Crop Disease Research Update 2017 season

Venkat Chapara

Plant Pathologist

Langdon Research extension Center

CROPS

- Wheat: Scab
- Canola: Blackleg, White Mold, Club root
- Soybeans: White Mold
- Sunflowers: Head rot

Management of Fusarium Head Blight in Spring Wheat Cultivars with **Fungicides**Venkat Chapara, Amanda Arens, and Andrew Friskop

T VIII CITA PAIR A, 1.	Fusarium Head Blight Yield Test weight Seed count Seed weight						FDK	DON
Treatments, Dosage and Application Time	Cultivar	Index	Bu/A	lbs/bu	#	(g)	(%)	(ppm)
Non-treated, Non-inoculated	MB-Mayville	30.5	32	57	107	3	13	9.9
Non-treated, Inoculated	MB-Mayville	16	33	58	106	3	11	7.9
Prosaro @ 6.5 oz - Feekes 10.51	MB-Mayville	1.0	60	60	101	4	3	5.5
Prosaro @ 6.5 oz - Feekes 10.51, Caramba @ 14 oz at 4 days after 1st application	MB-Mayville	0.1	61	61	106	4	2	1.5
Caramba @ 14 oz - Feekes 10.51, Folicur @ 4 oz - at 4 days after 1st application	MB-Mayville	1.2	54	60	104	4	2	4
Proline @ 5.7 oz - Feekes 10.51, Folicur @ 4 oz - at 4 days after 1st application	MB-Mayville	1.0	59	60	104	4	4	1.5
Prosaro @ 6.5 oz – Feekes 10.51 + 4 days	MB-Mayville	1.1	60	61	103	4	2	3.5
Non-Treated, Non-Inoculated	SY-Ingmar	6	45	59	103	3	6	7
Non-treated, Inoculated	SY-Ingmar	17	42	59	102	3	4	8
Prosaro @ 6.5 oz - Feekes 10.51	SY-Ingmar	0.4	59	60	104	3	3	1.4
Prosaro @ 6.5 oz - Feekes 10.51, Caramba @ 14 oz at 4 days after 1st application	SY-Ingmar	0.1	68	61	100	3	0.25	1.8
Caramba @ 14 oz - Feekes 10.51, Folicur @ 4 oz at 4 days after1st application	SY-Ingmar	0.4	67	61	102	3	0.75	2.9
Proline @ 5.7 oz - Feekes 10.51, Folicur @ 4 oz at 4 days after 1st application	SY-Ingmar	0.03	66	61	102	3	0.75	4.9
Prosaro @ 6.5 oz – Feekes 10.51 + 4 days	SY-Ingmar	0.04	66	60	102	3	0.5	1.1
	Mean	5.3	55	60	103	3	4	5
	CV (%)	101	12	1	4	7	55	93
	LSD (0.05)	8	9	0.9	6	0.3	2.9	6.3
	p-Value>F	<0.001	<0.001	<0.001	NS	<0.001	<0.001	NS
Note: Non-treated,non-inoculated received no artificial inoculum								
DON: Deoxynivalenol								
FDK: Fusarium Damaged Kernels								

Efficacy of commercially available fungicides in managing Canola black leg

Treatment	Dosage	Application	Blac	ck Leg	Yield	Test Weight
	(Fl oz/A)	Timing	Incidence (%)	Mean Severity*	(lbs/A)	(lb/bu)
Non-treated	Check	Check	36	0.48	2646	52
Headline	6	2-4 leaf+14DAA	29	0.25	2385	52
Priaxor	6	2-4 leaf+14DAA	21	0.34	2479	52
Proline	4	2-4 leaf+14DAA	20	0.28	3121	52
Mean			27	0.34	2657	52
CV (%)			63	41	11	0.3
LSD			26	0.21	438	0.25
p-Value			NS	NS	0.01	NS

^{*}Black Leg Mean Severity: was calculated by multiplying the category value (0-5)*actual severity (0.2,0.4,0.6,0.8,1.0), and summing, then dividing by the infected plant count.

NIS: Non-Ionic Surfactant was added at 0.25% V/V in all the fungicide treatments.

