NDSU

DICKINSON RESEARCH EXTENSION CENTER

A Discussion On Cattle Size

Kris A. Ringwall, Ph. D. Extension Beef Specialist North Dakota State University

What Is Right For The Beef Business?

NDSU

DICKINSON RESEARCH EXTENSION CENTER

How Big? How Small? How Much Muscle?

A Story Of Opportunity

NDSU DICKINSON RESEARCH EXTENSION CENTER

DICKINSON RESEARCH EXTENSION CENTER A Discussion On Cattle Size by Kris Ringwall, Ph. D.

Can they get the job done?

When the first set of Lowline bulls were delivered, I wondered if they were big enough to breed the cows!

Following is what happened.

Calving Ease

Success in the beef business is predicated upon the principal that one needs a live calf to market. Reaching

this goal is the result of careful planning, sire evaluation and good husbandry.

Caesarean section births are not desired in the beef business. Such births place stress on the cow and the calf and can create many other complications.

A Discussion On Cattle Size by Kris Ringwall, Ph. D.

Calving Ease Data collected since 2004

The Dickinson Research Extension Center has been collecting data on low birthweight, Lowline bulls.

Following is the chart compiled from data collected at the Center.

Year	No	BW	Unassisted	Assisted
2004	9	68.6	9	0
2005	25	64.9	24	1
2006	48	63.8	48	0
2007	44	74.7	42	2

Beef Cattle Systems Evaluation

Our research has shown the male calves can work. Data has verified that Lowline influenced steers can produce carcasses suitable for the industry.

	Ca	rcass 2	Data S	Summa	ary					
	(Compiled in 2008)									
M A SY		2004	2005	2006	2007					
Al and	Arrival Weight	945	994	830	786					
	Frame Score	4.4	4.7	4.8	5.2					
	Harvest Weight	1186	1297	1179	1309					
Carlina -	Harvest Value (in dollars)	1093	1223	1074	1176					
	Number of Steers	22	26	38	24					
	Days on Feed	85	95	110	138					
	Average Daily Gain	2.85	2.73	3.03	3.81					
A second s	% Choice or Higher	77%	100%	68%	88%					
The second second	Percentage YG3 or Lower	86%	76%	97%	75%					

So What? Beef Cattle Systems Evaluation

The Center returned to traditional calving ease bulls.

End of story?

Opportunity Grows

F1 Lowline heifers grew up!

A Discussion On Cattle Size by Kris Ringwall, Ph. D.

Beef Cattle Systems Evaluation

Initial Heifer Look

(From 2007 data)									
No. Hip Height Avg. Wt									
Angus	36	48.6	752.6						
Red Angus	11	49.4	758.7						
Lowline Influence	38	42.5	515.9						

Heifers		Hip Height & Frame Score									
Age (months)	1	2	3	4	5	6	7	8	9		
5	33.1	35.1	37.2	39.3	41.3	43.4	45.5	47.5	49.6		
6	34.1	36.2	38.2	40.3	42.3	44.4	46.5	48.5	50.6		
7	35.1	37.1	39.2	41.2	43.3	45.3	47.4	49.4	51.5		
8	36.0	38.0	40.1	42.1	44.1	46.2	48.2	50.2	52.3		
9	36.8	38.9	40.9	42.9	44.9	47.0	49.0	51.0	53.0		
10	37.6	39.6	41.6	43.7	45.7	47.7	49.7	51.7	53.8		
11	38.3	40.3	42.3	44.3	46.4	48.4	50.4	52.4	54.4		
12	39.0	41.0	43.0	45.0	47.0	49.0	51.0	53.0	55.0		
13	39.6	41.6	43.6	45.5	47.5	49.5	51.5	53.5	55.5		
14	40.1	42.1	44.1	46.1	48.0	50.0	52.0	54.0	56.0		
15	40.6	42.6	44.5	46.5	48.5	50.5	52.4	54.4	56.4		
16	41.0	43.0	44.9	46.9	48.9	50.8	52.8	54.8	56.7		
17	41.4	43.3	45.3	47.2	49.2	51.1	53.1	55.1	57.0		
18	41.7	43.6	45.6	47.5	49.5	51.4	53.4	55.3	57.3		
19	41.9	43.9	45.8	47.7	49.7	51.6	53.6	55.5	57.4		
20	42.1	44.1	46.0	47.9	49.8	51.8	53.7	55.6	57.6		
21	42.3	44.2	56.1	48.0	50.0	51.9	53.8	55.7	57.7		

