Breeding for Carcass Improvement

John Dhuyvetter Area Livestock Specialist NCREC

Changing Industry

Value Based Marketing

- Grid Marketing
- Branded Product

Genetic Technology

Consolidation/Coordination

Topics of Discussion

 Economic Aspects of Carcass Traits

Genetic Tools for Carcass
 Improvement

 Relationship of Carcass Traits to Maternal Performance

Grid Marketing

Individually price carcasses based on:

- USDA Quality Grade
- USDA Yield Grade
- Compliance Factors
 - Carcass weight
 - Maturity
 - Dark cutters
 - ★ Stags
- Management Factors

Premiums & Discounts (\$/cwt)

Quality Grade

Prime6.41High Choice2.17Choice0.00Select-13.24Standard-22.10

Premiums & Discounts (\$/cwt)

Yield Grade

1.0 - 2.0	3.63
2.0 - 2.5	2.00
2.5 - 3.0	1.44
3.0 - 3.5	0.00
3.5 - 4.0	-0.22
4.0 - 4.5	-15.29
5.0 and up	-19.38

Discounts (\$/cwt)

Non-compliance factors

- Hard Bone
- Dark Cutter
- 400 –500 lb
- 500 –550 lb
- 950 1000 lb
- over 1000 lb

-31.25 -24.00

-28.50

- -19.86
- 7.25
- -19.75

YG1 YG2 YG3 YG4 YG5

	+10.04	+7.85	+6.19	-8.88	-12.97
PR	+5.8	+3.61	+1.95	-13.12	-17.21
CH+					
CH	+3.63	+1.44	00	-15.29	-19.38
SEL	-9.61	-11.8	-13.24	-15.29	-19.38
STD	-22.10	-22.10	-22.10	-22.10	-22.10

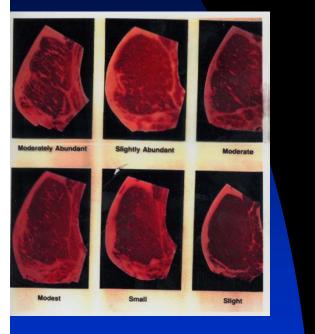
3/21/2007

Grid Comparison

- **Steer 1** ♦ 850 car wt
 ♦ 775 car wt ◆ CH+ ♦ YG3
 - Steer 2 ◆ SEL ♦ YG2
- Prem-Disc ♦ +1.95/cwt +16.75/hd <-91.45/hd</p>
- **Prem-Disc**

NW Task Force Steer Feed Out 2000-2001 Decatur County Feeders

Profit by Quality Grade

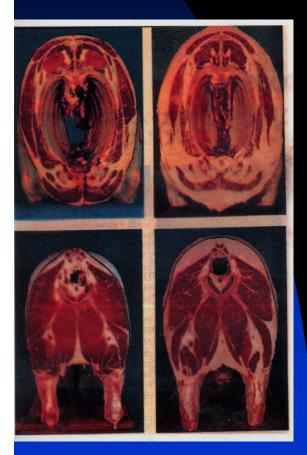

QG	\$/Ib	Return
PR	1.31	\$13
CAB	1.32	\$17
СН	1.26	\$24
SEL	1.19	\$-31

Niche Markets Natural Hormone free Antibiotic free Feeding Management ♦ Vitamin E ♦ DOF By-product Free **Other Specifics** ♦ Tenderness ♦ Leanness

Tenderness

- Important to Palatability
- Difficult to Measure
- Future Incentives Likely
- Management
 - Aging
 - Blade tenderizing
 - Electrostimulation
 - Ca injections
 - Hydrodyne

Quality Grade



- Ranking of the eating characteristics (flavor, tenderness, juiciness)
- Determined by maturity and degree of marbling
- Non genetic factors:
 - ♦ DOF, age, implant, etc
- Genetic factors:
 - Marbling at constant fat thickness is highly heritable (.60)

Conversions to Quality Grade

QG	Marbling Score	% IM Fat
PR	8+	9.9+
CH+	7.0 –7.9	7.7 –9.7
СН	6.0 -6.9	5.8 -7.6
CH-	5.0 - 5.9	4.0 - 5.7
SEL+	4.5 –4.9	3.1 – 3.9
SEL-	4.0 -4.4	2.3 – 3.0

Yield Grade

- Ranking for the yield (%) of trimmed retail cuts
- Estimated from fat thickness, ribeye area, KPH fat and carcass weight YG=2.5+(2.5*FT)+(.0038*CW)-(.32*RE)
- Non genetic Factors:
 - ♦ DOF, age, implant, etc
 - **Genetic Factors:**
 - ◆ **REA** is highly heritable (.50)
 - Fat Thickness heritability is high
 - Carcass Weight is moderately heritable
 - Cutability is moderately heritable 15

