BMP Potato Seed Management

Gary Secor

North Dakota State University International Crop Expo February 20, 2014

Content

- The basics of good seed
- If, thens
- More of the story
- BMP's

The basics of good seed

- These basic best management practices should be followed whether you use a seed treatment or not, and whether you use a dust or a liquid
- Start with good seed
- Seed treatments cannot turn poor seed into good seed (perform miracles) or rescue poor seed

Many factors affect seed performance

- Variety number and distribution of eyes, dormancy
- How it was grown planting date, rainfall, location
- Diseases
- Storage temperature, humidity, duration
- Transport temperature, air, time
- Handling in and out of harvest
- Chemical treatment ONLY ONE FACTOR
- Cutting cutter, blades, size
- Planting soil moisture, temperature, soil type, depth
- Weather

Ideal Seed

- Ideal seed has been grown in a good field free of disease in an area with northern grown vigor
 - Long days, cool nights, plenty of food (fertilizer) and water (irrigation) and
 - Passed certification mosaic, BRR
 - Free of diseases: late blight, mosaic, bacterial ring rot, Rhizoc, powdery scab, others
 - Vine killed
 - Handled gently during harvest
 - Stored cold 2-4°C (34-38°F)
 - Physiologically the right age

Physiological Age

- Physiological age is a measure of stress, health and metabolism, not time
- Influenced by the growing environment and handling of the seed
- Storage conditions:
 - Temperature
 - Moisture
 - Maturity
- More heat, handling and stress increase physiological age of the seed
- Implications of physiological age:

Physiologic Age and Stages of Sprouting

Tuber Initiation Dormant Tuber Apical Sprouting Multiple Sprouting Hairy Sprout Little Tuber

No Plant

Single Stem Plant

Produces A Few Large Tubers Multi-Stem Plant

Large Set of Smaller Tubers Weak, Bushy Plant

Low Yield

No Plant

Buy The Right Seed

• The seed lot has been selected that is the

- Right variety for the right market
- Physiologically young
- Free of disease
- Stored properly

Examining Seed for Disease

- Viruses; field readings, can't see mosaic in storage
 - Some necrotic viruses visible: necrotic PVY strains, leaf roll, TRV, mop top
- Rhizoctonia less than 5% of tuber surface
- Fusarium 2%
- Bacterial Ring Rot 0%
- Soft Rot 1% or less
- Verticillium or Fusarium; minimal
- Powdery scab; none but an emerging issue
- Scab; soil inoculum more important than seed
- Silver Scurf; seed borne inoculum most important
- Late blight zero, 1% tolerance in US

Handling Seed

- Temperature
 - Protect from low temperature (freezing) exposure
- Sanitation
 - Clean and disinfect all trucks and handling equipment.
- Handling
 - Manage loading to prevent cuts and bruising
 - Seed bruise/damage #1 cause of seed decay due to bacterial soft rot
 - ∩ No bruise 5% rot, bruised seed 65% rot
 - Increased handling increases aging

Transporting Seed

- Load seed gently
 - Seed is cold and bruises easily
 - Bruises are entry sites for disease –soft rot, Fusarium in transit
 - Do everything to prevent damage, ie, sawdust on truck floor
 - During transport
 - Continue to warm gradually
 - Provide fresh air
 - Educate the driver

Unloading seed

- Gently, avoid injuring seed –same reasons
- Most seed is stored, even for a short time prior to cutting
- After unloading, the most important consideration is to provide conditions favorable for wound healing to heal wounds that occurred during loading, transport and unloading

• Wound healing

- Prevents desiccation
- Prevents pathogen entry
 - Bacteria and Fusarium need wounds to enter

Conditions for wound healing

- High humidity
- Temperatures 50-55°F (10-12°C)
- Plenty of O_2 (air)

o <u>Time</u>

- 3 days enough to stop Erwinia soft rot
- 14 days needed to stop Fusarium
- 21 days needed for new periderm
- Pile newly arrived seed out of direct sun and weather, no more than head high (about 6 ft), provide humidity and oxygen and continue to warm the seed gradually to 10°C/50°F

Seed Diseases and Seed Treatments

- Emergence and stand problems can be caused by diseases and these are seed treatment targets
 - Pectobacterium (Erwinia) carotovora soft rot
 - Fusarium dry rot
 - Rhizoctonia sprout girdling
 - Silver Scurf
 - Late Blight
- However seed treatments do not control/manage/reduce/suppress
 Verticillium, common scab, powdery scab, or ring rot
- If, thens

If, thens

- If you have seed free of disease, or don't care about seed disease, then you may not need a seed treatment
 - Can just cut and plant or use a bark seed dressing to manage cutting juice, dry the seed, favor wound healing, and facilitate good seed flow
 - Do not contain a fungicide
 - Could also pre-cut; cut and store cut seed for some days before planting
 - Allows wound healing, begins sprouting, helps foster even emergence of varieties that have strong apical dominance
 - Don't pile too high, provide plenty of air for wound healing
 - Some seed is not cut

What do you do if you have to Pre-cut seed?