BIF Guidelines

2	2010 Replacement Heifers									
WW	Hip HT (in)	Frame Score	Winter Weight	REA/cwt	REA	Fat Depth	Spring Weight			
	С	onvent	tional	Herd (6	3 hea	d)				
574	43.3	5.26	626	0.82	5.94	0.25	664			
Lowline Influence Herd (58 head)										
487	41.1	3.75	577	0.92	5.31	0.08	552			

2010	2010 Lowline Influence Herd Replacements (Sample of growth variances)										
WWHip HT (in)Frame ScoreWinter WeightREA/cwtREAFat DepthSpring 											
Avg	487	41.1	3.75	577	0.92	5.31	0.08	552			
Lowl	Lowline Influence Herd 3 Smallest Frame Score										
X0293	288	40.5	1.50	418	1.30	5.43	0.05	450			
X0262	364	41.5	1.80	474	0.93	4.40	0.09	480			
X0269	360	42.0	2.10	496	1.09	5.38	0.07	506			

2010	2010 Lowline Influence Herd Replacements (Sample of growth variances)										
	WW	Hip HT (in)	Frame Score	Winter Weight	REA/cwt	REA	Fat Depth	Spring Weight			
Avg	487	41.1	3.75	577	0.92	5.31	0.08	552			
Low	Lowline Influence Herd – 3 Middle Frame Score										
X0036	532	41	3.80	630	0.91	5.74	0.08	620			
X0202	562	40	3.80	610	0.77	4.71	0.11	548			
X0054	440	41	3.90	486	1.13	5.48	0.06	496			

2010	2010 Lowline Influence Herd Replacements (Sample of growth variances)										
WWHip HT (in)Frame ScoreWinter WeightREA/cwtREAFat DepthSpring 											
Avg	487	41.1	3.75	577	0.92	5.31	0.08	552			
Low	line]	Influer	nce He	erd 3	Larges	st Fra	ime Sc	ore			
X0081	654	43.5	5.20	728	0.74	5.38	0.09	728			
X0125	554	43.5	5.30	644	0.90	5.82	0.09	592			
X0070	586	44.5	5.60	612	0.87	5.34	0.07	616			

201	2010 Conventional Herd Replacements (Sample of growth variances)										
	WWHip HT (in)Frame ScoreWinter WeightREA/cwtREAFat 										
Avg	574	43.3	5.26	626	0.82	5.94	0.25	664			
Cor	Conventional Herd 3 Smallest Frame Score										
X0175	490	39	3.30	662	0.88	5.85	0.09	620			
X0168	554	40	3.70	644	1.08	6.96	0.06	648			
X0051	582	41	3.90	692	0.77	5.32	0.11	656			

Г

201	2010 Conventional Herd Replacements (Sample of growth variances)										
WWHip HT (in)Frame ScoreWinter WeightREA/cwtREAFat 											
Avg	574	43.3	5.26	626	0.82	5.94	0.25	664			
Co	Conventional Herd 3 Middle Frame Score										
X0208	580	43	5.30	590	0.91	5.37	0.07	582			
X0205	570	43	5.30	662	0.91	6.04	0.07	634			
X0218	620	43	5.40	676	0.88	5.93	0.07	666			

	2010 Conventional Herd										
Replacements											
Winter NeightScoreWinter WeightREA/cwtFat DepthSpring Weight											
Avg	Avg 574 43.3 5.26 626 0.82 5.94 0.25 664										
	Conventional Herd 3 Largest Frame Score										
X0139	X0139 632 46 6.60 734 0.94 8.37 0.09 930										
X0181	634	46	6.70	678	0.71	4.82	0.05	676			
X0203	650	47	7.30	736	0.8	5.91	0.1	786			

Let's continue the story . . .

