Herbicides are used to control weed populations on 215 million acres of cropland in the USA. If herbicides were unavailable, U.S. crop production would decline by 300,000,000,000 lbs of food.

Introduction to Herbicides

Total Pesticide Use in ND

(Acres applied)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicides</td>
<td>41.1</td>
<td>36.8</td>
<td>30.1</td>
<td>33.6</td>
<td>28.8</td>
<td>27.8</td>
<td>24.8</td>
<td>16.9</td>
</tr>
<tr>
<td>Insecticides</td>
<td>4.5</td>
<td>1.0</td>
<td>0.3</td>
<td>1.5</td>
<td>1.2</td>
<td>2.2</td>
<td>2.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Fungicides</td>
<td>7.3</td>
<td>3.1</td>
<td>0.8</td>
<td>1.5</td>
<td>0.9</td>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Desiccants</td>
<td>1.4</td>
<td>0.3</td>
<td>0.01</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
<td>0.07</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>54.4</td>
<td>41.2</td>
<td>31.2</td>
<td>36.8</td>
<td>30.9</td>
<td>30.5</td>
<td>28.3</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Categorized Pesticide Use in ND

(Percentage of total pesticide application)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicides</td>
<td>75.6</td>
<td>89.2</td>
<td>96.5</td>
<td>91.6</td>
<td>93.0</td>
<td>90.7</td>
<td>87.4</td>
<td>96.6</td>
</tr>
<tr>
<td>Insecticides</td>
<td>8.3</td>
<td>2.6</td>
<td>1.1</td>
<td>4.1</td>
<td>3.8</td>
<td>7.3</td>
<td>10.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Fungicides</td>
<td>13.5</td>
<td>7.6</td>
<td>2.5</td>
<td>4.1</td>
<td>3.0</td>
<td>1.9</td>
<td>1.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Desiccants</td>
<td>2.6</td>
<td>0.6</td>
<td><0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Summary: Pesticide use in ND Tables

- Overall pesticide use is increasing
 - Applications per acre are increasing
 - 44 million total acres in ND
- Fungicide use continues a steady rise as formulations and products improve
- Insecticide use increased approximately 3 fold from 2004 to 2008
 - but generally trended towards decreased usage

Herbicide Usage in ND

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyphosate</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Fenoxaprop</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>2,4-D</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thifensulfuron + tribenuron</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5*</td>
</tr>
<tr>
<td>Dicamba</td>
<td>14</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>2</td>
<td>7</td>
<td>14</td>
<td>19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

- only primary herbicides included
- * Clopyralid + fluroxypyr tank mix

Important but not obvious here was shift from PRE to POST herbicides
ND Weed Surveys, 1979 & 2000

<table>
<thead>
<tr>
<th>Weed Species</th>
<th>2000 rank</th>
<th>1979 rank</th>
<th>2000 density</th>
<th>1979 density</th>
</tr>
</thead>
<tbody>
<tr>
<td>green foxtail</td>
<td>1</td>
<td>1</td>
<td>14.4/m²</td>
<td>63.2/m²</td>
</tr>
<tr>
<td>wild oat</td>
<td>2</td>
<td>2</td>
<td>4.5</td>
<td>4.1</td>
</tr>
<tr>
<td>yellow foxtail</td>
<td>3</td>
<td>5</td>
<td>7.0</td>
<td>6.4</td>
</tr>
<tr>
<td>kochia</td>
<td>4</td>
<td>9</td>
<td>3.0</td>
<td>1.3</td>
</tr>
<tr>
<td>wild buckwheat</td>
<td>5</td>
<td>3</td>
<td>3.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Canada thistle</td>
<td>6</td>
<td>11</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>redroot pigweed</td>
<td>7</td>
<td>4</td>
<td>1.8</td>
<td>3.7</td>
</tr>
<tr>
<td>volunteer cereals</td>
<td>8</td>
<td>7</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>common ragweed</td>
<td>9</td>
<td>9</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>field Bindweed</td>
<td>10</td>
<td>10</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>com. lambsquarters</td>
<td>11</td>
<td>7</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>quackgrass</td>
<td>12</td>
<td>16</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Russian thistle</td>
<td>13</td>
<td>8</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>wild mustard</td>
<td>14</td>
<td>6</td>
<td>0.5</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Summary: ND Weed Survey

