NUTRIENT MANAGEMENT PLAN DEVELOPMENT AND IMPLEMENTATION

Chris Augustin, Nutrient Management Specialist, CREC 701-652-2951, Chris.Augustin@ndsu.edu, www.ndsu.edu/nm

What is a Nutrient Management Plan

The objective of the Nutrient Management Plan is to ensure livestock manure, including bedding, litter, waste feed and process wastewater, and runoff from livestock areas is land applied to crop or grass land at a rate the nutrients will be utilized by the vegetation grown. The manure shall be handled in a manner so as not to impact waters of the state, exceed air quality standards while it is stored on site, and minimize odors to residences or public areas during land application.

North Dakota Livestock Program Design Manual

NMPs Need

- Type of livestock
- # of days/year on site
- Estimate of manure production
- Duration of manure storage
- Crop rotation
- Soil/manure test results
- Recommended fertilizer rates

North Dakota Livestock Program Design Manual

Map of application and mark sensitive areas

NMPs Need

- Duration of manure storage
- 270 days or between empty frequency "whichever is longer."
 - Application Frequency
 - Raw Manure/Compost
- Map of application and mark sensitive areas

Manure Production

Animal Type and Production Grouping	Total A	Manure ¹	Moisture ²	Total Solids	Volatile Solids	N	Р	к	
	lbs/day-animal	ft ³ /day-animal	% wet basis	lbs/day-animal					
Beef									
Finishing cattle	64	1	92	5	4.2	0.36	0.05	0.25	
Confined cow ^{3, 4}	-	-	88	15	13	0.42	0.097	0.3	
Confined growing calf	50	0.81	88	6	5	0.29	0.055	0.19	
Dairy									
Lactating cow	150	2.4	87	20	17	0.99	0.17	0.23	
Dry cow	83	1.3	87	11	9.2	0.5	0.066	0.33	
Heifer (970 lb)	48	0.78	83	8.2	7.1	0.26	-	-	
Horse⁵ (1,100 lb)									
Sedentary	56	0.9	85	8.4	6.6	0.2	0.029	0.06	
Intensive exercise	57	0.92	85	8.6	6.8	0.34	0.073	0.21	
Poultry									
Layer	0.19	0.0031	75	0.049	0.036	0.0035	0.0011	0.0013	
Swine									
Gestating sow (440 lbs)	11	0.18	90	1.1	0.99	0.071	0.02	0.048	
Lactating sow ⁶ (423 lbs)	25	0.41	90	2.5	2.3	0.19	0.055	0.12	
Boar (440 lbs)	8.4	0.13	90	0.84	0.75	0.061	0.021	0.039	

¹Total manure is calculated from total solids and manure moisture content

²As excreted manure moisture contents range from 75 to 90 percent. At these moisture levels as excreted manure has a density equal to that of water and specific gravity 1.0 was assumed in calculation of manure volume.

³Solids estimates do not include solids in urine.

⁴Beef cows values are representative of animals during non-lactating period and first six months of gestation.

⁵These values apply to horses 18 months of age or older that are not pregnant or lactating. The representative number applies to 1,100 lb horses and the range represents horses from 880 to 1320lbs. "sedentary" applies to horses not receiving any imposed exercise.

⁶Nitrogen and phosphorus values include contribution of nursing pigs.

Typical Manure Analysis

	Ibs/ton										
Solid Manure Type	Total N	P_2O_5	K ₂ O	NH ₄	NO ₃						
Beef (142 Samples)	16.0	7.1	14.5	0.8	0.6						
Beef Range	6.7 - 64.8	1 - 21.6	0.9 - 63.2								
Composted Beef (10 Samples)	16.6	13.0	14.3								
Composted Beef Range	8- 36	5 - 20.2	9 - 19.8								
Sheep (3 Samples)	22.0	14.2	40.8								
Turkey (92 Samples)	44.3	41.6	27.4								
Equine (5 Samples)	9.4	9.9	24.9								
		Ibs/10	00gallons		-						
Liquid Manure Type	Total N	P_2O_5	K ₂ O	NH ₄	NO ₃						
Swine (17 Samples)	21.9	12.5	13.2	12.8	1.5						
Swine Range	10.6 - 41.1	1.2 - 85.5	5 - 23.5								
Dairy (19 Samples)	19.5	6.7	12.5	9.6	0.1						
Dairy Range	8 - 40	0.2 - 14.2	1.7 - 24.2								
Beef Containment Pond (7 Samples)	2.3	1.7	11.2	0.3	0.1						
Swine Containment Pond (3 Samples)	4.7	1.1	8.0								
Dairy Containment Pond (2 Samples)	3.3	0.5	3.3								
Data collected from NDSU Soil Testing Lab.											
Manure		Compost									
50% Total N Mineralized1 st Year		20% Total N Mineralized1s									
80% Total P Mineralized 1 st Year		30% Total P Mineralized 1 st									

90% Total K Mineralized 1st Year

30% Total K Mineralized 1st Year

Manure Nutrient Balancing

Type of livestock

- 700 Finishing Beef
- # of days/year on site

365

Estimate of manure production

Beef Feeding Operation Siting and Design Basics (NM-1155)