Cow size and calf birth size 2011 calves										
Cow group	No.	Calving Date	Calf BW	Cow Wt						
Conventional cows	68	1-Apr	91	1358						
Lowline F1 cows	53	17-Mar	68	999						

Cow and Calf Weights

Acres/Pair

% Cow Wt Weaned

Critical Success Factors		
	Conventional 2012-2014	Lowline Influence 2012-2014
Average Daily Gain	2.52	2.09
Weight Per Day of Age	3.06	2.51
Birth Weight	89	75
Adjusted 205 Day Weight	639	535
Frame Score	5.0	3.7

Critical Success Factors		
	Conventional 2012-2014	Lowline Influence 2012-2014
Average Age at Weaning	168	175
Steers	537	452
Heifers	487	430
Bulls	NA	NA
Average Weaning Weight	514	441
Pounds Weaned/Cow Exposed	472	394

Critical Success Factors		
	Conventional 2012-2014	Lowline Influence 2012-2014
% Pregnant	98.23	95.50
% Pregnancy Loss	0.85	0.80
% Cows Calving	97.38	94.7
% Calf Death Loss	3.72	6.13
% Cows Weaning Calves	93.66	88.90

Herd H38 Reproductive Efficiency

Critical Success Factors		
	Conventional 2012-2014	Lowline Influence 2012-2014
% Cows Calving in 42 Days	95.52	96.0
Cow Age	5.0	4.5
Cow Weight	1437	1094
Cow Condition	5.3	5.2

Adjusted to Equivalent Body Weight

	Conventional	Lowline Influence	Lowline Adjusted 130%	Lowline Adjusted 120%
Cow Weight	1437	1094	1422	1313
Adjusted 205 Day WT	639	535	696	642
Lbs Weaned/Cow Exposed	472	394	512	473

Here's The Beef!

Conventional Herd Production

A Discussion On Cattle Size by Kris Ringwall, Ph. D.

BREED	RED ANGUS										
Reg. No.	Sire Name	BW	ww	YW	Milk	Marb	REA	НВІ	GMI		
1617778	A079	0.7	59	97	23	0.71	0.27	113	51		
1617805	A042	-2.5	67	121	26	0.46	0.27	152	52		
1691764	B143	1.0	73	114	27	0.89	0.47	119	52		
1700517	4152	-3.7	51	76	16	0.67	0.22	150	50		
1700525	4165	-3.8	58	88	20	0.44	0.27	130	50		
1700534	4161	-2.5	58	91	21	0.50	0.35	119	50		
1717588	B83	-1.7	67	109	19	0.59	0.21	191	52		
1724651	B112	-1.3	53	87	20	0.33	0.28	94	49		
	Avg	-1.7	61	98	22	0.57	0.29	134	51	#DIV/0!	#DIV/0!
Percentile Sco	Percentile Scores For Actual EPD										
Breed 10%		-4.7	78	122	37	0.98	0.41	155	52		
Breed 30%		-2.7	67	104	24	0.59	0.23	125	50		
Breed 50%		-1.3	59	91	20	0.48	0.12	104	49		
Breed 70%		0.1	51	78	16	0.36	0.00	83	48		

Beef Cattle Systems Evaluation

We know we can put cattle through the feedyard.

So, where do the females fit?

Lowline F1 cow and Lowline influence calves

Beef Cattle Systems Evaluation Lowline Influence

- Reduce cow size
- Reduce calving issues
- Produce more ribeye/cwt
- Produce more gain/acre
- Create management options

Reduce cow size

Conventional heifers

-- Breed Lowline

-- Males finished through traditional channels

-- Heifers are ½ Lowline x ½ conventional and become replacement heifers in terminal Lowline herd

Net result

Shave 300 pounds off cows while maintaining muscle and producing mainstream industry beef carcasses

Reduce calving issues

Conventional heifers

Data has shown that conventional heifers bred Lowline experienced much reduced calving issues.

Net result

A calf with an eye on the future; looking for milk and green grass under the care of a good mother!

More ribeye/cwt

Conventional herd

-- Lowline crossbred steers tend to produce more ribeye/cwt

Net result

Lowline crossbred cattle maintain more muscle per pound of body weight. The net result is the ability to downsize cows and maintain muscle.

More gain/acre

-- Lowline influence cows show the ability to increase total gain per acre

Net result

Additional managerial options matching the number of cows and stocking rate for land use.

Management options

- -- Terminal crossbreeding system mainstreams Lowline genetics with conventional beef genetics.
- -- Marketing opportunities

Net result

- -- Establish F1 Lowline females for base cow herd
- -- Breed more heifers Lowline
- -- Create marketing opportunity for Lowline steers

What did we do? - Established 2 Herds

A Discussion On Cattle Size by Kris Ringwall, Ph. D.

How we continue!

Conventional Cows

F1 Lowline Cows

Conventional Bulls

A Discussion On Cattle Size by Kris Ringwall, Ph. D.

Impact of frame size, efficiency, and longevity in the commercial beef cow herd

a.k.a the "never been done before" project

A Discussion with Lauren Hanna, Ph. D.

