorous weed control program the following spring.

CRP grasses and forbs may become a problem in the planted crop. Seeding a broadleaf crop after CRP breakup will provide chemical control options not available in grass crops. For herbicides to be used in killing weeds in CRP or the following crops, see the “North Dakota Weed Control Guide” (http://tinyurl.com/NDSUWeedGuide).

NDSU research found that glyphosate at 0.75 lb ae/A applied in the fall or spring gave less than 70 percent alfalfa and smooth brome grass control. Glyphosate at 1.5 lb ae/A applied in the fall gave 98 percent early season alfalfa and smooth brome control, but regrowth occurred by midsummer.

A fall application followed by a spring application of glyphosate each at 0.75 lb ae/A or a spring application of glyphosate at 1.5 lb ae/A was required for greater than 90 percent control of smooth brome.

A spring application of glyphosate at 1.5 lb ae/A also provided more than 90 percent alfalfa and smooth brome control. Tillage improved control of perennial regrowth (15 to 20 percent increase) from fall applications of glyphosate, but it did not improve control from spring applications.

What soil fertility management practices need special attention?

Establish a soil fertility program that starts with thorough soil testing. Nitrogen almost certainly will be low and, with the high levels of residue with a high carbon-to-nitrogen ratio, likely will be more slowly released than if following a crop unless additional N is added. Consider adding 20 to 25 percent more N than to normal cropland.

Phosphorus (P) and potassium (K) levels are not likely to be reduced substantially from that before the land was placed in CRP because little has been removed by harvesting a crop, but the nutrients may not be readily available to the crop planted after breakup of CRP.

However, if the CRP has been hayed during drought years, significant P and K removal may have resulted from forage removal. Additional banded P will be needed if soils test low to medium for cereal crops, especially corn, which is a poor scavenger of P.

Applying sufficient N for a crop requiring N can be a challenge when no-till is used because the needed rate will be high and surface applications are not recommended due to the high risk of loss through volatilization.

If a legume crop, such as field pea or soybean, is grown, a seed inoculant with a crop-specific Rhizobia bacteria is needed. Granular inoculants have been most consistent in providing successful inoculation for growers of first-year legumes, but if the grower is experienced in the proper seed treatment with liquid or dry peat formulations, any properly inoculated seed will perform adequately.

What are the ways to deal with gopher mounds?

Gopher mounds and holes and mounds from other burrowing mammals can be a significant constraint to the planting process and can interfere with harvesting crops that require the header be placed close to the ground. Scout the land to determine if mounds will be an important issue.

Tillage can flatten mounds and help level the soil surface, and it certainly is one of the benefits to consider when deciding whether to use tillage. Special equipment that flattens mounds with little or no tillage (such as the roller pictured above) has been developed for no-till systems and may be available on a custom basis in parts of the state.

If rocks are a problem, fields can be rolled with water-filled rollers after seeding certain crops.

Can CRP land be converted to organic production?

Producers who have not used any synthetic fertilizer or herbicides for at least three years may consider converting CRP acres into organic crop production or for grazing in organic animal production. The acres need to be certified to obtain organic status.

This process is something that takes time, and producers should plan to start a minimum of one year in advance of planned use to ensure that proper certification requirements can
be met. Producers need to work with organic certifying agencies well in advance of the expiration of the contract to ensure that all of the requirements for certification can be met. For additional information on organic certification, contact a local organic certification organization.

For organic crop production systems, grasses and other weedy plants that were established during CRP must be dead before planting a crop. Plowing in the fall, preferably with a moldboard plow, will be essential.

Although planting a cover crop such as rye on fall-plowed land is recommended to reduce soil erosion losses, this may not be feasible in most of the state because of cold temperatures after Oct. 1, when plowing is permitted. Additional tillage in the spring after the first flush of weeds has emerged will reduce weed pressure further and help control perennial weeds.

What are the costs of returning CRP to annual crop production?

Returning CRP to annual production will involve some combination of tillage and chemical application. Numerous combinations will work.

Table 1 includes costs of performing several primary and secondary tillage operations, as well as ground and aerial spraying. The custom charges are based on the latest NDSU Extension Service custom farm work survey completed in 2013. Total costs and use-related costs are from the “Machinery Cost Estimates” publication from University of Minnesota Extension.

Many owners of CRP land are retired and will need to hire someone to do the work. Custom rates represent a good estimate of cost to use. Custom rates include the machine, power unit, fuel, repairs and labor.

If you are hiring machine work, custom rate charges are the appropriate cost. If you own the needed equipment and do the work yourself, total cost or use-related cost is appropriate.

Total cost includes all costs, including overhead. Use-related costs are those incurred only when a machine is used. These include fuel, lubrication, use-related repairs, labor and depreciation. Use-related costs are used more commonly.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyphosate – 2 quarts</td>
<td>$9.65</td>
</tr>
<tr>
<td>2,4-D</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Table 2 includes estimated chemical costs. Chemical costs will vary depending on the choice of product, rate applied and changing market prices.

Table 3 is an example budget of costs to convert CRP land into ready-to-plant acreage. This example includes one ground spraying operation with a tank mix of glyphosate and 2,4-D, two heavy disking operations and one pass with a field cultivator, all based on custom rate charges. Also included is a charge for soil testing.