- 16 lbs N/ton = 130,816 lbs N/year
- **7.1** Ibs P/ton = 58,050 lbs P/year
- 14.5 lbs K/ton = 118,882 lbs K/year

145lbs N/14 ton Corn Silage =452 acres

18 tons/acre, 128lbs P/acre

Prioritizing Fields

Soil fertility

- Apply N for crop needs
 - Corn does well with manure
- Monitor PI
- **Do not apply manure on fields 125 \ge ppm P**
- Crop sequence
- Proximity to neighbors
 - Be courteous about timing
 - Incorporate w/in 24 hours of application
- Proximity to surface waters
 - At least 100ft away from surface waters unless 35ft buffer strip or if buffer is deemed not necessary

Prioritizing Fields

	Field 1	Field 3	Field 2	Field 4
N (lbs/ac)	28	42	0	21
P ₂ O ₅ (ppm)	8 (Med)	13 (Med-High)	22 (High)	55 (High)
K ₂ O (ppm)	181	90	121	354
Crop/Yield Goal	Corn Silage (18ton/ac)	Corn Silage (18 ton/ac)	Alfalfa (5ton/ac)	Pasture (2ton/ac)
Required N (lbs/ac)	157	143	0	29
Required P (lba/ac)	67	41	0	0
Required K (lbs/ac	0	0	0	0

Recommended fertilizer rates

• North Dakota Fertilizer Recommendation Tables and Equations SF-882

Map of Application and Sensitive Areas

Map of Application

Sampling Manure

- □ Collect 10-15 subsamples
- 🗆 Mix
- Package
 - □ Leave 1 inch of air space
- □ Account for differences
 - Animals, Storage Facilities, Age
- Keep samples cool/freeze
- Send samples on Monday

Manure/Soil Testers

NDSU Soil Science Department

- http://www.soilsci.ndsu.nodak.edu/services/Testing/soiltesting/soiltesting.html
- **7**01-231-9589
- □ Agvise
 - http://www.agviselabs.com/
 - **701-587-6010**
- DHIA
 - http://www.stearnsdhialab.com/
 - **a** 800.369.2697
- □ Manure Test Cost \$25-50
- □ Soil Test Cost \$10-40

Spreader Calibration

- Reduces Pollution Potential
- Ensures Proper Application
- □ Meet Yield Goals

Sheet MethodAxle Weight Method

Manure Spreader Calibration for Nutrient Management Planning (NM-1418) ndsu.edu/nm

SHEET METHOD

Tons/acre= <u> Ibs of Manure on Sheet x 21.8</u> <u> Plastic Sheet ft²</u>

8' x 2' 8.75"
7' x 3' 1.25"
6' x 3' 7.5"
5' x 4' 4.25"

SHEET METHOD

Materials •Bucket, Scale, Sheet

Weigh empty bucket and sheet

The State Forder

·Lay out the sheet

Star Pickler

Anchor sheet

Record tractor gear, engine RPM, and spreader settings
Apply the manure

•Weigh the manure covered sheet in the bucket

AXLE WEIGHT METHOD

Materials

100ft tape measure or measuring wheel & truck scale

• Weigh manure loaded spreader

ACH

Mit with

Record tractor gear, engineApply manure

- Measure the area of application
- Weigh empty spreader

AXLE WEIGHT METHOD

(Ibs before - Ibs after) /2000lbs Area Applied ft²/43560

Tons/acre=

AXLE WEIGHT METHOD

	Area Applied (Square Feet)	÷	Square Feet per Acre (43,560)		Acres Applied (Use Later)	Manure Loaded Spreader Weight (Ibs)	_	Spreader Weight After Application (Ibs)	- -	2000 lbs	÷	Acres Applied (From Earlier)	II	Tons of Manure per Acre
Example	16,438	÷	43,560	=	0.377	37,188	-	19,321	÷	2000	÷	0.377	I	23.7
1		÷	43,560	=	=		-		÷	2000	÷	=	=	
2		÷	43,560	=	=		-		÷	2000	÷	=	=	
3		÷	43,560	=	=		-		÷	2000	÷	=	=	
4		÷	43,560	=	=		-		÷	2000	÷	=	=	

2 field lengths/load for longest field length

1,176ft

Flag 1= 3 field lengths/load Ν

ag 3= 4 field lengths<mark>)|</mark>oad

,000ft

750ft

© 2010 Google

Image USDA Farm Service Agency

MORE INFORMATION

Nutrient Management News http://www.ndsu.edu/nm http://www.extension.org http://www.manure.umn.edu http://www.health.state.nd.us/WQ/AnimalFeeding Operations/AFOProgram.htm

WORKS CITED

- Franzen, D.W. 2007. North Dakota fertilizer recommendation tables and equations based on soil test levels and yield goals. http://www.ndsu.edu/uploads/media/sf882_03.pdf. NDSU Extension Service. Fargo, ND.
- American Society of Agricultural and Biological Engineers (ASABE). 2205. ASABE D384.2 manure production and characteristics. http://www.extension.org/mediawiki/files/f/f7/Table1and2ex

cretion.pdf.

QUESTIONS?