Project Objectives

- To identify measurable and practical criteria as preferred indicators of efficiency and longevity for potential use in genetic evaluation programs.
- To identify genomic regions contributing to efficiency, longevity, or both in beef cows.
- To determine relationship of the dam's longevity, efficiency, frame size, or a combination of these traits on progeny (steers and heifers) performance or value.

NDSU

DICKINSON

A Discussion On Cattle Size by Kris Ringwall, Ph. D.

Current Progress

2014 born heifers

Data Collection Initiated

Summer 2015:

- Feed Trial
- **Breeding at NDSU**
- **Beef Cattle Research**
 - Center (BCRC)
- **Trait Data Collection Begins**

Current Progress

Data Traits Collected

- Feed intake, feeding behavior, weights/gains
- Reproductive characteristics (follicle counts, ovary characteristics, reproductive tract score, uterine characteristics, pregnancy status, estrus behavior)
- Docility score, udder characteristics, frame score, body measurements, carcass ultrasounds

Current Progress

Heifers are currently on winter pasture at DREC
2014 heifers + parents are being genotyped on 150K SNP chip
Current data on 2014 heifers is being processed for information to assist with future heifer collections
Sample size is biggest limitation

currently, as more heifers will be added in subsequent years of the project.

Future Plans

Development of project herd

2014, 2015 and 2016 born heifers will be selected based on attributes collected during feeding trial and first breeding

Future Plans

Characterization of progeny (steers and heifers) from project herd

- Feed efficiency + performance attributes (i.e., carcass) from steers
- Feed efficiency, longevity, reproductive efficiency attributes from heifers
- Understand relationship of these characteristics with dam type/performance records

Future Plans

Genetic marker or additional biomarker associations

 Determine if select criteria exist for heifers during development that will indicate performance long-term

2014 Heifer Summary

			Average ± Standard deviation								
		n	Docility Score	Frame Size	ADG	iBWT	fBWT	G:F			
	Lowline Influence Heifers	49	2.98 ± 0.75	4.34 ± 1.00	3.57 ± 0.97	690.85 ± 72.17	833.93 ± 104.89	0.18 ± 0.04			
	Conventional Heifers	40	2.63 ± 0.77	6.42 ± 0.57	3.24 ± 0.75	810.09 ± 80.95	991.63 ± 94.77	0.17 ± 0.03			

2014 Heifer Summary

Average ± Standard deviation								
	n	IMF	REA	CPYG	RIB FAT	RUMP FAT	# PREG	
Lowline Influence Heifers	49	0.25 ± 0.48	1.40 ± 0.73	0.13 ± 0.15	0.05 ± 0.06	0.08 ± 0.08	46	
Conventional Heifers	40	0.18 ± 0.68	1.07 ± 0.93	0.05 ± 0.14	0.02 ± 0.06	0.02 ± 0.05	36	

Winter 2016 Cows

	Fall Weight	Winter Wean Weight	Fall BCS	Winter BCS	Weight Loss	
Conventional Cows	1473	1400	5.3	4.6	92 lb/ day	
Lowline Influence Cows	1230	1168	5.4	4.5	67 lb/ day	「「「「「ない」」」

Winter 2016 Calves

Л		Fall Weight	Winter Wean Weight	Weight Gain/Day	Hip Height	
	Conventional Cows	534	609	1.19	44.8	
	Lowline Influence Cows	443	540	1.31	42.6	

Thoughts

Conventional females

Lowline females

Beef Cattle Systems Evaluation <u>Thoughts</u>

Conventional bulls

Work on cows

Lowline bulls F1 & High %

Work on heifers

A Discussion On Cattle Size by Kris Ringwall, Ph. D.

Beef Cattle Systems Evaluation Foundation breed improvement & stability

F1 Lowline Open Heifers

³/₄ heifer herd about one-half size of F1 heifer herd!

Outcome Transition to PB herd

Breed Lowline

Outcome ³⁄₄ Lowline

Breed Lowline

Thoughts

There are opportunities in the beef business.

You, as the producer, set the course for the future!

Beef Cattle Systems Evaluation Lowline Influence

- Reduce cow size
- Reduce calving issues
- Produce more ribeye/cwt
- Produce more gain/acre
- Create management options

Thank you

for your interest and your dedication to growing the beef cattle industry!

A Discussion On Cattle Size by Kris Ringwall, Ph. D.