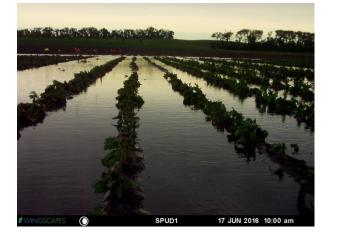
Controlling Weeds & Physiological disorders

Andy Robinson NDSU / U of Minnesota @Spudology z.umn.edu/spud

Weeds

- Weeds can cause up to 73% yield loss in potato.
- Battling weeds, use IPM



How do you win the weed war?

Topics

- Weed control in potatoes
 - Integrated pest management (IPM)
- Physiological disorders in potato

Integrated Pest Management

Integrated Weed Management is defined as the use of a range of control techniques, embracing physical, chemical and biological methods in an integrated fashion without excessive reliance on any one method (Powles and Matthews, 1992).

UNIVERSITY OF MINNESOTA EXTENSION

Weed control methods (the toolbox)

- Prevention
- Cultural
- Mechanical / physical
- Chemical
- Biological

Prevention and cultural management

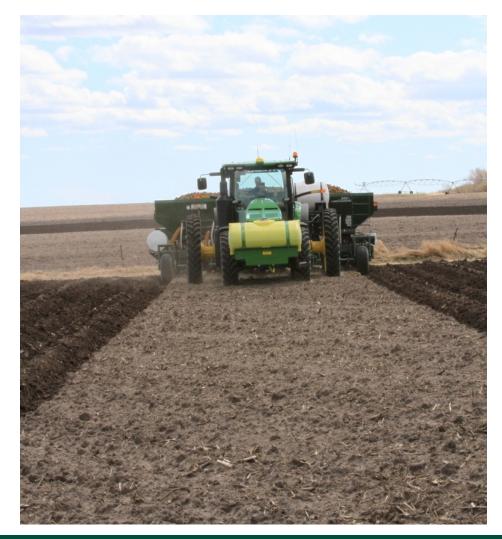
University of Minnesota

TENSION

ΕX

- Crop rotation
- Planting configuration
- Removing debris and soil from equipment
- Proper watering and fertilizing of crop
- Growing competitive plants

Rented land – what ask about


- Previous crops
- Tillage practices
- Herbicides used
- Common weeds
- Weed control problems

Mechanical and physical weed control

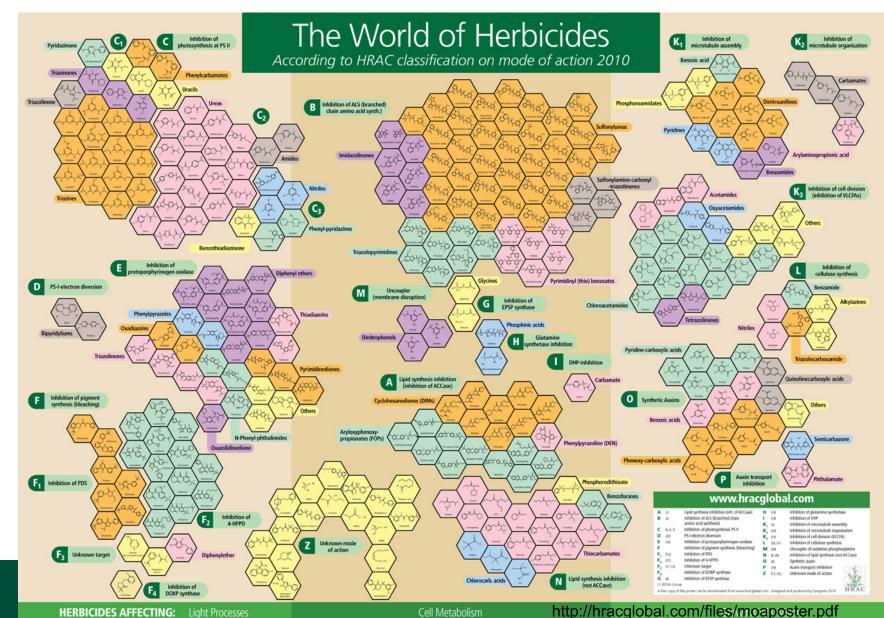
- Tillage / hilling
 - Remove emerging weeds
 - Reshape hill
 - Incorporate herbicides
- Hand weeding
 - Kills all weeds no resistance to this method

Historical Primary Weed Control Method

Product region (US)	Mecha	anical (%)	Chemi	emical (%)						
	1964	1969	1964	1969						
Western	93	70	3	10						
Central	97	90	2	5						
Southern	80	30	-	-						
Northeast	50	20	20	20						
(Dallyn, 197										

Chemical weed control

• Herbicides



What's the herbicide situation?

