

Managing Salinity with Tiling Hans Kandel, Extension Agronomist

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY

NDSU NORTH DAKOTA

Figures 1 (*left*) and 2. Corn growing in flooded or saturated soil is more likely to develop disease problems now and later in the season. (*Left photo courtesy of Jae Behn, UNL*). Impact of water logged conditions on yield of corn

Yield reductions are • significant even after 2 days Date Percent Percent Days Yield Yield Water Reduction Planting Crop may look like Logged Reduction 0 0% By 5/1 0% it recovered and still -25% 5/2-5/10 -7% have a yield reduction -45% 5/11-5/25 -13% 8 -80% 5/26-6/1 -24% NDSU NORTH DAKOTA STATE UNIVERSITY

1

Why do water logged conditions after planting cause crop damage?

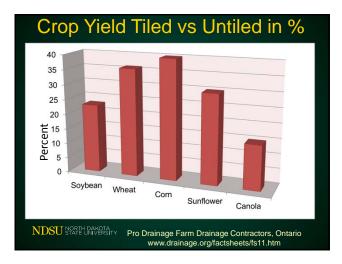
 Under water-logged conditions, the availability of oxygen is decreased

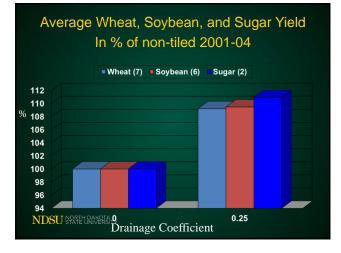
NDSU NORTH DAKOTA STATE UNIVERSITY

Why do water logged conditions after planting cause crop damage?

- When roots are subjected to low oxygen conditions, changes occur in the plant that generally decreases yield
- Root growth is restricted

NDSU NORTH DAKOTA STATE UNIVERSITY

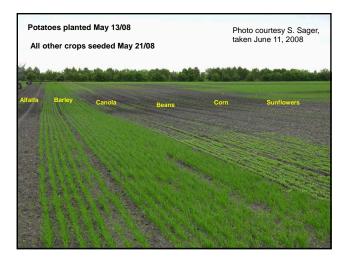

Drained conditions after planting

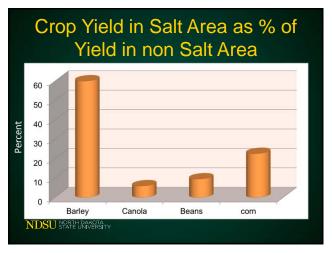

- When roots haves oxygen available, plants generally respond with increase yield
- Root growth is not restricted

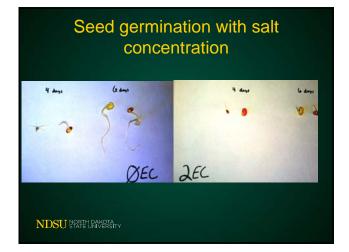
NDSU NORTH DAKOTA STATE UNIVERSITY)

Crop	Un- drained bu/a	Drained bu/a	Increase in yield in %
Soybean	31	38	23
Wheat	45	61	36
Corn	88	123	40

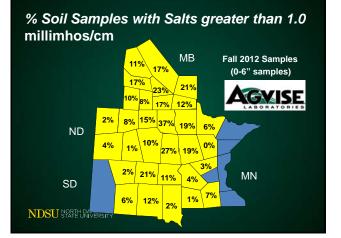
Crop	Un- drained Ib/a	Drained Ib/a	Increase in %
Sunflower	1091	1418	30
Canola	1350	1554	15

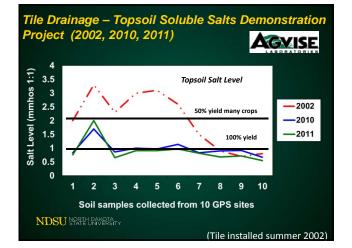



3


2012 NDSU Fargo Saturated-soil, neutral pH, Roundup Ready Soybean							
				Saturated	Dry-Wet		
			Dryland	soil	average		
<u>Company</u>	Entry	Maturity	Yield*	Yield**	Yield		
		date	Bu/A	Bu/A	Bu/A		
Seeds 2000	2051RR2Y	12-Sep	43.1	31.7	37.4		
REA Hybrids	65G22	13-Sep	39.9	29.0	34.4		
Legend Seed	LS03R2	12-Sep	37.5	44.6	41.0		
REA Hybrids	66G22	13-Sep	34.6	42.3	38.4		
Proseed	P2 20-90	18-Sep	37.3	39.0	38.1		
Average		14-Sep	32.4	27.3	29.8		
LSD(0.05)		5	11.7	10.7	11.2		
NDSU NOTEL PARSENTY 19 % yield loss due to excess water							