- Ensure that all wound healing requirements are met
- Make sure you apply a suitable seed treatments, including liquids
- DO NOT USE MANCOZEB SEED TREATMENTS if you plan to pre cut and store seed

More if, thens

- If disease control on seed is important/necessary, then you may want to consider a seed treatment with a fungicide
- However, the most common cause of poor stands and emergence is bacterial soft rot
 - Caused by Erwinia (now Pectobacterium) carotovora
- Seed treatments, whether dust or liquid do not directly control bacterial seed decay but indirectly can increase bacterial seed decay if not used correctly

Soft rot seed decay

- Seed borne in lenticels or wounds
- Bacteria in all surface waters
- Enter through lenticels or wounds
- Decay during wet conditions
- Worse under warm conditions
- Blackleg can follow
- No chemical control

Bacterial seed decay

- If air is cut off from the seed by a film of water preventing it from breathing, soft rot decay from the lenticel-borne bacteria will begin and develop quickly; the warmer the faster
 - Both liquid and dust treatments can exacerbate soft rot seed decay if applied improperly
- If cut seed is too wet from a liquid seed treatment, and is planted in wet soil, soft rot decay can result
- If cut seed is treated with a dust containing a hydroscopic substance such as MZ or talc is planted in wet soil, the dust may absorb water, cutting off air and soft rot seed decay can result

BMP for managing soft rot decay

- Apply liquid seed treatments at ULV to avoid excess water
 - Recommended volume 0.5 gal/T
- Best to use a calibrated machine to apply liquids to insure thorough coverage and right volumes
 - One of the BMP challenges is finding the right equipment to provide recommended coverage volume
 - Examples: Milestone barrel treater, MAFEX spray unit
- Allow treated seed to dry
- Don't plant into wet soil

Post-harvest spray application volumes

Woodell, UIdaho

More if, thens

- If managing Rhizoc, Fusarium or silver scurf is important, then a seed treatment should be considered
- All are seed-borne, at least in part, and seed treatment is an important part of an integrated management plan

Rhizoctonia

- Survives as sclerotia on seed and in soil
 - Seed inoculum –stem girdling
 - Soil inoculum –stolon girdling
- Seed inoculum grows with sprout and causes pre- or post-emergence stem decay
- Manage by clean seed, rapid emergence, seed treatment

Fusarium dry rot

- Seed- and soil-borne
- Slow decay and weak plants
- Manage by clean seed, seed treatment
- Controlling FDR indirectly controls Erwinia soft rot decay

Silver scurf

- Most important blemish disease of table stock potatoes, especially reds
- Infection occurs in the field and can spread during storage
- Seed-borne
- Requires multiple tactics to reduce disease
- Rotation, sanitation, clean seed, short time between vine-kill and harvest
- Seed treatment an important management strategy

Liquid seed treatments

- Liquid seed treatments are active against all three of these pathogens and reduce disease caused by them
- In the US and Canada two liquid seed treatments registered
- Both are combinations of two fungicides and a systemic insecticide
 - Titan Emesto Silver (Bayer) registered only in Canada
 - O Penflufen + Prothioconazole + Clothianidin
 - Emesto Silver registered in US
 - O Penflufen + Prothioconazole
 - Cruiser Maxx Extreme (Syngenta)
 - Fludioxonil + Difenoconazole + Thiamethoxam

More of the story

- The penflufen part of Emesto is an SDHI fungicide; in lab and field trials we have conducted with three SDHI compounds in 2013, none of them have good activity against Fusarium
 - The SDHI fungicides do have good activity against Rhizoc in field trials
 - The SDHI fungicides do have activity against silver scurf in lab trials
 - In field trials we conducted at Becker in 2013, none of the SDHI fungicides or any other fungicides we tested as seed treatments suppressed tuber black dot at harvest
- Resistance to the fludioxonil part of Cruiser has been reported in several Canadian provinces and MI
- Consequently, in both Emesto and Cruiser, it is the triazole fungicides prothioconazole and difenoconazole that is doing the work to suppress Fusarium
 - Remember managing Fusarium indirectly helps manage soft rot seed decay

Even more

- Importantly, neither Emesto or Cruiser have activity against the spread of late blight during cutting,
 - Only MZ and Reason seed treatments can reduce spread of late blight
 - Reason seed treatment only registered in Canada

Liquid ST BMP's

- Use as necessary
- Different mind set than using dusts; use at ultra low volumes
- Emesto has a red dye, Cruiser does not have a dye--- we can debate this all day but is a matter of visibility
- Insecticide and broad spectrum fungicides in one seed application
- Apply at ULV volumes of water
 - 0.5 gal/T
 - Must avoid wet seed
 - Application technology steepest learning curve/biggest challenge
 - Dry treated seed
- Do not plant into wet soil

Other considerations

- No dust, better worker safety liquids are coming
- Broad spectrum efficacy
- Even application
- No activity against late blight

Summary

- Three points of planting
 - Get good seed
 - Handle it carefully
 - Watch for Disease
- Recommendations to minimize decay and disease
 - Seed and soil same temperature
 - Handle seed gently
 - Avoid wet conditions
 - Encourage quick emergence
 - Use a seed treatment fungicide to reduce Rhizoc, Fusarium and silver scurf
 - Control of Fusarium indirectly controls Erwinia decay