- Many herbicides, but limited for potato
- So what does this mean?

NDSU EXTENSION SERVICE

Preemergence modes of action

Mode of Action	Group	Herbicide(s)	Year reported or registered	Water solubility (mg/L)	Half life (days)
Lipid synthesis inhibition	1/A	clethodim / Select sethoxydim / Poast	1987 1978	- 257	-
ALS inhibitors	2 / B	rimsulfuron / Matrix	1992	<10	3
Microtubule assembly inhibition	3 / K1	trifluralin / Treflan ethalfluralin / Sonalan pendimethalin / Prowl	1960 1974 1974	0.3 0.3 0.3	164 34 44
Lipid synthesis inhibition	8 / N	EPTC / Eptam	1957	370	9
PS II inhibitors	5 / C1 C2	metribuzin / Metribuzin linuron / Linex	1964 1962	1100 75	21 60
PPO inhibitors	14 / E	flumioxazin / Chateau fomesafen / Reflex Sulfentrazone	1989 1983 1998	2 50 780	15 100 211
Inhibition of VLCFAs	15 / КЗ	dimethenamid / Outlook metolachlor / Dual	1993 1972	1174 488	20 40

Postemergence modes of action

Mode of Action	Group	Herbicide(s)
Lipid synthesis inhibition	1/A	clethodim / Select sethoxydim / Poast
ALS inhibitors	2 / B	rimsulfuron / Matrix
PS II inhibitors	5 / C1, C2	metribuzin / Sencor
Microtubule assembly inhibition	3 / K1	pendimethalin / Prowl
Inhibition of VLCFAs	15 / K3	metolachlor / Dual
Lipid synthesis inhibition	8 / N	EPTC / Eptam

UNIVERSITY OF MINNESOTA EXTENSION

Selection herbicides

- Variety sensitivity
 - Minituber/NFT sensitivity
- Weed spectrum
- Timing
- Cost of herbicide and application
- Rotation restrictions

UNIVERSITY OF MINNESOTA EXTENSION

Preemergence weed control (p.114-115)

				Gra	isses		Broadleaves						
SOIL- APPLIED HERBICIDES*	Mode of Action**	Barnyardgrass	Brome, Downy	Foxtail, Green	Foxtail, Yellow	Quackgrass	Volunteer Cereals	Wild Oat	Buckwheat, Wild	Cocklebur, Common	Horseweed (Marestail)	Kochia	Lambsquarters
Boundary* (Pre)	5,15	F-G	-	F-E	F-E	N	Р	Р	F-G	Р	F	F-G	G
Chateau* (Pre)	14	Ν	F-G	Р	Р	N	Ν	Ν	P-F	Ν	F-E	F-G	G-E
Dual* (PPI/Pre)	15	P-E	P-F	F-E	F-E	N	Р	P-F	N-P	Ν	Ν	N-P	P-F
Linex* (Pre)	7	F	-	F	F	Р	Р	Р	G	Р	-	F	Е
Rimsulfuron (Pre)	2	G	-	G	F-G	N	G	F	Р	F	\mathbf{P}^1	G^1	F
Metribuzin* (PPI/Pre)	5	P-F	F-G	P-F	P-F	N-P	P-G	Ν	F-G	P-F	F	F-G	P-F
Outlook* (PPI/Pre)	15	G-E	P-G	G-E	G-E	N	F-G	Р	N	N	Ν	N	F-G
Prowl* (PPI)	3	Е	F-G	$G-E^1$	E	N	Ν	P-F	Р	Ν	Ν	Р	F-G
Reflex* (PRE)	14	P-F	-	Р	Р	N	Ν	Ν	Р	Р	-	F	F
Sonalan (PPI)	3	Е	F	E ¹	Е	N	Р	Р	Р	Р	Ν	Р	G
Treflan* (PPI)	3	Е	F-G	E^{1}	E	N	Ν	P-F	N	Ν	Ν	Р	F-G