Fungicide Evaluation to Manage White Mold in Canola

Treatments	Dosage	White Mold	Yield	Test Weight	
Treatments	(Fl oz/A)	DSI*	(lbs/A)	(lbs/bu)	
Aprocab + NIC	(1·1 02/A) 9	0.03	3794	(158/54) 52	
Aproach + NIS	-				
Endura + NIS	6	1.33	4086	52	
Proline + NIS	4.3	0.28	4200	52	
Quash + NIS	3	0.19	3968	52	
Topsin	231(g/A)	0.23	4372	52	
СНЕСК	Check	1.46	3769	52	
Mean		0.59	4031	52	
CV (%)		59	14	0.76	
LSD		0.62	1014	0.7	
p-Value		0.0006	NS	NS	
NIS: Non-Ionic Surfactant 0.25% V/V					
DSI*: White Mold Disease Severity Ind					
NS: Non-Significant					

Evaluation of various chemicals, cruciferous hosts and canola cultivars to manage clubroot on Canola in field condition

- Caused by a pathogen *Plasmodiophora brassicae* belong to lower group of living organisms called Protista
- Not a fungus/amoeba/slime mold but has some characters similar from each
- A serious yield robing disease of brassica crops
 - E.g. Canola, cauliflower, cabbage, rutabaga, radish, turnip, brussel sprouts, kale etc.
 - Susceptible brassica weeds: wild mustard, shepard's purse, volunteer canola, stink weed
- Prefers acidic soils but found in the soils of pH up to 7.2
- Once in the soil can live as resting spores up to 20 years
- Pathogen infects roots; causes galls there by restricting the flow of water and nutrients to the plant
- If 100% of plants infected results in 50-80% reduction in yields (Europe and Sweden Research)

Clubroot - The challenge

- Clubroot has been a regular finding ever since identified in Cavalier County, ND in 2013
- Clubroot has appeared in 2016, in the field where it has been identified in 2014
- In 2017 started spreading to neighboring fields (found in new fields too)

Challenges:

- Lack of understanding of pathogen biology
- Lack of knowledge of Genetic resistance
- No effective chemical control and
- Lack of knowledge on rotations to be followed.
- A Clubroot survey group has been formed with one pathologist, two extension specialists and seven county agents to create awareness of clubroot and its management in 2016.

Objectives

Plot lay out of three objectives

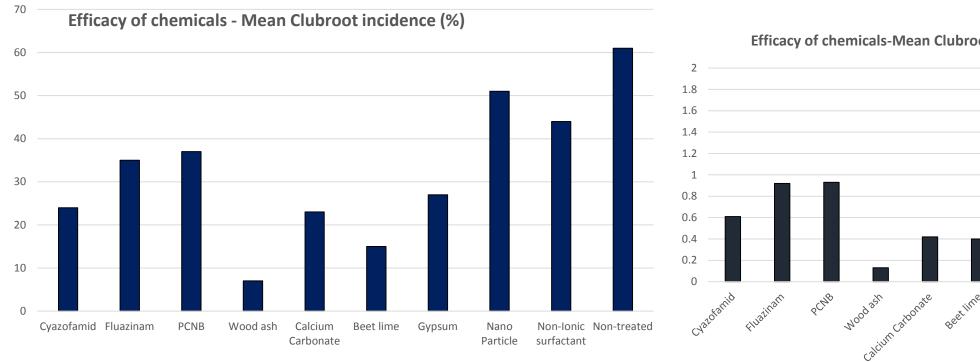
- 1. Chemical efficacy
- 2. Host susceptibility
- 3. Response of Commercial cultivars

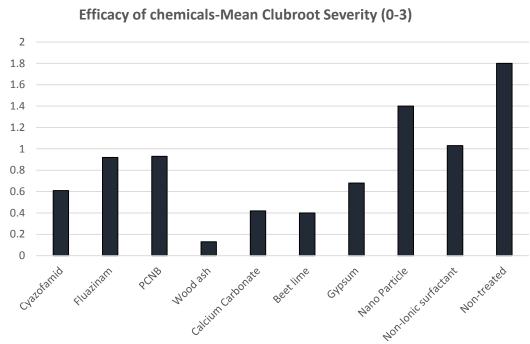
Evaluation of chemicals, fungicides and soil ameliorating products

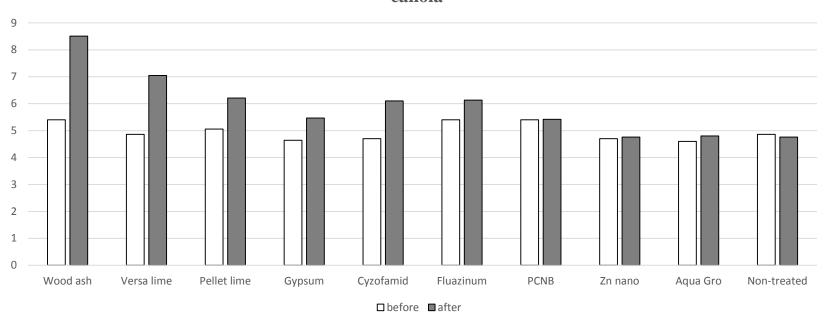
Treatment	Tradename	Dosage
Cyazofamid	Ranman	7.5 l/ha
Fluazinam	Allegro	2000 g/ha
PCNB	Terrachlor	67.5kg/ha
Wood ash	Lime	7.5t/ha
Calcium Carbonate	Lime stone	7.5t/ha
Beet lime	Versa Lime	15 t/ha
Gypsum	Gypsum	7.5 t/ha
Nano Particle	Zn	500mg/L of Zn
		10g/m just before planting Incorporated into
Non-Ionic surfactant	Aqua-Gro 2000	rows
Non-treated	СНК	

