Grain Storage Best Management Practices

Michigan Webinar March 31, 2020

Kenneth Hellevang, Ph.D., P.E.

Extension Engineer & Professor Agricultural & Biosystems Engineering

EXTENSION

Manage - to direct with a degree of skill

NDSU

EXTENSION

Monitor:

- •Temperature
- Moisture
- Insects
- •Mold
- Carbon dioxide

Check Grain Frequently

- •2-weeks until cooled
- •2-3 weeks during winter
- •2-weeks spring & summer

Manage: Aerate & Dry

- Temperature
- Moisture

Senses only grain near cable

Sensors & Fan Controllers

Technology does not replace Management!

Recommended Long-Term Storage Moisture Content

EMC = 13.3%

	Grain	EMC	Moisture	和这天现在
		@ 70°F, 60% RH		NETZ
NY CHA	Barley	11.8%	12%	
	Canola	8.0%	8%	CANESO ADER
60.0	Corn	12.8%	13%	052200
12	Flaxseed	8.3%	8%	Section 1
ES	Soybeans	10.2%	11%	Carles?
	Sunflower			
	Non-Oil	9.6 %	10%	
AND	Oil	7.4%	7- 8%	
	Wheat	13.3%	13.5%	

"Approximate" Allowable Storage Time for Cereal Grains (Days)

Cumulative

* Exceeds 300 days

Moisture		Grain Temperature (°F)								
Content	30°	40°	50°	60°	70°	80°				
(%)		Approxi	mate Allowab	le Storage T	ime (Days)					
14	*	*	*	*	200	140				
15	*	*	*	240	125	70				
16	*	*	230	120	70	40				
17	*	280	130	75	45	20				
18	*	200	90	50	30	15				
19	*	140	70	35	20	10				
20	*	90	50	25	14	7				
22	190	60	30	15	8	3				
24	130	40	15	10	6	2				
26	90	35	12	8	5	2				
28	70	30	10	7	4	2				
30	60	25	5	5	3	1				

"Approximate" Allowable Storage Time for Soybeans

. .

.

	Cun	nulativ	e	* Excee	ds 300 da	ys					
Moisture		Grain Temperature (°F)									
Content (%)	30 °	40 °	50 °	60 °	70 °	80 °					
		Approxi	mate Allowab	le Storage Tin	ne (Days)						
11	*	*	*	*	200	140					
12	*	*	*	240	125	70					
13	*	*	230	120	70	40					
14	*	280	130	75	45	20					
15	*	200	90	50	30	15					
16	*	140	70	35	20	10					
17	*	90	50	25	14	7					
19	190	60	30	15	8	3					
21	130	40	15	10	6	2					
23	90	35	12	8	5	2					
25	70	30	10	7	4	2					
27	60	25	5	5	3	1					

* Allowable storage time exceeds 300 days

Storability

- Cracked, broken, immature grain spoils easier
- Test weight is an indicator of storability
- Variety variation

Moisture Measurement

- Adjust for temperature
 - May not be accurate <40°F
- More sensitive to outside of kernel
 - Moisture variation after drying
 - Meters affected by condensation
- Growing season; foreign material effects

Recommend:

- Place sample in sealed container
- Warm to ~70°F
- Equilibrate moisture for 6-8 hours.
- Check moisture
- Compare to elevator or standard

Natural Air Drying

Natural Air & Low Temperature Corn Drying Spring Drying

				Drying Time (Days)			
Month & added heat	Ave. Temp (°F)	RH	Corn EMC	1.0 cfm/bu	1.25 cfm/bu		
Apr	42	65%	15.3%	51	41		
+5 °F	47	54%	13.3%	46	37		
May	56	60%	13.5%	43	34		

Natural air drying is very efficient in the spring. Start fans when outdoor temperatures average about 40 F.

Natural Air Drying Soybeans

Final Moisture Content $\approx 11\%$ Airflow Rate = 1.0 cfm/bu.

Month	Temp	R.H.			In	itial Soy	ybean N	loistur	e Conte	nt		
	°F	%	20)%	18	8%	16	5%	15	5%	14	%
	+3F	[:] Fan	Dry	AST	Dry	AST	Dry	AST	Dry	AST	Dry	AST
April	45	63%	60	36	60	58	62	100	61	140	45	200
May	59	58%	39	13	38	20	33	35	32	50	24	75
June	68	60%	39	7	38	11	33	20	32	30	24	45

Maximum moisture content for air drying is about 15% to 16% with an airflow rate of at least 1.0 cfm/bu. Start drying when outdoor temperature averages about 40°F.

Temperature and Humidity

Fargo, North Dakota

Lansing, Michigan

Humidity

WARNING

Condensation may freeze over vents when outside air temperatures are near or below freezing

Iced over vents will damage bin

Leave fill and access open

Pressure Switch

Fans Off During Snow/Rain/Fog

High Temperature Drying Soybeans

- Follow dryer recommendations to start then adjust as appropriate
- Typical Maximum Drying Temperature (non-food soybeans)
 Continuous flow 120-130° F
 Batch Dryer 110° F
 Seed 110° F

 Relative humidity above 40% reduces cracks ≈ 20°F temperature increase..

Damage Occurring to Soybeans as Function of Drying Temperature

Drying Temperature (°F)	Skins Cracked (%)	Beans Cracked (%)
100	10 - 60	5 - 20
130	50 – 90	20 - 70
160	80 - 100	30 - 80

Fire Hazard Drying Soybeans

- Pods and trash become lodged and combustible
- Keep grain flowing
- Keep dryer clean
- Monitor dryer

EXTENSION

NDSU

Cool Grain to Prevent Storage Problems

* Prevent crusting due to moisture migration by cooling grain to within 15°F of average outdoor temperatures.