- Movers and shakers
 - yellow foxtail – more difficult to kill than green
 - Kochia – ALS resistance
 - Canada thistle – a perennial moving up
- Largest jump
 - Volunteer cereals – more reduced tillage
 - Common ragweed – more row crops
- Largest drop
 - Wild mustard – once was a target weed
- OVERALL, weed frequencies and densities are declining

Important Points from Organic Chemistry

- The chemistry of Carbon containing molecules
- Chemical structures can dictate environmental behavior.
- Compounds are named by the number of C in their structure and their functional groups
- Some functional groups are more prone to degradation and metabolism than others

Classification of Herbicides

Herbicides are Classified Two Ways in WCG

- Site of Action [WCG page 108–109]
 - Classification of how herbicides kill plants or affect growth
 - Widely accepted as the most precise way
 - The big picture and the fine details
- Chemical structure/families
 - Subcategory listing in Weed Control Guide
 - Problem is nearly identical structures present vastly different outcomes

Examples: MOA vs. SOA

- Herbicide:
 - clodinafop-P
- Tradename:
 - Discover NG
- Herbicide Family:
 - Aryloxyphenoxypropionate or “Fops”
- Site of Action:
 - ACC-ase inhibition
- Mode of Action:
 - Lipid Synthesis inhibition
Mode of Action: Plant Growth Regulators (4)

Plant Growth Regulators

- Mimic the natural PGRs (stimulate growth)
 - IAA, 4-Cl-IAA, IBA
- Auxin-type most common (IAA)
 - Auxin from the greek “Auxein” which means “to increase”
 - Fritz Went 1926 first described oat curvature

Plant Hormones

- Six classes of hormones that affect plant growth
 - auxins, cytokinins, gibberellins, ethylene, abscisic acid, and polyamines
 - Most of these six hormones interact with each other making their specific roles cloudy

Plant Growth Regulator History

- PGR discovery lead to the use of chemicals for weed control in modern agriculture
 - Weed Science blossomed because of the PGRs
- Early researchers explored phototropism and linked it to the natural auxin, indol-3-acetic acid (IAA) (Went 1928)

Fritz Went Described Auxins –

- "ohne wuchsstoff kein wachstum"
- Without growth substance, no growth
- Auxins cause cell elongation, and with synthetic herbicides, over-growth

2,4-D History (Roe et al.)

- Pokorny (1941) mentions 2,4-D as a plant hormone
- Early in WWII, in England, discovery of selectivity of NAA auxin compound
- 1944, Mitchell and Marth sprayed 2,4-D on a Maryland lawn and killed all dandelions, sparking the herbicide revolution
- 1945, nearly 200 field experiments were conducted testing the efficacy of 2,4-D
Plant Growth Regulator Herbicides

- Herbicide families:
 - phenoxyacetic acids
 - benzoic acids
 - pyridines
 - pyrimidines
 - quinolines
 - semicarbazone

Four Active Ingredient Chemical Formulations

- Acids
- Salts
- Esters
- Oil-soluble amines

- Remember “acid equivalent (ae)”
 - Additional ai vs ae comment see WCG page 4

Acid Formulation is the Starting Point

- Substitutions are made for the H+ of the carboxyl group (COOH)

- Acid
- Dimethyl amine
- Isooctyl ester

ACIDS

- Rarely used
- Poor water solubility
- Expensive to make
- Physiologically active form within the plant

SALTS

- Any ionic compound that does not contain either OH− or O2−
 - Low volatility
 - Soluble in water
- Few inorganic salt formulations
- Amines – quaternary N

ESTERS

- Short chain (highly volatile), not for sale
- Long chain (less volatility), for sale, expensive
- Soluble in oil, but not in water
- Generally the most effective formulation (extra chains make more oil-soluble)
- Time of day can reduce volatility risks!
- ALWAYS READ THE _ _ _ _ _!
OIL-SOLUBLE AMINES

