Evaluation of Nitrogen Source and Rate on Tuber Yield and Quality in Old and New Potato Fields

Carl Rosen & Andy Robinson University of Minnesota North Dakota State University

NPPGA Research Reporting Conference February 18, 2014 Grand Forks, ND

Nitrogen Management

- Nitrate leaching losses continue to be a concern associated with production of irrigated potato in Minnesota and North Dakota
- Use of coated urea products such as ESN (44-0-0) or Duration (43-0-0) provides some insurance against losses during the season
 - Cost concerns
 - □ How do coated products compare with other N sources?
 - Most research is based on small plots at experiment stations

Overall Objectives

- Evaluate the effects of ESN rates and a blend of ESN and Duration on Russet Burbank yield and quality in on-farm settings (ESN obtained from airboom)
 - Comparisons with uncoated urea, and ammonium sulfate on yield and quality
- Compare potato N response in a field without a previous history of potato to response in a field with a long potato history

On-farm Studies Conducted in 2013

Park Rapids

ESN rate; urea; Duration/ESN blend; ammonium sulfate
 "Old" field vs. "New" field effects

Dawson

□ ESN rate; urea; Duration/ESN blend; ammonium sulfate

Park Rapids - 2013

- Two fields "Old" and "New"
- Old field was fumigated
- Nine N treatments
- 4 Replications
- 6, 40' rows,
- Planted May 11
- Sidedress N May 28
- Harvest September 17

2012 – NIR Aerial

Soil Test Results

New Field

- □ pH: 6.1
- OM: 1.7%
- Texture: Loamy sand
- P: 120 ppm
- K: 162 ppm

Old Field

- □ pH: 5.9
- OM: 0.7%
- Texture: Sand
- P: 115 ppm
- □ K: 125 ppm

Nine Nitrogen Treatments

Total N rate	Emergence N rate	N Source at	Preplant - 100 lb/A AMS (May8) 60 lb/A Urea
lb N/A		Emergence	525 lb/A 5-8-13
105	0		Planting - 18.8 gal 10-34-0/A
185	80	ESN	July 1 - 4.7 gal ATS/A
225	120	ESN	3.2 gal 32%/A
265	180	ESN	July / - 4.8 gal AI S/A 3.2 gal 32%/A
305	200	ESN	Total soluble Nº 105 lb/A
345	240	ESN	
225	120	Urea	
225	120	AMS	
225	60+60	ESN/Dur	

Rainfall and Irrigation at Park Rapids – Lepp Field

N Release from ESN & ESN/Dur. Blend -- 2013 --

Mid-season Aerial Photo

Statistical Analysis - Yield -- Park Rapids 2013 --

Source of Variation	Total Yield	Marketable Yield	% > 6
N Treatment	NS	*	**
N rate	*	**	**
N source	NS	NS	NS
Field	++	NS	**
Field x N Trt	NS	NS	NS

**,*,++ = significant at 1%, 5%, and 10%, respectively

Total Yield – Park Rapids 2013

% > 6 oz: 37 45 52 54 54 61 49 50 54

Field average total yield at 286 lb N/A, 432 cwt/A; % > 6 oz, 43

Marketable Yield – Park Rapids, 2013

Nitrogen Treatment

Field average marketable yield at 286 lb N/A, 341 cwt/A

Economic Analysis – Marketable Yield

lb N/A	Nitrogen		gain or loss	gain or loss
<u>N rate</u>	Source	Market Yield, cwt/A	over 105 control	over 105 control
105		387	\$0.0	\$0.0
185	ESN	438	\$251.6	\$302.6
225	ESN	458	\$344.4	\$415.4
265	ESN	469	\$383.2	\$465.2
305	ESN	484	\$446.0	\$543.0
345	ESN	458	\$262.8	\$333.8
225	Urea	463	\$394.8	\$470.8
225	AMS	459	\$318.0	\$390.0
225	ESN / Duration	472	<u>\$416.4</u>	<u>\$501.4</u>
			\$6/cwt	\$7/cwt
<u>2013 N Prices</u> :				
Urea – \$	Urea – \$0.51/lb N			