NDSU EXTENSION

Preemergence weed control (p.114-115)

			Broadleaves										
SOIL- APPLIED HERBICIDES*	Mode of Action**	Lanceleaf Sage	Mustard, Wild	Mustard, Winter Annual	Nightshade, E Black	Nightshade, Hairy	Pigweed, Redroot	Waterhemp (ALS-R)	Prickly Lettuce	Ragweed, Common	Smartweed, Annual	Thistle, Russian	Crop Safety***
Boundary* (Pre)	5,15	F	G-E	G-E	Р	Р	G-E	G-E	G-E	P-F	G	G-E	S-M
Chateau* (Pre)	14	Ν	G	G	Е	G-E	G-E	G-E	F-G	N-P	F	F-G	S-M
Dual* (PPI/Pre)	15	Ν	Ν	-	Ν	Ν	F-G	F-G	Ν	Ν	N	Р	S-M
Linex* (Pre)	7	-	Е	-	F-G	F-G	E	G	-	G-E	G-E	F	N-S
Rimsulfuron (Pre)	2	Ν	F	-	Р	Р	E	Ν	-	F	Р	Р	N-S
Metribuzin* (PPI/Pre)	5	F	G-E	G-E	Р	Р	G-E	F-G	G-E	P-F	G	G-E	N-S
Outlook* (PPI/Pre)	15	Ν	P-F	-	F-G	F-G	G-E	G	-	Ν	N	P-F	S-M
Prowl* (PPI)	3	Ν	Ν	Р	Ν	Ν	G-E	G	Ν	Ν	Р	F-G	N-S
Reflex* (PRE)	14	-	F	-	G	F	E	Е	-	G	F-G	Р	S
Sonalan (PPI)	3	Ν	Ν	Р	Р	Р	E	G-E	Р	Ν	Р	G-E	S
Treflan* (PPI)	3	Ν	Ν	Р	Ν	Ν	E	G-E	Ν	Ν	Р	G	N-S

NDSU EXTENSION SERVICE

Postemergence weed control (p. 116-119)

		Grasses						Broadleaves						
POST - APPLIED HERBICIDES*	Mode of Action**	Barnyardgrass	Brome, Downy	Foxtail, Green	Foxtail, Yellow	Quackgrass	Volunteer Cereals	Wild Oat	Buckwheat, Wild	Cocklebur, Common	Horseweed (Marestail)	Kochia	Lambsquarters	
Rimsulfuron	2	G-E	-	G-E	G-E	G-E	G-E	G-E	N	Ν	Ν	E^1	F	
Metribuzin*	5	F	Ν	F	F	Р	Р	-	G	Р	F-G	F-G	Е	
Poast	1	Е	P-G	E	E	F	G-E	$G-E^1$	Ν	Ν	Ν	Ν	Ν	
Select* / Select Max	1	Е	P-E	E	Е	G-E	Е	E	Ν	Ν	Ν	Ν	N	
							Broadleav	ves						
POST- APPLIED HERBICIDES*	Mode of Action**	Lanceleaf Sage	Mustard, Wild	Mustard, Winter Annual	Nightshade, E Black	Nightshade, Hairy	Pigweed, Redroot	Waterhemp (ALS-R)	Prickly Lettuce	Ragweed, Common	Smartweed, Annual	Thistle, Russian	Crop Safety***	
Rimsulfuron	2	-	Е	Е	G/N	P-F	Е	N	-	Р	F	P ¹	N-S	
Metribuzin*	5	-	Е	E	Р	Р	G	P-G	G-E	Е	Е	-	N-M	
Poast	1	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	N	Ν	N	
Select* / Select Max	1	N	N	N	N	N	N	N	N	N	N	N	N	

NDSU EXTENSION SERVICE

UNIVERSITY OF MINNESOTA EXTENSION

Tips for maximum efficacy

- Incorporate (tillage or water)
- Timing
 - PRE: prior to emergence (follow label)
 - POST: small weeds, <1 inch tall is ideal</p>
- Use adjuvants with POST herbicides

Tank mix herbicides to improve weed control spectrum

Soil factors for preemergence herbicides

- pH
- Organic matter
- Soil texture
- Soil moisture

Timing of herbicides

- 3-5 week window for PREs
- Program could include:
 - Tillage / field preparation
 - Planting
 - Hilling

NDSU EXTENSION

- Herbicide prior to emergence

University of Minnesota

EXTENSION

– Postemergence herbicide

How to optimize weed control?