Planted on: 6/8/2017 Plot size:5ft Length 3ft. Width Replicated 4 times Rated on:7/31/2017

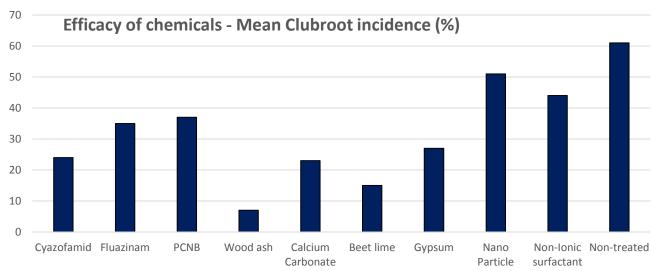
Evaluation of chemicals, fungicides and soil ameliorating products



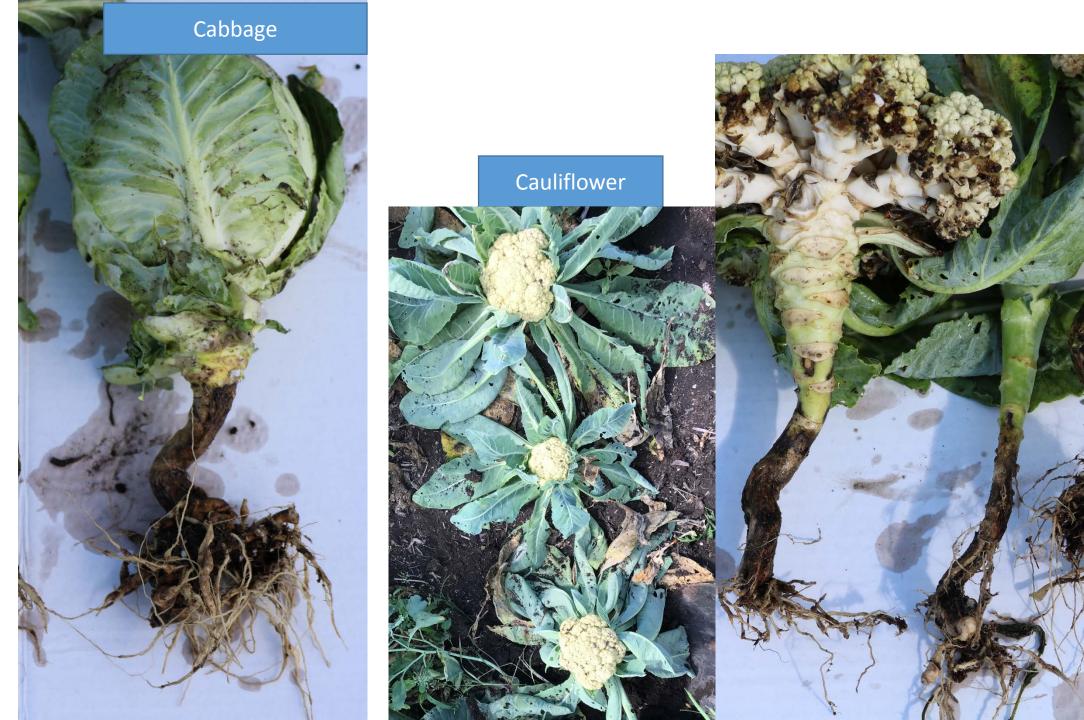

Clubroot rating scale


Fig. 1. Clubroot rating scale: 0 = no galling; 1 = a few small galls (small galls on less than 1/3 of roots), 2 = moderate galling (small to medium-sized galls on 1/3 to 2/3 of roots), 3 = severe galling (medium to large-sized galls on more than 2/3 of roots) (S.E. Strelkov)

Objective 1: Evaluating the effects of adding fungicides and pH- altering soil amendments on clubroot of canola incidence and severity in field condition