- Soluble in oil, but not in water
- Non-volatile
- Most expensive

Formulation differences.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Water-soluble</th>
<th>Oil-soluble</th>
<th>Volatility</th>
<th>$Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid</td>
<td>Slight</td>
<td>No</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Salt (amine)</td>
<td>Yes</td>
<td>No</td>
<td>V. Low</td>
<td>Low</td>
</tr>
<tr>
<td>Ester</td>
<td>No</td>
<td>Yes</td>
<td>Med-High</td>
<td>Medium</td>
</tr>
<tr>
<td>Oil-Soluble</td>
<td>No</td>
<td>Yes</td>
<td>Minimal</td>
<td>Highest</td>
</tr>
</tbody>
</table>

* oil-soluble formulations are generally most effective because of improved absorption from their ability to penetrate the leaf cuticle - but rarely used in Ag

Sizes impact ai and cost but ae remains constant

2,4-D formulation molecular weights.

<table>
<thead>
<tr>
<th>Herbicide formulation</th>
<th>Molecular weight g/Mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid</td>
<td>222</td>
</tr>
<tr>
<td>Dimethylamine salt</td>
<td>266</td>
</tr>
<tr>
<td>Methyl ester</td>
<td>235</td>
</tr>
<tr>
<td>Isooctyle ester</td>
<td>333</td>
</tr>
<tr>
<td>Oil-soluble amine</td>
<td>378</td>
</tr>
</tbody>
</table>

Biological properties

- Auxins – cause cell elongation
- Very limited to very long soil residual
 - May still be absorbed by plant roots
- Broadleaf action – does not kill grasses
- Translocated in most susceptible weeds
- There appears to be multiple sites of action that disrupt hormone balance, nucleic acid metabolism, and protein synthesis
 - But responses all tied to binding at primary site
 - Initiates cascade of signals

Phenoxyacetic Acids

- The original organic herbicide – WWII (1948)
- Wild mustard the original ND weed targeted
- Trade names
 - ND WCG lists 35+ products with some form of 2,4-D
 - 2007 Herbicide handbook has 29 active ingredient formulations, the vast majority amines and esters
- Cost:
 - Amines: $4.73/lb
 - Esters: $5.79/lb
2,4-D

- Rates (ae)
 - 0.25 - 0.5 lb/acre, annual weed control
 - 1 - 2 lb/acre, perennial weed control
- Time applied
 - POST
 - Translocated

Weed Control Guide

- Rating scale
 - Excellent = E, 90% or better
 - Good = G, 80 to 90%
 - Fair = F, 65 to 80%
 - Poor = P, 40 to 65%
 - No control = N, less than 40%

Weeds controlled – broadleaf

- Wild Mustard – E
- Common lambsquarters – E
- Dandelion – E
- Common ragweed – G – E
- Redroot pigweed – G
- Canada thistle – F
- Wild buckwheat – P
- Kochia – P (contact, need good coverage)
- Grasses – N

Crops labeled

- Grasses
 - Wheat and barley
 - Turf
- Others
 - Oat
 - Corn
 - Soybean
 - Strawberry (some labels)
 - Red potato (very touchy)
 - Sorghum
 - Sorghum – sudan

Application stages

- HRSW, durum, winter wheat, barley
 - *5L to boot, 3L to boot
 - *Winter wheat well tillered to boot
 - *Read the LABEL
- Turf – apply anytime after establishment
- Oat – easily injured
- Corn – 3 to 8 in, if taller use drop nozzles
- Soybean – prior to crop emergence (5–7 d)

Crop Stage
MCPA

- Developed around the same time as 2,4-D (MCPA in the UK)
- (4-chloro-2-methylphenoxy)acetic acid
 - Current chemical name
- (2-methyl-4-chlorophenoxyacetic acid)
 - Old-school chemical name explains common name
- Trade names
 - ND WCG lists 20+ products with some form of MCPA
 - 2007 Herbicide handbook has 13 formulations, the vast majority amines, and some esters