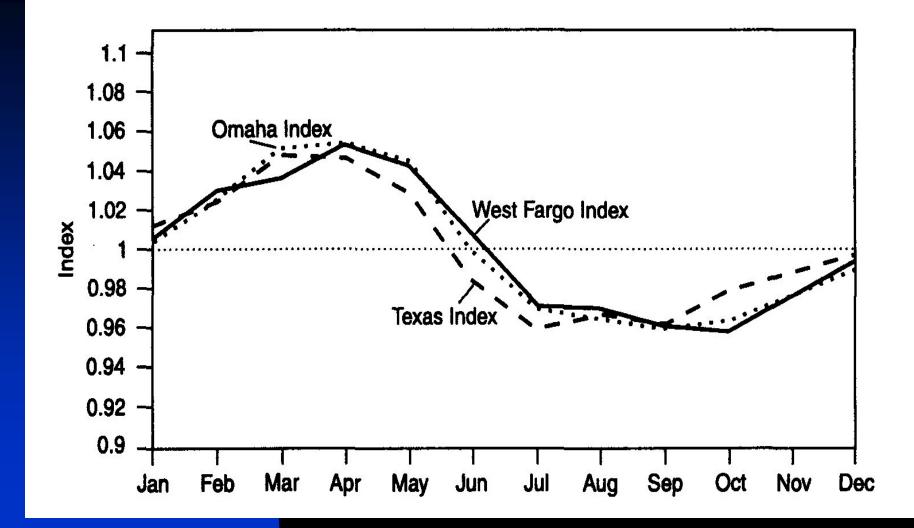
Preliminary Yield Grade

YG	RP %	Rib Fat (in)
2.5	51	.2
3.0	50	.4
3.5	48	.6
4.0	46	.8

Identifying the Target

Where are you at? Data feedback on feeders sold Retained ownership to slaughter Mainstream Markets YG2,Low CH, 600-850lbs Realistic 70-70-0 Specification Programs High Quality (50% >CH, 50% YG2) Lean and Natural (90% SEL, 90% YG 1&2) **Consider your Management limitations**

3/21/2007


"The cattle that invariably make the most money in our feed yard are those that stay healthy and gain the most weight in the shortest period of time, on the least feed."

Dallas Horton

Improvement In Feed Efficiency								
Feed	10%	15%	20%					
Cost								
<mark>\$1</mark> 20/T	\$27	\$40	\$54					

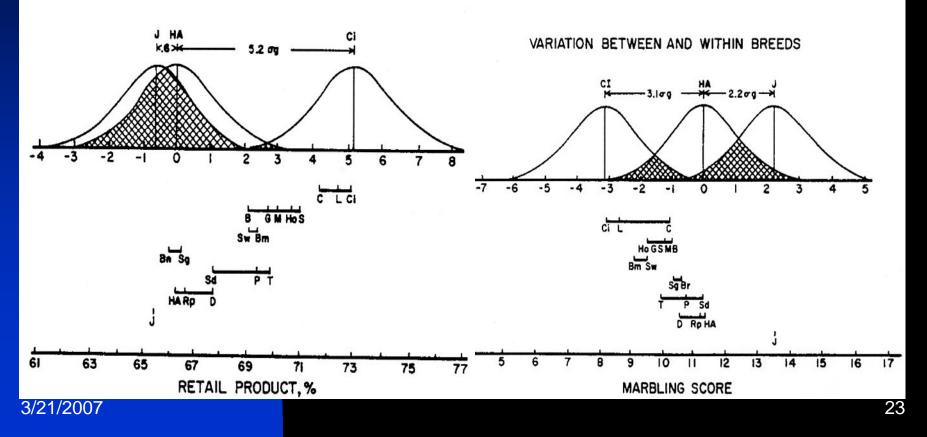
Market Seasonality and CH-SEL Spreads are Significant Factors

Month	#	% CH	\$/Ib	Return
April	33	46	1.28	\$13
May	24	75	1.22	\$-15
June	18	33	1.15	\$-19