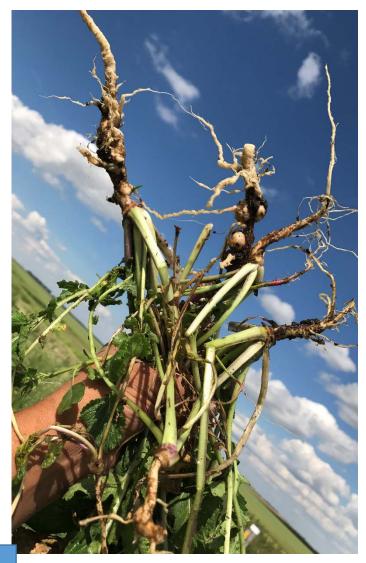


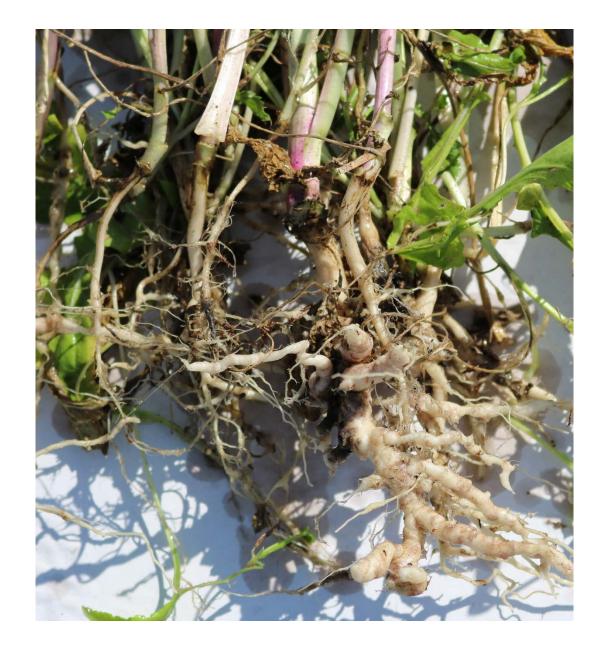
Soil pH before and after application of soil amendments to manage clubroot on canola



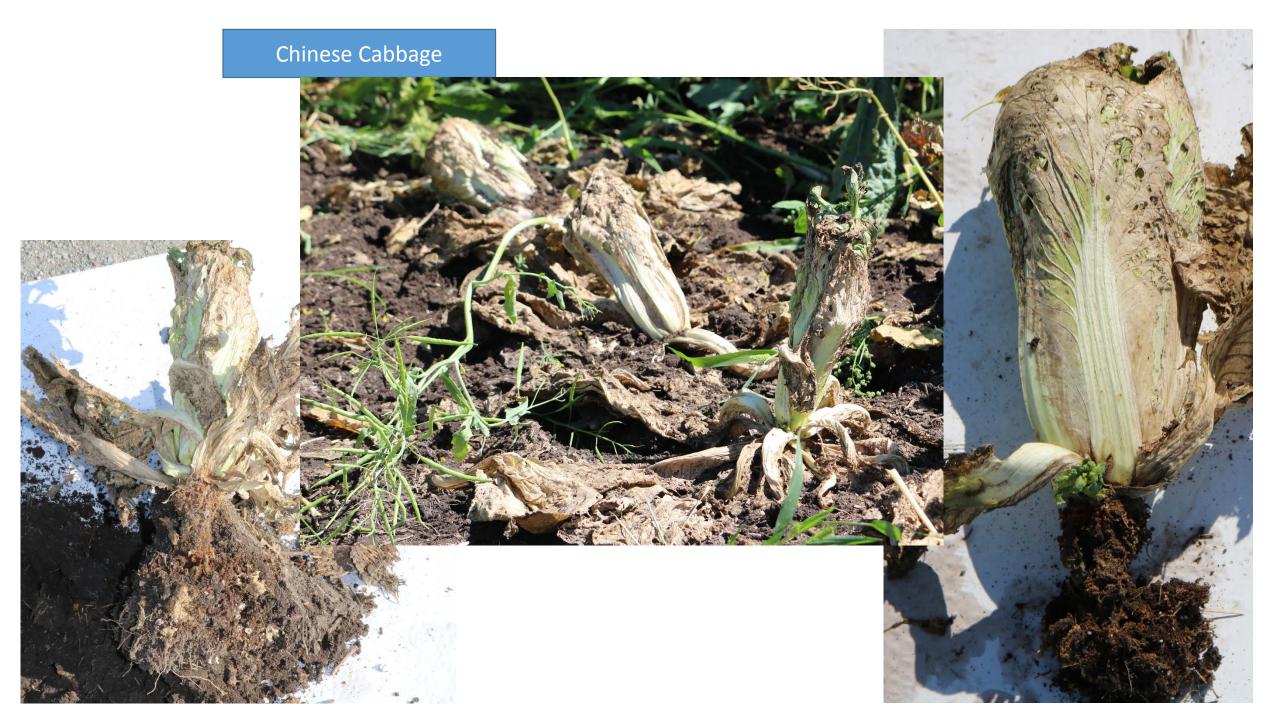
Objective 2: Evaluating the symptoms caused by clubroot pathogen on various hosts of brassica family in field condition