Weeds controlled

- Wild mustard – E
- Winter annual mustards – G-E
- Common lambsquarters – E
- Dandelion – E
- Canada thistle – P-F
- Common ragweed – G
- Redroot pigweed – P-F
- Wild buckwheat – N
- Kochia – P
- **Generally less effective than 2,4-D**

Crops labeled

- Grasses, primarily
 - Wheat and barley
 - Oat
 - Flax
 - NO CORN!
 - Lawn/turf
 - Peas – only some brands
 - Alfalfa – under a companion crop

Application stage

- Wheat, Barley, Oat
 - 3 leaf to preboot (similar ranges to 2,4-D)
- Flax
 - 2–8 inches

MCPA Amine 500

<table>
<thead>
<tr>
<th>Small grain underseeds with a legume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat & barley</td>
</tr>
<tr>
<td>Use on grasses established with alfalfa (except early maturing varieties)</td>
</tr>
</tbody>
</table>

Established pastures, alfalfa stands, and clover have already grown. Do not apply to newly established alfalfa varieties.
2,4,5-T

- No longer on the market due to concerns about teratogenicity (pulled 1970 (except rice), 1985 all)
 - Teratogen – substances that cause birth defects in humans
 - Contains trace amounts of Dioxin (TCDD)
- 2,4,5-T + 2,4-D
 - “Agent Orange”
 - Defoliant used in Vietnam

Dichlorprop

- aka 2,4-DP
- Trade names: Many
- Time applied: POST
 - Translocated
- Weeds controlled: 2,4-D resistant turf weeds and some brush control, buckwheat spp.
 - Turfweeds – chickweed, clover, knotweed, ground ivy
 - Crops labeled: lawns, right-of-ways
- Enantiomeric product

Mecoprop

- aka MCPP
- Tradename: many
- Used in many lawn mixtures
 - Trimec classis/Trimec plus
 - Very high lawn safety
- Weeds controlled
 - Chickweed spp., clover spp., plantain spp., knotweed spp., common lambsquarters, pigweed spp., and ground ivy

2,4-DB

- Trade names: Butyrac 200
 - dma-salt
 - Cost: $20/lb
 - Rates: 0.25 – 0.5 lb/acre
- Time applied: POST and translocated
- Weeds controlled:
 - Many annual broadleaf weeds
 - Common cocklebur – E
 - Common lambsquarters – E
Crops labeled
- Some 2,4-D susceptible crops
- Peanut,
- Other small seeded legumes
- Soybean
 - PRE or POST Directed (prebloom, avoiding foliar contact)
- CRP
- Alfalfa
 - \textit{Seedling alfalfa only}

Selectivity in broadleaf crops?
- Function of less retention and absorption in legumes compared to others
 - Chemical doesn’t stick to the leaves as well as common cocklebur
- Differential rates of metabolism
 - 2,4-DB is not phytotoxic, per se.
 - It undergoes β-oxidation in plants to form 2,4-D
 - This reaction is faster in susceptible plants than tolerant plants

Concept: Selectivity
- Selectivity is function of three factors:
 - \textbf{Absorption}
 - Young seedlings often have greater absorption \textit{(growth stage)}
 - Remember small grains
 - \textbf{Translocation}
 - Burcucumber, 2,4-D moves slow (safe); 2,4,5-T moves fast (injury)
 - \textbf{Metabolism}
 - Normally, modification of the molecule eliminates phytoxicity
 - There are exceptions
 - Rate – differential metabolism
 - Much of the time these factors can be codependent

Why is 2,4-DB safe to seedling alfalfa?
- Legumes retain less 2,4-DB spray than susceptible species
- Therefore less 2,4-DB is absorbed by the legume
- In alfalfa, young plants are not as developed as older ones and do not have efficient β-oxidation systems
 - Poor β-oxidation, the herbicide stays mainly 2,4-DB
 - Older plants are able to break down the 2,4-DB to 2,4-D, an immediately phytotoxic transformation