 Use an integrated weed management approach with many tools.

> UNIVERSITY OF MINNESOTA EXTENSION

- Tillage
- Best herbicides at right time
- Cultural management practices
- Do not encourage herbicide resistance

Outlook

• Inhibit proper cell division

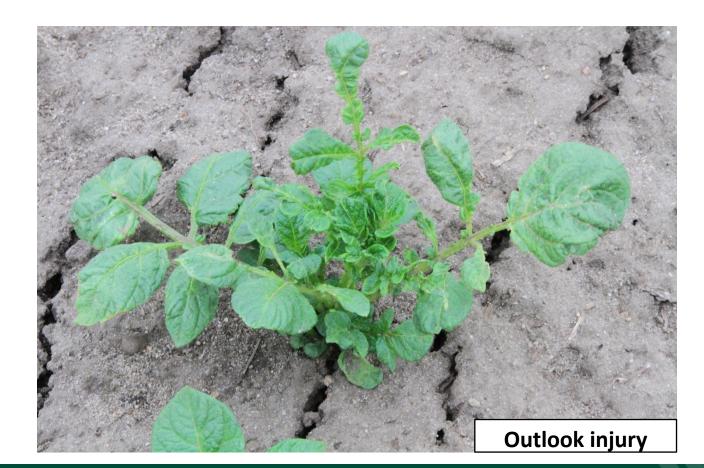
• Very water soluble = quickly available

Provide good to excellent control of

UNIVERSITY OF MINNESOTA

TENSION

EΧ


- Common lambsquarters
- Pigweed species

- Nightshade species

Dual/Outlook

- Bound to OM
- Broken down by soil microbes
- Breaks down quicker in warm temperatures
- Root & shoot inhibitor

UNIVERSITY OF MINNESOTA

Outlook injury (dimethenamid-P)

Metribuzin activity

- More active in soils with:
 - 1. pH > 7.5
 - 2. Low organic matter
 - 3. Stressed plants
- Foliar: symptoms can be severe when metribuzin is applied when plant metabolism is slowed, or within 3 days after periods of cool, wet, or cloudy weather.

University of Minnesota

Future of weed control...

NDSU EXTENSION SERVICE

UNIVERSITY OF MINNESOTA

Physiological Disorders

JUNE 201

What is a physiological disorder?

- Non-infectious (do NOT spread).
- Something the plant pathologists can't identify!
- Not caused by insects or nematodes.
- Reduce quality/marketability of tubers.
- Can be on surface and/or interior of tubers.

Physiological disorders

- Primary cause of non-infectious disorders are difficult to determine.
- Difficult to study because they are not consistently expressed.
- Chemicals or diseases may accentuate disorders.
- Can lead to secondary pathogens entering tubers.

Bruise/Skinning

Bruise/Skinning

- Cause: handling and storing
- Skin set is important to reduce severity
- Can cause moisture loss and entry point for diseases on tuber skin.

Russeting/Road Mapping

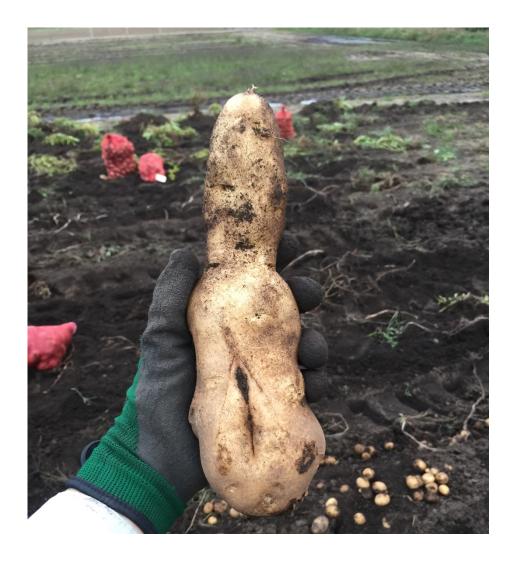
Russeting/Road Mapping

- Appearance of russet-like skin.
- Commonly found on smooth-skinned tubers.
- Result of extra skin layers to protect the tuber from heat stress.
- Some data indicate calcium can reduce this disorder.