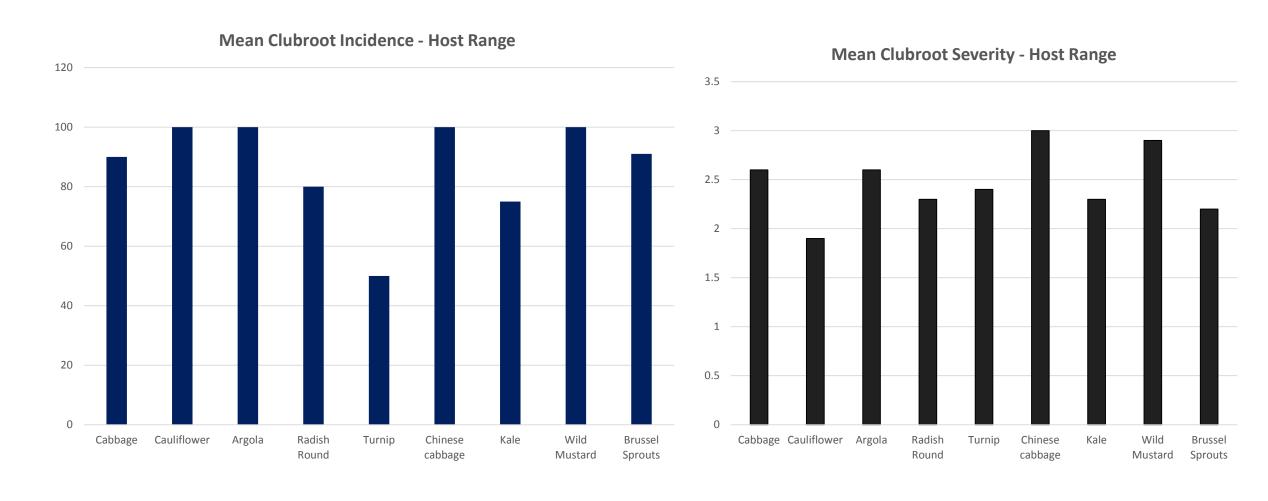



Cabbage, Cauliflower, Brussel sprouts, Kale and Chinese cabbage (buck choy) were planted as seedlings Shepard's purse, Wild mustard, Radish round, turnip and Arugula were direct seeded with hand.


Radish Round

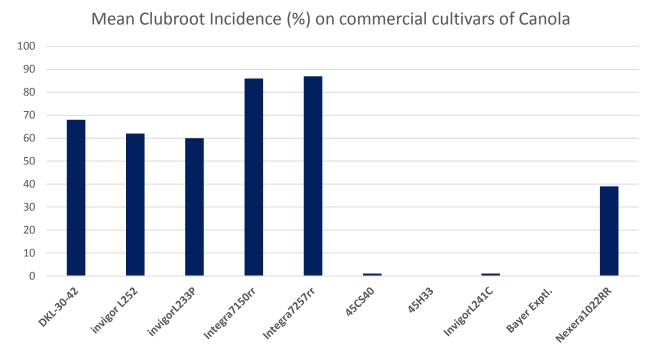


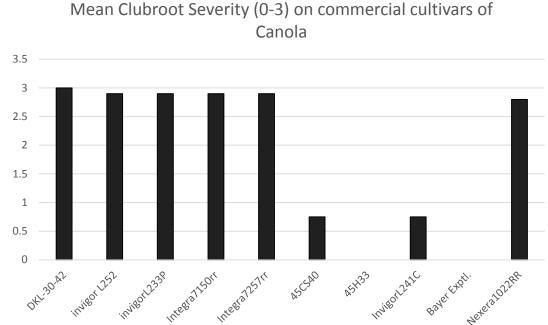

Arugula



Objective 2: Evaluating the symptoms caused by clubroot pathogen on various hosts of brassica family in field condition

Objective 3: Evaluation of commercial Canola cultivars against clubroot pathogen in field condition

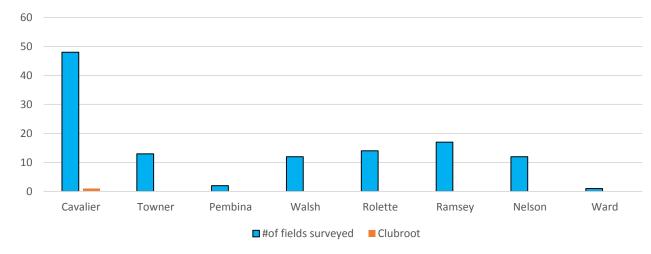



				Contact
S.No	Cultivar	Response	Source	Person
1	DKL-30-42	Susceptible	Purchased	
2	Invigor- L252	Susceptible	Grower	
3	Invigor- L233P	Susceptible	Grower	
4	Integra7150rr	Susceptible	Willbur Ellis	Greg Engel
5	Integra7257rr	Susceptible	Willbur Ellis	Greg Engel
6	45CS40	CR	Pioneer	Nowatzki
7	45H33	CR	Pioneer	Nowatzki
8	InvigorL241C	CR	Bayer	Jon Vanderberg
9	Bayer Exptl.	CR	Bayer	Jon Vanderberg
10	Nexera1022RR	?	Simplot	Gary