β-oxidation
- Tolerant species
 - Legumes, low levels of β-oxidation
 - Less metabolism
 - Mostly 2,4-DB
 - Phytotoxicity
- Susceptible species
 - Weeds, high levels of β-oxidation
 - More metabolism
 - Mostly 2,4-D
 - Tolerance

MCPB
- Trade name: Thistrol
- Cost: $25.00/\text{lb}$
- Rates: 0.5 – 1.5 lb/acre
- Time applied: POST and translocated
- Weeds controlled
 - Canada Thistle, unique and very good activity
- Crops labeled
 - Pea: 4 – 6 inch
 - Mint: less than 6 inch
Family: Benzoic Acids
Mode of action: PGR

Dicamba
- Trade names: Banvel, Clarity, many others, New formulation Engenia
- Costs: range
 - dma salt (Banvel) $14.50/lb
 - dga salt (Clarity) $27.50/lb
 - Bapma salt (Enginia) $/lb
- Rates:
 - 1–2 oz/acre – wheat and oats
 - 1–8 oz/acre – perennial weeds
 - 2–4 oz/acre – corn (8 oz HIGH)
- Time applied: POST and translocated
 - PRE at higher rates (readily leached in soils)

Weed control spectrum
- Weed control spectrum similar to 2,4-D
- More effective than 2,4-D on many weeds...
 - At lower rates
 - More effective on perennial weeds
 - More foliar activity than 2,4-D
- Does not control mustard family well
- Does very well on buckwheat family
- Applied in many combo mixtures
 - dicamba + diflufenzopyr = Distinct

Weeds Controlled
- Buckwheat spp. –
 - Kochia – E
 - Common lambsquarters – G
 - Nightshades – E
 - Common cocklebur – E
 - Marshelder – E
 - Common ragweed – E
 - Canada thistle – F–G
 - Mustard spp. – P
- Redroot pigweed – G
- Biennial wormwood – G–E

Crops labeled
- Grasses:
 - Wheat – 2 – 4 leaf
 - Oat – 2 – 5 leaf (low rate at 5–leaf stage)
 - Corn –
 - Em–8 inches, (high rate, 4–8 oz/acre)
 - 8–36 inches tall (low rate, 4 oz/acre)
 - Injury to brace roots
 - Many turf/lawn mixtures
 - Barley easily injured
- Dicamba resistant soybean ~ 2015
- Pastures

Crop tolerance to dicamba

Grasses:
- Wheat – 2 – 4 leaf
- Oat – 2 – 5 leaf (low rate at 5–leaf stage)
- Corn –
 - Em–8 inches, (high rate, 4–8 oz/acre)
 - 8–36 inches tall (low rate, 4 oz/acre)
 - Injury to brace roots
- Many turf/lawn mixtures
- Barley easily injured
- Dicamba resistant soybean ~ 2015
- Pastures
Other comments

- Clarity is formulated as a dga salt for reduced volatility
- Engenia is formulated as bapma salt for even more reduced volatility
- Many lawn/turf mixtures
 - Weed & Feed generics
 - spray when lawn is established, not young

Herbicide Family: Pyridinecarboxylic acids
Mode of Action: PGR

Picloram

- Tradename: Tordon
- Cost: $40.00/lb
- Rates: 0.25 – 0.5 lb/A for perennials, label allows 1 – 2 lbs/A, but this rates this high are not practical
- Time applied: POST and translocated

Weeds controlled

- Most annual and perennial broadleaf weeds
- Does a good job on the “tough customers”
 - leafy spurge
 - Canada thistle
 - common milkweed
 - field bindweed
 - Russian knapweed
- Poor on wild mustard
- No control of kochia

Crops labeled

- In general, picloram is considered a rangeland/permanent pasture product. CRP as well
 - Potato, sunflower, and pea are VERY susceptible to residual... up to 4 – 5 years at higher rates

Restricted use pesticide!