AMS - \$0.95/lb N

ESN - \$0.68/lb N

ESN/Dur Blend – \$0.79/lb N

N Rate by Field Interaction (NS)

N Rate by Field Interaction (NS)

Marketable Yield

N Source by Field Interaction (NS)

Total Yield

N Source by Field Interaction (NS)

Marketable Yield

Old Field vs. New Field

Field	Total Yield	Marketable Yield	% > 607
Гіеій		70 - 00Z	
Old	530	453	45
New	507	455	56
Significance	++	NS	**

**,*,++ = significant at 1%, 5%, and 10%, respectively

Field average % > 6 oz at 286 lb N/A, 43% Field average total yield at 286 lb N/A, 432 cwt/A Field average marketable yield at 286 lb N/A, 341 cwt/A

Why Did Bulk Field Have a Lower Yield?

- Plot area was in better ground (green)
- Bulk of field in poorer soil?

Park Rapids Summary

N source effect was not significant for yield

- N rate effect was significant in old and new fields optimal rate was between 260 and 300 lb N/A
- Total tuber yield was not affected by field, but tuber size was larger in the new field
- Higher set and higher incidence of Vert. in the old field

Dawson Study - 2013

- Eight N treatments
- 4 Replications
- Planted May 18
- Emergence June 13
- Harvest October 1
- Soil test:
 - □ OM 1.6

Eight Nitrogen Treatments

Total N rate	Emergence N rate	N Source at	
lb l	N/A	Lineigence	
164	0	ESN	Preplant: 21-0-0-24: 60 lbN/A
224	60	ESN	Planting - 10-34-0: 37 lb N/A
284	120	ESN	Sidedress – 28-0-0: 30 lb N/A
344	180	ESN	Fertigation – 28-0-0 38 lb N/A
404	240	ESN	Total soluble N: 164 lb/A
284	120	Urea	Total soluble N. 104 ID/A
284	120	AMS	
284	120	ESN&Dur	

Field total yield with 328 lb N/A – 487 cwt/A; % > 6 oz = 54

Marketable Yield

Economic Analysis – Marketable Yield

			gain or loss	gain or loss
lb N/A	Nitrogen	Market Yield, cwt/	<u>over 164</u>	<u>over 164</u>
<u>N rate</u>	Source	<u>A</u>	<u>control</u>	<u>control</u>
164		397	\$0.0	\$0.0
224	ESN	367	-\$220.8	-\$250.8
284	ESN	375	-\$213.6	-\$235.6
344	ESN	356	-\$368.4	-\$409.4
404	ESN	360	-\$385.2	-\$422.2
284	Urea	328	-\$475.2	-\$544.2
284	AMS	415	-\$6.0	\$12.0
284	ESN / Dur	369	<u>-\$262.8</u>	<u>-\$290.8</u>
			\$6/cwt	\$7/cwt

2013 N Prices:

Urea – \$0.51/lb N

AMS - \$0.95/lb N

ESN - \$0.68/lb N

ESN/Dur Blend – \$0.79/lb N

Dawson Summary

- Urea as the N source significantly reduced yield compared to other N sources and no added N
 Possibly due to high soil pH
- Ammonium sulfate resulted in numerically highest yields, but statistically yields were similar to ESN and no added N
- Poor tuber size and lack of N response are difficult to explain

Take Home Messages

- In 2013, rate of N was more important than source of N at the Park Rapids site
- Urea as a main N source on high pH (~8.0) soils should be avoided – Dawson site
- Field history affected tuber set
 Lower set in fields without potato history (less disease)
 Higher set in older potato fields (more disease)
 - Reasons for this are not clear

Questions???

Verticillium

Old Field

- 25 of 32 plots positive for vert
- 15 plots 8 or greater VPPG
- Range: 0 to 24 VPPG
- Average: 6.2 VPPG
- New Field
 2 of 32 plots positive for vert
 2 or less VPPG

Vert. and Vine cover at Harvest

Vert. and Marketable Yield

Nitrate Leaching

- On any given date, nitrate-N concentrations were not affected by N treatment
- When averaged over all dates, concentrations were affected by treatment but the response was not consistent between fields

New Field – Nitrate-N Concentrations

Old Field Nitrate-N Concentrations

Nitrogen Treatment