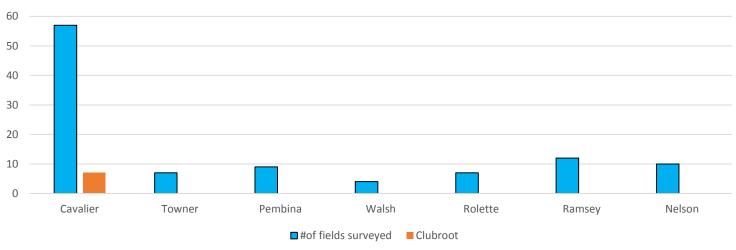
Planted on: 6/1/2017
Plot size:5ft Length
3ft. Width
Replicated 4 times
Rated on:7/27/2017

Objective 3: Evaluation of commercial Canola cultivars against clubroot pathogen in field condition

Planted on: 6/1/2017
Plot size:5ft Length
3ft. Width
Replicated 4 times
Rated on:7/28/2017


Clubroot Survey

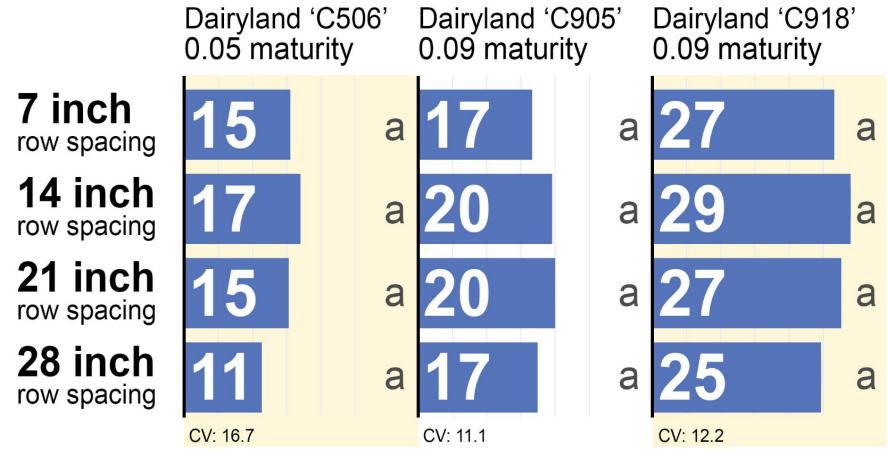
- Collected stubbles and soil samples and were sent for molecular confirmation
- Six out of 57 fields suspected of having clubroot from Cavalier county
- Spreading to new fields as expected


 Thanks to all the county Extension agents of seven counties and The Extension Area specialists (Lesley and Naeem)

Clubroot Survey Clubroot Survey 2016

Soybean Disease Management Update

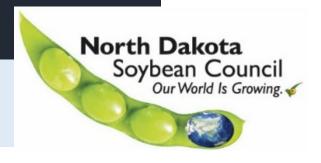
SCLEROTINIA MANAGEMENT IN SOYBEANS


Row spacing

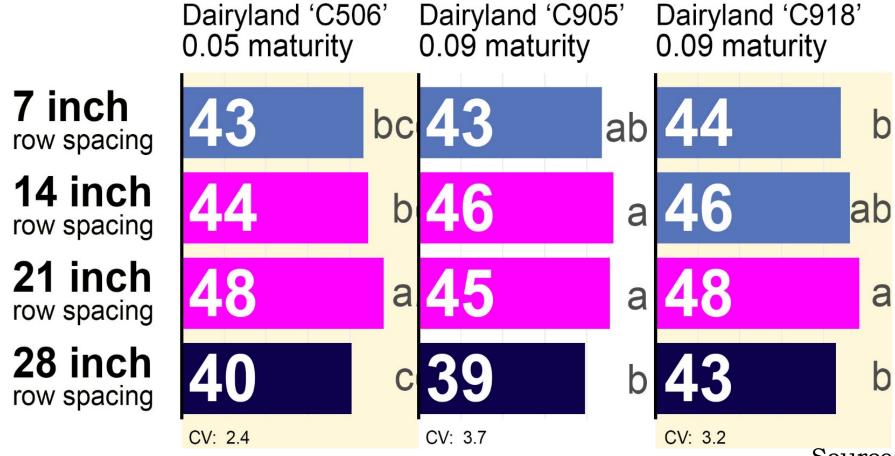
Langdon, ND 2015-2017: 00-maturity soybeans

Combined analysis across three years (2015, 2016, 2017) and three seeding rates (132,000; 165,000; 198,000 viable seeds/ac)

White mold incidence (% of plants diseased)