Enlarged Lenticels

Enlarged Lenticels

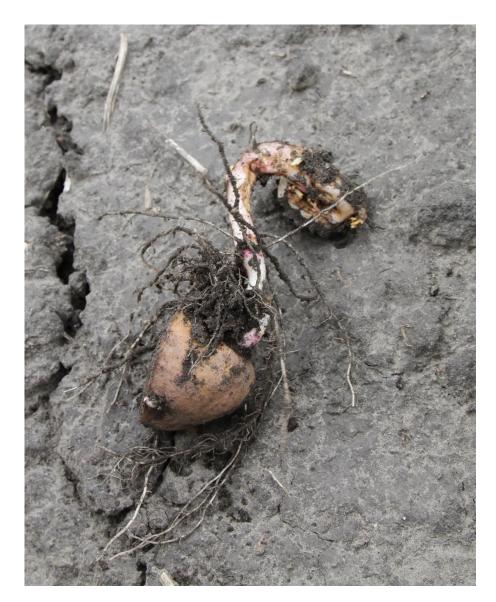
Enlarged Lenticels



- Caused by anaerobic conditions
- Lenticels open for oxygen and CO₂
- Cause 'popcorn' looking area and when dries appears as scab
- Opening for pathogen entry

Tuber Cracking

Tuber Cracking


Tuber Cracking



- Many causes
 - Environmental stress, nutritional imbalance, disease, herbicide injury or genetics.
- Results of high turgor pressure and rapid tuber growth
- Earlier cracking = larger cracks

Coiled Sprout

Coiled Sprout

- Abnormal sprout development
 Coiled, split, cracked
- Cause loss of apical dominance
 Axillary shoots and delayed emergence
- Causes
 - Early planting, soil type, cultivar
 - Ethylene imbalance physiological aging, disease, or microorganism production

UNIVERSITY OF MINNESOTA

'ENSION

Freeze Damage

Freeze Damage

- Death to foliage
- Regrowth from axillary buds
- Tuber damage can occur in late season

Heat Crinkle

- Sprouts suddenly encounter high temperature and stress plant
- Can increase stem number
- More common in sandy soils
- Russet Burbank is sensitive

Greening

Greening

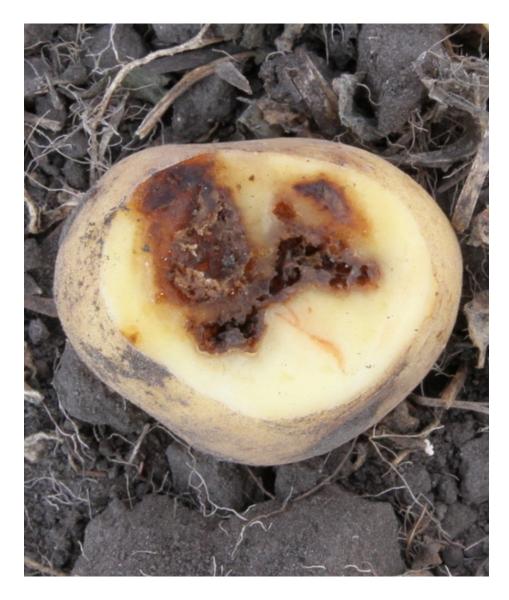
- Exposure to sunlight
- Green from chlorophyll
- Contains glycoalkaloids— cannot consume
- Hilling and cultivar selection can reduce this disorder

Elephant Hide


Elephant Hide

- Rough or thick coarse russeting
- Causes:
 - High temperatures, genetic traits, soil fertility, soil moisture or chemical treatments
- Diseases
 - Rhizoctonia and mop-top
- Herbicides
 - ALS chemistry and glyphosate

