Southwest North Dakota Soil Health Demonstration Project
To illustrate how no tillage and a diverse crop rotation including cover crops will improve soil health. Established 2008.

The Soil Health Demonstration site is located on the NE 1/4 of Section 24 T143N R96W Dunn County, North Dakota of the Dickinson Research and Extension Center two miles south of Manning, ND.

Field 8 18.8 ac. First year Alfalfa	Field 1 18.4 ac. 10-way cover crop mix for the entire growing season.
Field 7 18.1 ac. First year Alfalfa in lieu of Second year Alfalfa.	Field 2 18 ac. Spring Wheat Winter Wheat will be planted after Spring Wheat is harvested for grain.
Field 6 13.1 ac. Spring Wheat in lieu of 3rd year Alfalfa Winter Triticale and Hairy Vetch will be planted after Spring Wheat is harvested for grain.	Field 3 14.5 ac. Field Pea 7-way cover crop will be planted after pea crop is harvested for hay.
Field 5 18.3 ac. Barley in lieu of Winter Triticale/Hairy Vetch 7-way cover crop mix will be planted after barley is harvested for hay.	Field 4 18.7 ac. Corn 7-way cover crop mix will be planted after corn is grazed in August.

Range of Selected Benchmark Soil properties (0-5cm)

- Soil texture of fine sandy loam to silty clay
- Soil Organic Matter 2.3% to 3.0%
- Water infiltration rate 1.33 to 1.62 in/hr
- Soil Bulk density 1.43 to 1.67 gr/cc
- Iectrical Conductivity .43 to 1.06 dS/m

Sampling/Testing

Soil Food Web analysis

- Standard soil tests (NDSU or Agvise)
- Soil Quality test kit

Soil Changes from 2008 to 2011

Averaged across all eight fields 0-5 cm (range of values measured)

- Organic Matter increased .06% (2.3% to 3.0%)
- Electrical Conductivity decreased .23 dS/m (.43 to 1.06 dS/m)
- Amoebate Protozoa increased 7,727 (no/gr) (5,000-30,000)
- Ciliate Protozoa decreased 12.4 (no/gr) (0-150)
- Total Nematodes decreased 4.9 (no./gr) (0-16)
- Spp. of Bacterial Feeding Nematodes increased 1.25 (2-6)
- Spp. of Fungal Feeding Nematodes increased 2.25 (0-5)
- Spp. of Fungal/Root Feeding Nematodes increased by 1.0 (2-5)
- Spp. of Root Feeding Nematodes decreased by .25 (0-3)

Changes in Protozoa relative to plant species diversity (2008-2011)

- I2 or more species of plants on a field
 - Amoebate protozoa increased an average of 25,994 per gram of soil. (5,000-32,000)
 - Flagellate protozoa increased an average of 3,378 per gram of soil. (500-15,000)
- It or fewer species of plants on a field
 - Amoebate protozoa declined an average of 3,232 per gram of soil. (5,000-32,000)
 - Flagellate protozoa declined an average of 7,085 per gram of soil. (500-15,000)

Observations to date (2011)

- Organic matter trending upward.
- Salinity trending downward.
- Amoebate Protozoa trending upward.
- Species diversity of Nematodes trending upward.
- Increased diversity of plant species resulting in greater protozoa numbers.
- Elimination of tillage and increase in plant diversity is having a positive affect on key soil physical and chemical properties and increasing the population and species diversity of key soil organisms.