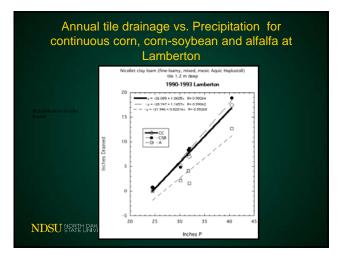
Salts in ND


 Salts found in North Dakota soils are of three types: sulfates (SO₄); carbonates (CO₃); and chlorides (Cl).

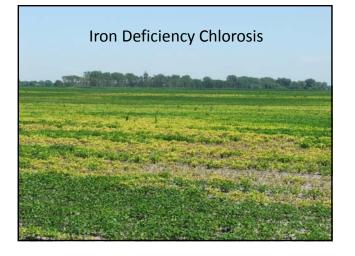


Management Options

- 1)Crop Selection (short-term)
- 2)Breeding (long-term)
- 3)Tillage and seed placement (short-term)
- 4)Sub-surface drainage

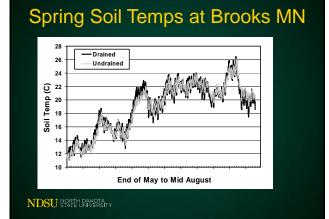

Managing Saline Soils

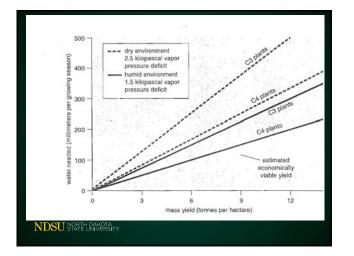
- The only way to remove salts is to leach them out or remove salts in crop biomass.
- Tile drainage permanently lowers the water table and provides an outlet for excess water.
- Time required to reduce salt levels depends on:
 - Soil characteristics
 - Amount of water removed through tile


NDSU NORTH DAKOTA STATE UNIVERSITY

Tile Drainage Results

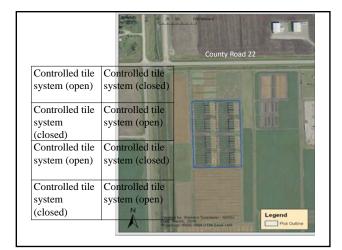
- Topsoil salt levels have decreased a lot.
- Several crops now produce good yields
 Corn, soybeans, sunflowers
- Subsoil salt levels take longer to be decreased
- High subsoil salt levels do not affect yield as much as high topsoil salt levels
 - Seedling salt sensitivity vs. general salt sensitivity

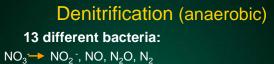


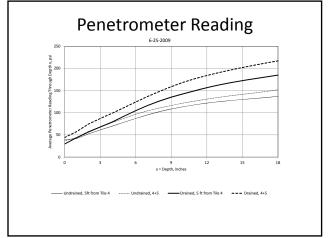


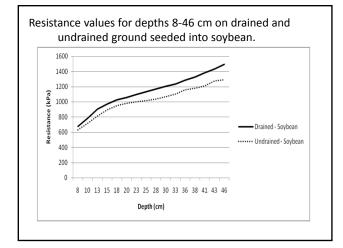
Factors "Known" to Increase Potential for Iron Deficiency Chlorosis

- •Soluble Salts
- •Excessive water
- Cool Temperatures
- •Carbonates






Nitrate to gaseous forms of N (nitrite, nitric oxide, nitrous oxide, N gas)



Can lose up to 2-4 pounds/acre/day

Penetrometer Readings

Drainage Effects on Corn Yields – Ohio, 13 Year Study

 <u>Treatment</u> 	<u>Bu/A</u>	<u>C.V.%</u>
Undrained	60	46
Surface	92	33
Subsurface	116	18
Combination	121	17
(Source: G.O. Schwab, 1984) NDSU NOTEH DAMOTATIV		