Periderm Disorder Syndrome (formerly Pink Eye)


Periderm Disorder Syndrome (formerly Pink Eye)

- Puffy, pink-colored area around eyes
- Usually found on bud-end first
- · Will fluoresce when exposed to blacklight
- Excessive moisture, soil compaction and high temperature can lead to low oxygen soil conditions = cell damage

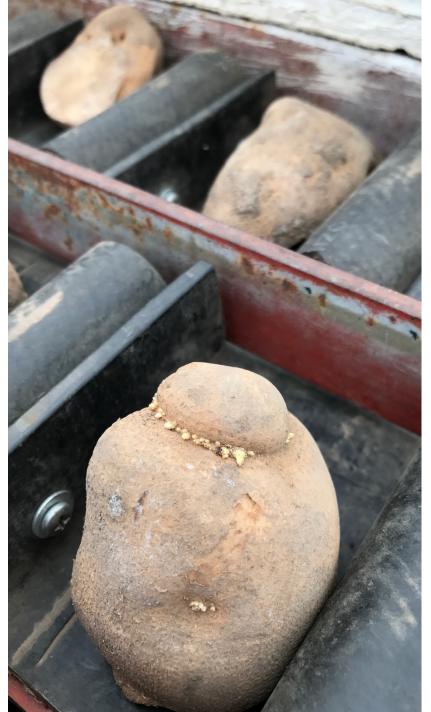
Stem End Disorder

Stem End Disorder

• Result of low starch content.



- Can fry dark because of increased reducing sugar levels.
- Commonly occurs on stem end.
- Result of stress-triggered mechanisms:
 - Heat, drought & fertility


Tuber Malformations

Tuber Malformations

- Result of:
 - Sudden growth interruption, rapid growth following a stress
- Bottleneck, dumbbell, or pointed end appearance, this is indicative of when growth interruption occurred.
- Herbicides can interrupt growth and cause malformations.

Blackheart


Blackheart

- Caused by lack of oxygen, leading to dark, necrotic cavities.
- Can occur during tuber development and/or storage.
- Increased temperature can intensify blackheart, especially after vine kill and when soils are saturated.

Hollow Heart

Hollow Heart

- Occurs in the growing season
- Precursor is brown center and can develop into hollow heart as tuber expands.
- Cause:
 - Stress growing conditions followed by rapid tuber growth.

Heat Necrosis

Heat Necrosis

- Likely caused by several environmental stimuli:
 - high day and night temperatures, high soil temperatures & low soil moisture
- Symptoms not observed on foliage.
- Color, intensity and area affected will increase through time and can intensify in storage.

Internal Anthocyanin Pigmentation

Internal Anthocyanin Pigmentation

- The same anthocyanins are naturally found in the tuber skin of red and purple potato tubers and in the flesh color.
- Not a normal, thus causes concern to farmers and consumers.

Vascular Discoloration

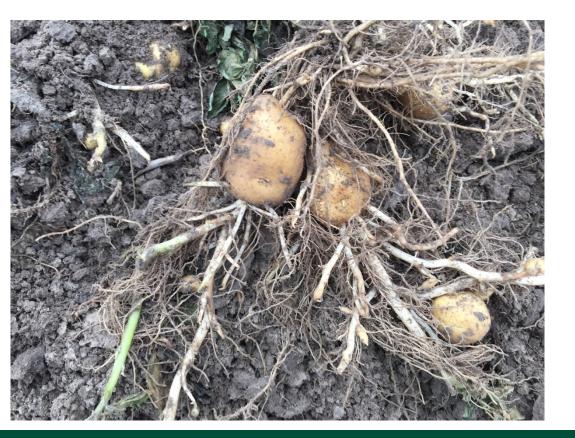
Vascular Discoloration

- Discoloration of the vascular ring at the stem end.
- Can result from rapid vine death, especially when plants are less mature.
- Verticillium and fusarium wilt have similar symptoms.

Internal weed sprout

UNIVERSITY OF MINNESOTA EXTENSION

Little tubers



That's All Folks!

@spudology z.umn.edu/spud

NDSU EXTENSION