3/21/2007

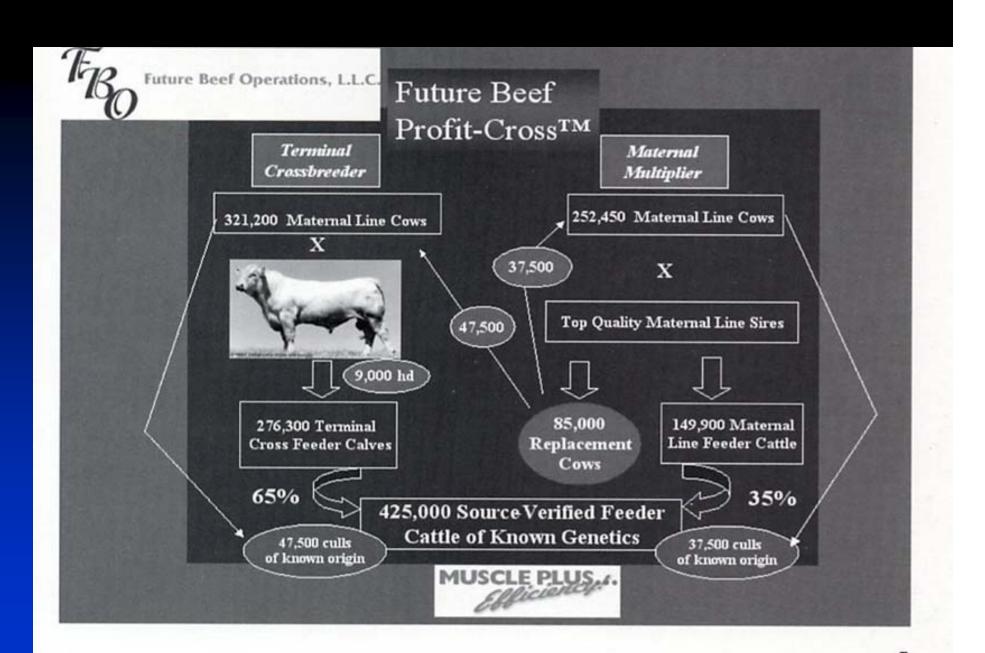
Performance still Matters

NW Task Force – Profit by ADG


ADG	#	Return
< 3.25	24	\$ -16.13
3.25 –3.50	17	\$ +.30
3.50 –3.75	22	\$40
3.75 –4.00	7	\$ +16.01
> 4.00	5	\$ +7.16

Genetic Tools

- Breed Resources
- Mating Systems
 - ♦ Heterosis
 - Breed complimentarity
- Sire Selection
 - phenotype
 - ultrasound
 - EPD
 - DNA markers


Variation Between and Within Breeds breed populations differ widely in traits of economic importance

VARIATION BETWEEN AND WITHIN BREEDS

Crossbreeding

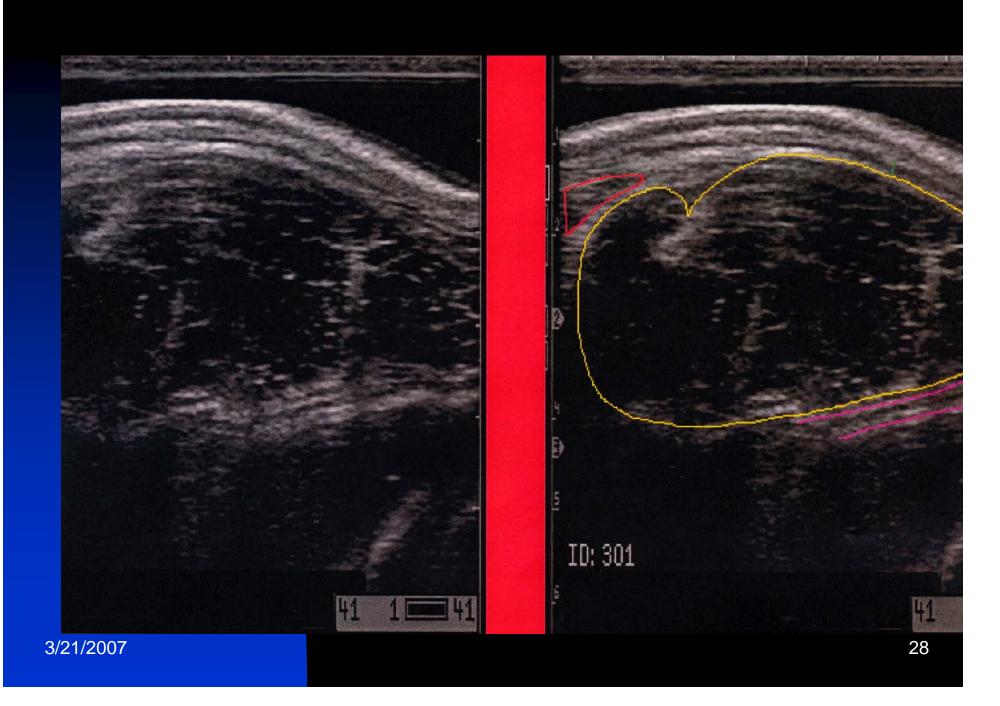
Combine breeds that compliment each other Maternal heterosis increases profit Use a system that fits management Terminal – maximize heterosis and consistency out source replacements Rotational – need breed similarity for consistency greater record keeping Composite - practical compromise for simplicity limited by evaluated seedstock