SCLEROTINIA MANAGEMENT IN SOYBEANS


Row spacing

Langdon, ND 2015-2017: 00-maturity soybeans

Combined analysis across three years (2015, 2016, 2017) and three seeding rates (132,000; 165,000; 198,000 viable seeds/ac)

Yield (bushels/acre)

SCLEROTINIA MANAGEMENT - Soybeans

Fungicide application timing

2014 2014 2015-16

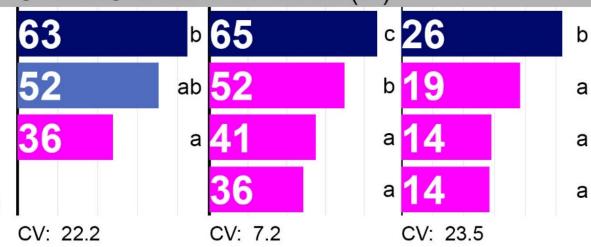
Row spacing: 7- to 15-inch 21- & 28-inch **14-** & **15-**inch

Application rate of Endura: 8.0 oz/ac 8.0 oz/ac 5.5 oz/ac Endura

> 5 studies 3 studies 7 studies

Fungicide application timing:

SCLEROTINIA INCIDENCE (%)


Non-treated control

Bloom initiation (60-90% of plants at R1)

Early R2 growth stage (80-98% of plants at R2)

Full R2 growth stage

(100% at R2; 1-3 days after early R2)

NORTH DAKOTA AGRICULTURAL EXPERIMENT STATION

Endura 5.5 or 8.0 oz/ac, applied once

Active ingredient:

Boscalid 109 g or 159 g ai/ac

Fungicide application methods: 15 to 19 gal/ac, 35 or 40 psi, flat-fan nozzles with fine droplets Study locations: Carrington, Hofflund, Langdon and Oakes, ND

SCLEROTINIA MANAGEMENT - Soybeans

Fungicide application timing

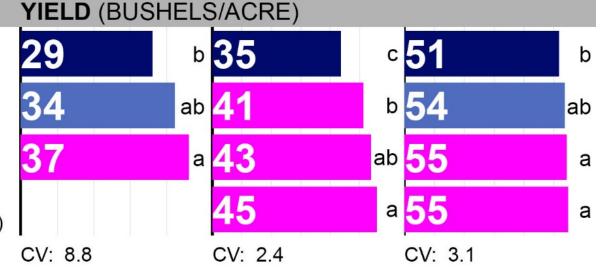
<u>2014</u> <u>2015-16</u>

Row spacing: 7- to 15-inch 21- & 28-inch 14- & 15-inch

Application rate of Endura: 8.0 oz/ac 8.0 oz/ac 5.5 oz/ac Endura

5 studies 3 studies 7 studies

Fungicide application timing:


Non-treated control

Bloom initiation (60-90% of plants at R1)

Early R2 growth stage (80-98% of plants at R2)

Full R2 growth stage

(100% at R2; 1-3 days after early R2)

Endura 5.5 or 8.0 oz/ac, applied once

Active ingredient:

Boscalid 109 g or 159 g ai/ac

Fungicide application methods: 15 to 19 gal/ac, 35 or 40 psi, flat-fan nozzles with fine droplets Study locations: Carrington, Hofflund, Langdon and Oakes, ND

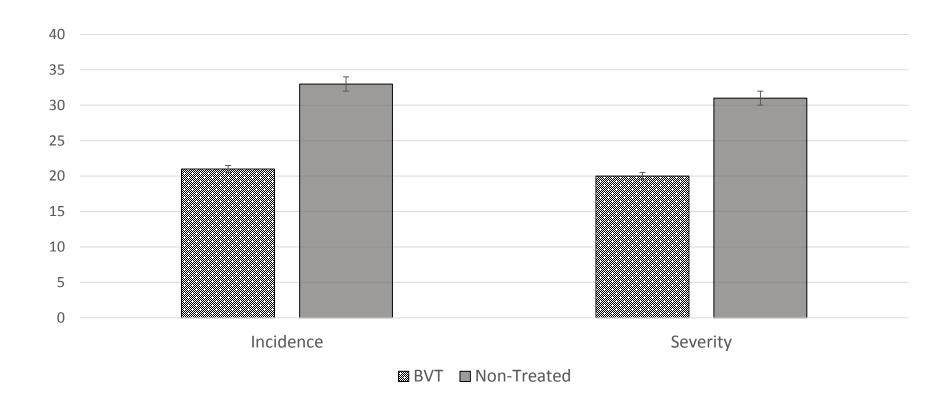
Management of Head Rot in Sunflowers Using Bee Vectoring Technology