<table>
<thead>
<tr>
<th>Custom Charge</th>
<th>Total Cost</th>
<th>Use-related Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moldboard plow</td>
<td>$11.88</td>
<td>$23.58</td>
</tr>
<tr>
<td>Heavy disk</td>
<td>$12.04</td>
<td>$14.30</td>
</tr>
<tr>
<td>Chisel plow</td>
<td>$10.80</td>
<td>$10.13</td>
</tr>
<tr>
<td>Disk/chisel</td>
<td>$12.08</td>
<td>$14.44</td>
</tr>
<tr>
<td>Field cultivator</td>
<td>$8.97</td>
<td>$6.17</td>
</tr>
<tr>
<td>Tandem disk</td>
<td>$10.39</td>
<td>$11.20</td>
</tr>
<tr>
<td>Heavy harrow</td>
<td>$7.22</td>
<td>—</td>
</tr>
<tr>
<td>Ground sprayer</td>
<td>$6.35</td>
<td>$3.49</td>
</tr>
<tr>
<td>Aerial sprayer</td>
<td>$8.17</td>
<td>—</td>
</tr>
</tbody>
</table>

The above example suggests a cost of $55.05 per acre to prepare CRP acreage for planting.

This cost should be the responsibility of the landowner because the landowner has received the income from the previous crop (CRP rental payments). This would be consistent with the common practice of the current operator preparing the field for the next crop after harvesting the current crop.
Which crop to grow after CRP?

<table>
<thead>
<tr>
<th>Crop</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>• High yield potential</td>
<td>• Heavy residue can slow emergence</td>
</tr>
<tr>
<td></td>
<td>• Insecticide options are excellent</td>
<td>• Time is limited for spring burn-down</td>
</tr>
<tr>
<td></td>
<td>• Gopher mounds not problematic</td>
<td>• Wireworms, white grubs and cutworms can be problematic</td>
</tr>
<tr>
<td></td>
<td>• Large seeded</td>
<td>• Certain broadleaf weeds can be problematic</td>
</tr>
<tr>
<td></td>
<td>• Many herbicide options, including RR</td>
<td>• Gopher mounds affect harvesting</td>
</tr>
<tr>
<td>Soybean</td>
<td>• Late planting date allows more time for spring chemical burn-down</td>
<td>• Likes lower pH, no salts</td>
</tr>
<tr>
<td></td>
<td>• Allows soil warmup</td>
<td>• Certain broadleaf weeds can be problematic</td>
</tr>
<tr>
<td></td>
<td>• Weedy grasses easily controlled</td>
<td>• Grass control within crop can be expensive</td>
</tr>
<tr>
<td></td>
<td>• Fixes N</td>
<td>• Certain grass diseases infect small grains</td>
</tr>
<tr>
<td></td>
<td>• Grasses are not a host to soybean diseases</td>
<td>• Needs early planting in the spring</td>
</tr>
<tr>
<td>Small grain</td>
<td>• Winter wheat allows for earlier breakout</td>
<td>• Soil insects may be problematic</td>
</tr>
<tr>
<td></td>
<td>• Less affected by cool soils associated with residue</td>
<td>• Perennial broadleaf weeds may be problematic</td>
</tr>
<tr>
<td>Sunflower</td>
<td>• Requires multiple burn-down herbicides for total grass control</td>
<td>• Fertilizer requirements are high</td>
</tr>
<tr>
<td></td>
<td>• Grass control within crop can be expensive</td>
<td>• Fertilizer requirements are high</td>
</tr>
<tr>
<td>Field Pea</td>
<td>• Later planting</td>
<td>• Soil insects may be problematic</td>
</tr>
<tr>
<td></td>
<td>• Allows time for spring weed control</td>
<td>• Perennial broadleaf weeds may be problematic</td>
</tr>
<tr>
<td></td>
<td>• Not susceptible to grass diseases</td>
<td>• Fertilizer requirements are high</td>
</tr>
<tr>
<td></td>
<td>• Deep rooted</td>
<td>• Fertilizer requirements are high</td>
</tr>
</tbody>
</table>

The NDSU Extension Service does not endorse commercial products or companies even though reference may be made to trade names, trademarks or service names.

For more information on this and other topics, see www.ag.ndsu.edu

NDSU encourages you to use and share this content, but please do so under the conditions of our Creative Commons license. You may copy, distribute, transmit and adapt this work as long as you give full attribution, don’t use the work for commercial purposes and share your resulting work similarly. For more information, visit www.ag.ndsu.edu/agcomm/creative-commons.

North Dakota State University does not discriminate on the basis of age, color, disability, gender expression/identity, genetic information, marital status, national origin, public assistance status, race, religion, sex, sexual orientation, or status as a U.S. veteran. Direct inquiries to: Vice Provost for Faculty and Equity, 201 Old Main, (701) 231-7708 or Title IX/ADA Coordinator, 102 Old Main, (701) 231-6409.

County Commissions, NDSU and U.S. Department of Agriculture Cooperating. This publication will be made available in alternative formats for people with disabilities upon request, (701) 231-7881.