Ultrasound Measurements

- Measure composition traits on live animal
 - Produce a video image by ultrasonic sound waves
 - Images are captured and used to make measurements of carcass traits
 - Not the same but highly correlated to carcass measurements
- Measurements are a phenotypic description of animal

Ultrasound Measurements

 Collected on yearling heifers and bulls (320 –410 days of age)


REA

- Inter Muscular Fat
- Fat Thickness
- Rump Fat Thickness
- For genetic prediction measure contemporary groups and adjust for age and weight
- Technician testing and certification for greater accuracy

27

ISU provides central processing

3/21/2007

Carcass EPDs

- Calculated on carcass data collected on progeny and progeny of relatives slaughtered and ultrasound data of breeding animals
- Carcass data collection has been difficult and expensive
- Electronic ID and alliance programs increasing information
- Valid genetic comparisons across herds
- Traits: Marbling, Fat Thickness, REA,
 Car Wt, Percent Retail Product

ALC: N	S REAL	15,000	PPO	DUCTIC	DN .	MAX.			ST 31	04	CAR	CASS		1	ULT	RASOU	IND BO	DY CON	POSIT	ON
BW AC	WW AC	Milk	HRDS	YW	YH AC	MW AC	MH AC	SC AC	CW	Marb AC	REAC	Fat AC	%RP AC	GRP Pg	%IMF AC	REAC	Fat AC	Rump Fat AC	%RP AC	GRI
-1.3 .96	+ 4 .91	+ 16 .89	6 33	+16 .90	1 .92	I-18 .08	l+.1 .12	17 .69	-26 .59	+. 20 .63	21 .56	+.013 .53	1 .53	8 19	+.04 .09	04 .09	+. 010 .10	+.010	01 .09	12
+ 6.9 .98	+48 .98	-2 .93	23 104	+78 .94	+.9 .73	I+23 .18	I+1.1 .21	+ 1.62 .51	+ 7 .52	22 .56	+.11 .50	005 .48	+.1 .47	3 12	37 .55	03 .55	004 .56	005 .60	+.06 .55	10 38
+.6 .97	+34 .94	+25	18 56	+73 .93	+.5	I+6 .11	I+.4 .14	32 .58	+ 8 .56	+.10 .60	+. 13 .53	+.029 .51	2 .50	6 13	+.03 .13	+.02 .13	+.013 .13	+.003 .16	08 .13	33

EXPECTED PROGENY DIFFERENCES

3/21/2007

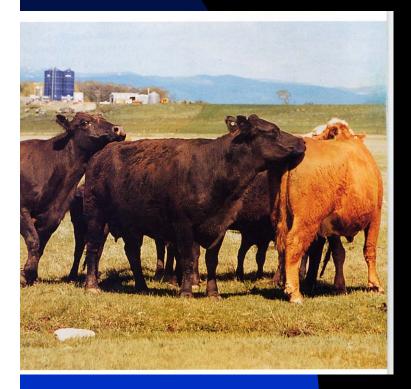
Active Purebred Simmental Sires Fall 2001 Genetic Evaluation

Percentile Calving Birth Weaning Yearling Maternal Maternal Maternal Carcass Percent Carcass

