CRIS PROJECT REPORT CONTRIBUTION

YEAR 2008

PROJECT: ND43500 - Canola-based Epoxy Resins for Bio-based Plastic Composites

Submitted by Dennis Wiesenborn, lead PI

OVERVIEW AND PROJECT IMPACT:

Our long-term goal is development of high-quality, affordable composite materials using canola oil-based resins and the transfer of this technology to industry. Briefly, we developed a process in the first year to prepare canola resin and techniques for incorporating this resin into composites. Inclusion of up to 40% canola resin in a composite matrix was achieved in the second year of this project, also improved and scaled up procedures for producing and characterizing the resin. The performance of fiber glass-reinforced composites were tested using standard mechanical tests and found to be competitive with 100% synthetic resin/composites. Key goals for the coming year are further process scale-up to 1 kg batches, identification of industry needs and opportunities for canola resin, and development of composites targeted to specific industrial applications. A team of senior engineering students at NDSU is developing shields for the ASABE quarter-scale competition which incorporate the 40% canola resin; this is expected to combine excellent strength with light weight. This project is based on a unique partnership in composites research and is crucial to technical and commercial success of these types of materials.

OBJECTIVES:

Objective 1. Identify and optimize procedures for production of epoxy resins from canola oil and alcohol esters of canola oil, and characterize those epoxy resins.

Objective 2. Characterize resins and plastic composites produced from those resins, using standard industry techniques.

Objective 3. Analyze economic feasibility of and identify steps to transfer technology for canola-based resins.

COOPERATING INVESTIGATORS:

Judith Espinoza-Perez, Grad. Res. Assist., Agricultural & Biosystems Engineering Cole Gustafson, Co-PI, Agribusiness & Applied Economics
Darrin Haagenson, Research Specialist, Agricultural & Biosystems Engineering
Morteza Tatlari, Grad. Res. Assist., Mechanical Engineering
Kristi Tostenson, Research Specialist, Agricultural & Biosystems Engineering
Chad Ulven, Co-PI, Mechanical Engineering
Dennis Wiesenborn (PI), Agricultural & Biosystems Engineering

PRESENTATIONS & PUBLICATIONS

Espinoza-Perez, J.D., D.P. Wiesenborn, D. Haagenson, C.A. Ulven. 2008. Study of the process parameters of the canola epoxidation, paper 081031036. ASABE Annual International Meeting, Providence, RI, June 29-July 2.

Kumar, M., J.D. Espinoza-Perez, D. Haagenson and D.P. Wiesenborn. 2008. Epoxidation of canola oil utilizing green solvents and recycled catalyst. ASABE/CSBE Intersectional Conference, Winnipeg, MAN, September 19-20.

Tatlari, M. 2008. Vegetable Oil-based Epoxy Resin for Structural Composite Material Manufacturing. M.S. Thesis under direction of C. Ulven, North Dakota State University, Fargo