- Long soil residual – biggest problem, injury to non-target plants
- Water soluble and easily leached/moved with water
 - Must wait 2 wk after treatment to feed cattle treated grass

Picloram: RUP

- Very persistent in soils
 - microorganisms slowly degrade it
 - application rate influences residual period
- Leaching potential
 - Organic matter (OM) and certain clays adsorb picloram
 - readily leached through sandy soils low in OM
 - Salt formulations are more easily leached than acid formulations

Monaco et al. 2002
Picloram: RUP

- Applied with 2,4-D or MCPA for wild mustard and kochia control
- According to the ND WCG, THE most cost-effective broadcast treatment for leafy spurge control is: Tordon (picloram) + 2,4-D (1 pt/A + 2 pt/A, respectively) for 3 – 5 years.

Clopyralid

- Tradename: Stinger (sugarbeets), Transline (pasture)
- Cost: $160/lb (Stinger), $63/lb (Transline)
- Rate: 1.4 – 4 oz/A
- Time applied: POST and translocated

Weeds controlled

- Excellent on composite family (sunflower family)
- Excellent on nightshade family
- Fair – (Good) on buckwheat
- Canada thistle – E
- common ragweed – G – E
- wild buckwheat – F – G
- redroot pigweed – P
- wild mustard – P

Crops labeled

- Wheat and barley: 4-leaf to jointing
- Sugarbeet: 2 – 8-leaf
- CRP, pasture: weeds actively growing
- Corn: up to 24 inches tall
- Safe to coniferous species (i.e. Christmas trees)

Other comments

- Shorter soil residual
 - 18 months: Potato, dry bean, chick pea
 - 10.5 months: many broadleaf crops
- Causes less injury than picloram on most crops
- Often sold with 2,4-D or MCPA, fluroxypyr
 - Tradenames: Curtail or Curtail M, WideMatch
 - Cost: $24/lb, $93/lb
 - wild mustard (E), redroot pigweed (G), wild buckwheat (G)
 - Not labeled for sugarbeets
Fluroxypyr

- Tradename: Starane (ester)
- Cost: $95/lb
- Rates: 1.5 to 2 oz/A
- Time applied: POST and translocated

Weeds controlled

- Some annual broadleaf weeds
- Kochia (including ALS-res.) – E
- up to 8 in tall
- common ragweed – E
- vol. flax – G
- Russian thistle – P
- wild mustard – p
- common lambsquarters – N

Crops labeled

- Wheat, Barley, Oat: 2-leaf – flag-leaf stage
 - WIDE WINDOW
 - Even onion! (not in ND)
 - SLN’s (Sec 24c) in many other states
- Chemical fallow
- Rights-of-way

Other comments

- Excellent crop safety
- No soil residual
- Sold in many premixes with MCPA, 2,4-D, and bromoxynil
- Many premixes
 - WideMatch (fluroxypyr + clopyralid)
 - Starane NXT (fluroxypyr + bomoxynil)
 - GoldSky (proxysulam+florasulam+fluroxypyr)

Triclopyr

- Tradename: Garlon
- Cost: $30/lb
- Rates: 1 to 8 lb/A
 - Up to 2 lbs on range and pasture (grazed areas)
 - Up to 6 lbs on forestry areas
 - Up to 8 lbs on industrial, non-crop areas
- Time applied: POST and translocated
- Remedy Ultra, $17.5/lb
- Crossbow: triclopyr + 2,4-D (musk thistle control)

Weeds controlled

- Primarily used for woody plant control
 - Saltcedar
- ND Prohibited Noxious Weed
Crops Areas labeled

- Non-crop areas
 - industrial manufacturing and storage sites
 - rights-of-way
 - power lines
 - communication lines
 - pipelines
 - roadsides
 - railroads
 - fence rows
 - forests

Most grasses are tolerant!