Level	Ease	Waight	Waight	Waight	Calv	Milk	Magar 18/4	\A/T	Detail C	Maubling
	Ease	_	Weight	_	Ease		Wean Wt	WT		Marbling
1	13.8	-1.7	61.8	99.7	11.0	21.2	42.7	23.6	0.63	0.30
2	12.8	-1.1	58.6	94.1	9.7	19.2	40.8			
3	11.9	-0.6	56.2	91.2	8.9	18.3	39.6			
4	11.5	-0.3	54.9	88.7	8.4	17.6	38.7			
5	11.1	-0.1	53.6	86.7	8.1	17.0	37.9	15.8	0.39	0.17
10	9.9	0.8	49.5	80.2	6.8	15.1	35.3	11.7	0.27	0.12
15	9.0	1.3	46.6	75.9	5.7	13.8	33.7	9.5	0.20	0.09
20	8.2	1.7	44.4	72.7	4.9	12.8	32.4	7.2	0.16	0.07
25	7.5	2.0	42.7	69.9	4.3	11.9	31.2	5.8	0.12	0.06
30	6.9	2.3	41.2	67.3	3.7	11.1	30.1	4.5	0.09	0.04
35	6.2	2.6	39.8	65.2	3.2	10.4	29.2	3.5	0.06	0.03
40	5.6	2.9	38.5	63.2	2.8	9.6	28.1	2.4	0.04	0.03
45	4.9	3.1	37.3	61.3	2.3	8.9	27.1	1.4	0.01	0.01
50	4.2	3.4	36.1	59.5	1.9	8.2	26.2	0.4	-0.01	0.00
55	3.5	3.7	35.0	57.5	1.5	7.5	25.3	-0.7	-0.03	-0.01
60	2.7	3.9	33.8	55.7	1.0	6.8	24.4	-1.8	-0.05	-0.02
65	1.8	4.2	32.7	53.9	0.5	5.9	23.4	-3.0	-0.07	-0.03
70	0.8	4.5	31.5	51.9	-0.1	5.1	22.4	-4.2	-0.09	-0.04
75	-0.2	4.8	30.2	49.7	-0.8	4.2	21.3	-5.3	-0.12	-0.05
80	-1.4	5.2	28.7	47.4	-1.6	3.2	20.1	-6.7	-0.15	-0.07
85	-3.1	5.7	26.9	44.7	-2.7	2.0	18.8	-8.9	-0.20	-0.09
90	-5.2	6.3	24.7	40.5	-4.2	0.5	17.2	-11.4	-0.26	-0.13
95	-8.0	7.3	20.8	34.6	-6.9	-1.7	14.9	-15.3	-0.37	-0.19
Average	3.2	3.5	36.6	60.0	1.5	8.0	26.3	0.1	0.00	0.00
Low	-25.2	-6.7	-3.6	-4.0	-29.9	-19.1	-0.9	-40.3	-1.24	-0.57
High	19.7	15.1	103.4	151.1	19.4	29.2	51.5	49.5	1.08	0.65

31

Genetic Markers


- Identify gene with large effect on important carcass trait
 - Myostatin muscle hypertrophy
- Develop techniques to identify animals with gene
 - GeneStar marbling
- Account for part but not all genetic variation for the trait
- Likely to be included in EPD calculations

Creating Consistency

Genetics

- Uniform crossbreeding
- Related Sires
- Herd culling
- Management
 - Limit calving season
 - Calve heifers early
 - Implant late calves
 - Creep feed calves
 - Herd health program
 - sorting

Genetic Relationships Between Carcass and Maternal Traits

- Will selection and improvement for carcass characteristics negatively affect important maternal traits?
- Will breed substitutions to improve carcass traits negatively impact maternal traits?

Maternal Traits and Performance

The Primary Profit Driver for Cow Calf Producers

Lbs calf weaned per cow exposed

- Conception rate, age at puberty
- Calf survival, calving difficulty
- Calf weight, milk production
- Iongevity
- Cow maintenance requirements
 - Mature weight
 - Milk production
- Cheap Feed is a Mitigating Factor

3/21/2007

Marbling vs Maternal

Age at Puberty	Favorable Relationship Slightly younger					
Calving	Little Relationship					
Rate						
Maternal Colving Difficulty	Little Relationship					
Calving Difficulty						
Maintenance Requirements	?					
Requirements						

Ribeye Area vs Maternal

Age at Puberty	No Correlation
Calving Rate	Favorable Slight effect
Maternal Calving Difficulty	Little Relationship
Maintenance Requirements	?

Fat Thickness vs Maternal

Age at	Unfavorable Relationship
Puberty	Leaner - Older
Calving	Unfavorable Relationship
Rate	Leaner - Iower
Maternal	Slightly Unfavorable
Calving Difficulty	
Maintenance	Little Relationship
Requirements	Leaner tend to be larger

Retail Yield % vs Maternal

Age at Puberty	Little Relationship
Calving	Unfavorable
Rate	Higher Yield lower rate
Maternal	Unfavorable
Calving Difficulty	Higher yield more difficulty
Maintenance Requirements	Tendency for larger mature

Summary

- Selecting for marbling would result in little correlated change in maternal traits
- Selection for decreased carcass fat is expected to result in older age at puberty, decreased fertility, and increased calving difficulty
- Selection for increased muscling would have little effect on maternal traits but slightly antagonistic to marbling

Breeding for Today

Structured Crossbreeding Exploit maternal heterosis Combine breed strengths **Multi Trait Selection** maternal + growth + carcass Compromise vs Extremes Records, EPDs, indexes **Management Strategies** Reduce variation and outliers Vertical coordination