* Cooling grain by 10°F doubles its allowable storage time

Dr. Kenneth J. Hellevang, P NDSU Extension Service

Spring Grain Cooling

Solar Radiation (Btu/ft²-day)

	Wall	Roof
Feb. 21	1725	1800
Jun. 21	800	2425

Average Minim	Minimum	
	Temperature	Temperature
Mar	25	16
Apr	41	29
May	55	43

Periodically Cool!

North Central Region States Average Monthly Maximum and Minimum Temperature, F

		ND	SD	NE	KS	MN	IA	МО	WI	IL	МІ	IN	ОН
Jan	Max	16	27	36	39	19	31	38	23	36	30	32	36
	Min	-3	7	14	19	-1	14	21	6	19	17	16	20
April	Max	52	59	63	67	55	62	66	55	66	58	62	63
	Min	29	34	38	43	34	41	44	33	43	37	38	41
July	Max	80	86	88	93	82	86	88	80	87	82	84	85
	Min	57	61	65	69	61	67	67	59	66	61	62	65
Oct	Max	55	60	65	70	58	63	67	55	68	60	64	65
	Min	32	35	40	46	36	43	45	37	45	41	41	44

Cool Stored Soybeans

- Free fatty acids increase with moisture, temperature, and time
- Storage of 12% beans @ 70 F < 4 months to exceed free fatty acid acceptable level.

- Cool to 20 30 F for winter
- Keep as cool as possible spring & summer

Calculate Aeration Time

Cooling Time

Time (hrs.) = 15 / Airflow rate (cfm/bu.) Time (hrs.) = 15 / 0.2 cfm/bu. Time (hrs.) = 75 hrs.

Example: 42' diameter, 36 ft. depth, 40,000 bu. of Soybeans 5 hp. LSC Fan, 0.21 cfm/bu. Cooling time = 72 hrs.

Fan Selection Program

UNIVERSI	TY OF MINNESOTA			Search	mgu H	> One Sto
Bioproc	ducts and	Biosys	stems Er Suteined	ngineering	- Enhancement of t	he Environme
2006-11	University of M	innesota Fa	n Selection fo	r Grain Bins		
ome						
bout Us	week and the second				A Some Aller	
ndergraduate rograms	Background				Show Bar	kground
raduate Program	Settings					Print
the News	Bin and Crop Inc	outs				
eople	Select a crop:	Barley		Bin Diameter, feet:	21	-
esearch	Floor Type:	P Full	© Duct	Grain Depth, feet:	20	
areer Resources	20			Desired airflow (cfm/bu):	1	
ctension and utreach	Estimated Fan R	tequirements			Sh	ow Table
ula a	(to get desired airflow w	hen bin is full)				
and.	Bin capacity (bushels)	r:			5,54	2
ontact Us	Total airflow (cfm):				5,54	2
	Estimated static press	ure (inches of wa	ter):		7.1	2
ollege of Food, Agricultural	Estimated fan power r	needed (hp):			10.3	4
NEVERSITY OF MENDEROTA	Fan Selection				Show	Fan Data
	Select a fan:	0.33 hp AER	OVENT 1240-DW 12	" (Axial) • Add a	New Ean	
cience & Engineering	Fan arrangement:	Parallel	C Series	Number of fans on bin:	1	
	Results					

Airflow vs Depth Table Airflow Graph System Graph

EXTENSION

Cover Fans When Not Operating

- •Keep snow & pests out
- •Prevents spring warm-up
- •Keep damp air out

EXTENSION

NDSU

Ventilate Bin Headspace

Grain Handling & Storage Safety

Rotating flighting will kill or dismember. Flowing material will C trap and suffocate. col

Crusted material will collapse and suffocate.

Keep clear of all augers. DO NOT ENTER this bin!

If you must enter the bin:

- 1. Shut off and lock out all power.
- 2. Use a safety harness and safety line.
- 3. Station another person outside the bin.
- 4. Avoid the center of the bin.
- 5. Wear proper breathing equipment or respirator.

Failure to heed these warnings could result in serious injury or death

DC-GBC-1A

2010 Spike Due to Wet Grain

Figure 6: Number of annual grain entrapment cases recorded between 2004 and 2014.

Middle Age Risk

Figure 7: Age distribution of 2014 grain entrapment victims by number of cases recorded.

Bridging

Grain Columns

NDSU

#1 Cause – Rodding With Unload Conveyor Running

Speed of Entrapment

Cannot Pull Out!

Grain Engulfment Prevention System

Lockout / Tagout – IS A MUST!

Start Aeration

Call for Help!

What happens when enter bin?

Remove Grain

Rescue Tube

Waterproof Bag: Handles on sides and ends for ease of carrying

Rescue Tube

Silo Unloading - Center First

Off Center Unloading

Bin Collapsing

Bin Sweeps

Grain Dust Hazard

Exposure to grain dust produces asthma, other respiratory effects (e.g., cough, rhinitis, and farmers lung), and nonpulmonary disorders (e.g., conjunctivitis, grain fever, and dermatitis). Though thorough characterization of allergenicity (Type I, IgE-mediated) is lacking, occupational exposure to grain dust has clearly been associated with potent systemic immunologic responses that evoke inflammatory responses of smooth muscle in the airways.

Moldy Grain Health Hazard

Fall Hazards

For More Information

Internet Search: NDSU Grain Drying and Storage

####