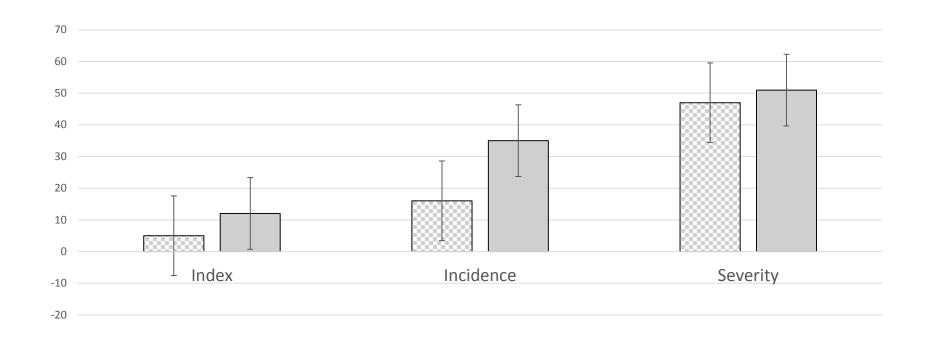
Venkat Chapara and Amanda Arens Langdon Research Extension Center

Pic Source: Agweek

Bee Vectoring Technology(BVT)

- Using Bees (Honey and Bumble bees) to deliver bio-controls to flowering crops
- Bio-agent *Clonostachys rosea* strain CR-7 (1-4x10⁸ spores/g) is the active ingredient
- CR-7 added to the vectorite (Talk like powder)
- Packed in a tray called vector pack
- Vector pack is placed in a beehive
- Bees deliver the treatment as they forage
- CR-7 is an endophyte


Bee hive set up in the field



Results-2016

Results-2017

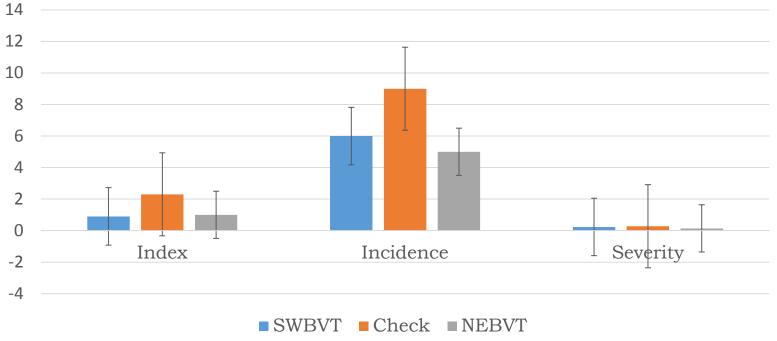
■ BVT ■ Non-Treated

Results From LREC

	Sunflower	Head Rot	Sunflower	Head Rot	Sunflower	Head Rot			
	9/8/2016		9/14/2016		9/22/2016		Yield	Test Weight	Oil
	Incidence (%) Severity (%)	Incidence (%)	Severity (%)	Incidence (%)	Severity (%)	lbs/A	lbs/bu	G/A
Non-Treated	15	7.7	32.5	19.1	38.8	30.57	1880	29.3	44.9
BVT-CR7	8.8	7.4	21.25	14.1	26	19.91	2053	30.15	41.2
Mean	11.9	7.54	26.9	16.6	32.5	25.24	1966.6	29.7	43
CV %	61	55.8	18.2	52	17	11.1	7.6	4.7	4.74
p (α=.05)	ns	ns	0.0175*	ns	0.0195*	0.0017*	ns	ns	0.038

	Sunflower Head Rot 9/6/2017			Sunflow	Sunflower Head Rot			Sunflower Head Rot		
				9/14/2017			9/26/2017			
	Incidence (%)	Severity (%)	INDEX	Incidence (%)	Severity (%)	INDEX	Incidence (%)	Severity (%)	INDEX	
Non-					•					
Treated	6	43	1.2	17	48	7	35	51	12	
BVT-CR7	3	19	0.9	11	41	3	16	47	5	
Mean	4.3	31	1.01	14	44	4.8	25	49	8.6	
CV %	96	120	90	59	69	70	22	31	27	
LSD	5.4	48	1.6	11	40	6	7	20	4	
p (α=.05)	NS	NS	NS	NS	NS	NS	0.0001	NS	0.005	

Set up of Honey Bee hive



BVT (CR7) Trial in Munich-North Dakota

Variety: SunOpta 4414
Trial Initiation
Date:7/27/2017
Vectorite changed every
3 days
Two hives (2 with
vectorite and 0 in
check)
Had problems with 1
Hive Of SE
Rated Thrice

Yield Map of Grower's trial

Copyright © 2011-2017 Deere & Company. All rights reserved.

Summary of BVT

- Based on disease data BVT-CR7 has efficacy on Head rot
- 2016 BVT had yield improvement over non-treated check
- 2017 yields are not taken into account (due to heavy winds bags blown away at harvest)
- Growers perception on BVT:
 - -BVT has effect on head rot
 - -Will be more effective on confectionaries than on oil seed

Thank you Questions