Milestone label: Page 1

IMPORTANT ADVISORY TO PREVENT INJURY TO DESIRABLE PLANTS
- It is mandatory to follow the Use Precautions and Restrictions section of this product label.
- Carefully read the section "Plant Resistance or Maximize."
- Manure and urine from animals consuming treated grass or hay may contain enough aminopyralid to cause injury to sensitive broadleaf plants.
- Inform the recipient of hay or manure from animals grazing pasture or feeding on hay from areas treated with aminopyralid of the use precautions and restrictions.
- Contact with a Dow AgroSciences representative if you do not understand the "Use Precautions and Restrictions." Call [1-800-303-1199] Customer Information Group.

Weeds controlled

- Rangeland
 - Russian knapweed
 - musk thistle
 - spotted knapweed
 - yellow starthistle
 - Canada thistle

What’s missing from this list?

Crops labeled

- Mainly used in non-crop situations
 - Pasture
 - Range
 - CRP
 - Trees (see label for species) only as a directed spray
- Also labeled for use in riparian areas (up to the waters edge) where clopyralid and picloram are not recommended
- No grazing/haying restrictions
 - But allow 3 days for animals to graze untreated areas before transferring animals to areas with sensitive broadleaf crops

Other comments

- Soil residual varies with environmental conditions, application rate, condition and growth stage of target weeds, density and vigor of competitors
- 35 day ½ life

Tradename: Milestone
Cost: $200/lb
Rate: 0.75–1.75 oz/A
Time applied: POST and translocated

Aminopyralid – 2004

Tradename: Milestone
Cost: $200/lb
Rate: 0.75–1.75 oz/A
Time applied: POST and translocated

Soil residual varies with environmental conditions, application rate, condition and growth stage of target weeds, density and vigor of competitors

35 day ½ life
Herbicide Family: Pyrimidine
MODE OF ACTION: Plant Growth Regulator

TRADENAMES:
- Viewpoint, Perspective, Streamline
- All pre-mixes + ALS Inhibitors

COST: $298, 223, 243/lb
RATE: 1.2 to 4 oz/A
TIME APPLIED: PRE or POST and translocated
NEW HERBICIDE: Officially registered with the EPA in 2010

Weeds controlled:
- Similar spectrum to Aminopyralid
 - Knapweeds
 - Thistles
 - Partial control of yellow and Dalmation toadflax
 - Good activity on leafy spurge
 - No yellow starthistle

Applied to non-crop areas

Other comments

Quinclorac

TRADENAMES:
- Paramount, Drive

COST: $5/oz
RATE: 4–6 oz/A
TIME APPLIED: PRE or POST and Translocated

AUXIN-LIKE ACTIVITY IN BROADLEAF PLANTS
- Similar to 2,4-D and dicamba

ACTIVITY IN SUSCEPTIBLE GRASSES, QUINCLORAC INHIBITS
the growth of roots and shoots and also lead to
chlorosis and necrosis of expanding leaves
- Barnyardgrass control in rice
- IN GRASSES – the mode of action is different (unknown)

Weeds Controlled

BROADLEAF
- Field bindweed: G–E
 - Fallow, postharvest, and preplant in spring prior to seeding
 wheat or durum
 - USE MSO
- Leafy spurge: G–E (prior to frost, actively growing)
- Prickly lettuce: E (PRE)
- F–P control of most other broadleaf weeds
 - This is good because it doesn’t injure most native forbs

GRASSES (PRE OR POST)
- Barnyardgrass: G–E
- Green foxtail: E
- Yellow foxtail: G
Crops labeled

- Fallow
- Post-harvest or preplant prior to seeding wheat
- Pasture
- Rangeland
- Rice

Other comments

- Soil persistence
 - Read label for rotational restrictions
 - May injure susceptible grasses 10 months after application
 - May injure susceptible broadleaf crops 24 months after application
 - Mobility in soil is soil type, and organic matter dependent

- ND WCG pages 112–113

Herbicide Family: Semicarbazones

MODE OF ACTION: Plant Growth Regulator

Diflufenzopyr

- Weeds controlled: broadleaf weeds (G–E)
- Crops labeled: Corn

 - MOA: Auxin transport inhibitor (PGR)
 - Blocks auxin transport

- Always marketed with another auxin–type herbicide
 - Most commonly with Dicamba
 - Tradename: Distinct, Status