NDSU EXTENSION

Extending Knowledge, Changing Lives: Insecticide Resistance to Soybean Aphid in North Dakota

T.J. Prochaska¹, J. Knodel², P. Beauzay², L. Lubenow³, A. Chirumamilla⁴, and S. Lahman⁵

¹North Dakota State University Extension, NCREC, Minot, ND
 ²North Dakota State University Extension, Fargo, ND
 ³North Dakota State University Extension, LREC, Langdon, ND
 ⁴North Dakota State University Extension, Cavalier County, ND
 ⁵North Dakota State University Extension, Pembina County, ND

NDSU

EXTENSION

Aphid Background

- Aphis glycines Matsumura
- Primary host plant:
 * Rhamnus cathartica L. (buckthorn)
- Secondary host plant:
 * Glycine max Merr (soybean)
- Reproductive potential McCornack et al. 2004
 * Population doubles, 1.5 days
 * 27.8° C

Aphid Distribution

Aphid 2000 Aphid 2005 Aphid 2009 Aphid 2013

EXTENSION

NDSU

North Dakota State University; Ragsdale *et al.* 2011 Pioneer DuPont 2013

Soybean Injury

% Reduction

Pesticide Treadmill

- Continuous use of a pesticide leads to the evolution of resistance in the target pest (and in nontarget pests?)
- Once resistance is established, that pesticide is ineffective
- 3. Switch to a new pesticide mode of action
- 4. Repeat

EXTENSION

Selection for Resistance

- Selection for resistant individuals
- Susceptible individuals selected against
- Resistant individuals reproduce

NDSU

EXTENSION

North Dakota Soybean Council

World Is Growing

Selection for Resistance

 Growing population of resistant individuals

NDSU

EXTENSION

North Dakota Soybean Council

Jur World Is Growing 🖌

Selection for Resistance

Resistant fly

NDSU

EXTENSION

North Dakota Soybean Council

World Is Growing.

Population dominated by resistant individuals

•

Objective

 To determine the level of pyrethroid insecticide resistance in populations of soybean aphids in North Dakota and where pyrethroid resistance exists in the major soybean producing counties of North Dakota.

2017 Soybean Aphid Counties with Pyrethroid Performance Issues

EXTENSION

Materials & Methods

- In 2017, collected populations of soybean aphids from 6 soybean fields with pyrethroid control problems in eastern ND.
- Use a standard experimental procedure called the 'diagnostic dose glass-vial bioassay'

Materials & Methods

- Pyrethroids tested: λ-cyhalothrin and bifenthrin
- Each assay consists of three replications of three insecticide concentrations:
 - ★ Acetone control
 - ★ 99% mortality (LC99)
 - ★ Twice the concentration of 99% mortality (2 x LC99)
- Assess the mortality of 10 wingless (apterous) adult soybean aphids per vial

★ After 4 hours and 24 hours of exposure

2017 4-hr. Results: λ-cyhalothrin (at LC99 for laboratory aphids)

NDSU EXTENSION

X²=440; df=18; P<0.00001 Biased-reduced general linear model with binomial response for Henderson-Tilton adjusted mortality.

2017 4-hr. Results: λ-cyhalothrin (at LC99 for laboratory aphids)

NDSU EXTENSION

X²=440; df=18; P<0.00001 Biased-reduced general linear model with binomial response for Henderson-Tilton adjusted mortality.

2017 4-hr. Results: Bifenthrin (at LC99 for laboratory aphids)

NDSU EXTENSION

X²=440; df=18; P<0.00001 Biased-reduced general linear model with binomial response for Henderson-Tilton adjusted mortality.

2017 4-hr. Results: Bifenthrin (at LC99 for laboratory aphids)

NDSU EXTENSION

X²=440; df=18; P<0.00001 Biased-reduced general linear model with binomial response for Henderson-Tilton adjusted mortality.

2017 Pyrethroid Resistant Soybean Aphids in ND

United States Department of Agriculture National Institute of Food and Agriculture

Crop Protection and Pest Management Program [grant no. 2017-70006-27144/accession 1013592]

2018 Results

- Low aphid populations in North Dakota
- Established 2017 colonies (from collected populations) bioassays show susceptibility to both insecticides
- Suggests populations not overwintering, but resistant populations migrating in
- 2019 precipitation

EXTENSION

2018 4-hr. Results λ-cyhalothrin & Bifenthrin Resistance (LC99)

EXTENSION Biased-reduced general linear model with binomial response for Henderson-Tilton adjusted mortality.

Insecticide Resistance Management – An IPM Approach

- Know your pests and use labeled products and rates
- Scout fields regularly
- Use the Economic Threshold to aid in decision-making, prevent unnecessary insecticide applications and conserve natural enemies
 - Should NOT add insecticide to tank during herbicide application
- Rotate mode of action (or insecticide class) if more than one applications is necessary in a season

NDSU EXTENSION

Thresholds for Soybean Aphids

E.T. = 250 aphids per plant E.I.L. = 670 aphids per plant

filling

growing

seed

NDSU EXTENSION

Insecticides: Mode of Actions

Crop – Soybean Pest – Soybean aphid

	IRAC Group	Class	Active Ingredient	Products
	1A	Carbamate	Methomyl	Lannate
	1B	Organophosphate	Acephate	Acephate
			Chlorpyrifos	Lorsban Advanced, Chlorpyrifos, Govern, Hatchet, Nufos, Vulcan, Warhawk, Whirlwind, Yuma
			Dimethoate	Dimethoate
	ЗA	Synthetic Pyrethroid	Alpha- cypermethrin	Fastac
			Beta-cyfluthrin	Baythroid
			Bifenthrin	Tundra, Sniper, Fanfare, Discipline, Brigade, Bifenture
			Cyfluthrin	Tombstone
			Deltamethrin	Delta Gold
			Esfenvalerate	Asana XL, Adjourn
			Gamma- cyhalothrin	Declare, Proaxis
			Lambda- cyhalothrin	Warrior II, Grizzly Z, LambdaStar, Lambda-Cy, Lamcap, Province, Silencer VC, Taiga Z
			Permethrin	Arctic
			Zeta- cypermethrin	Mustang Maxx, Respect
	4A	Neonicotinoid	Imidacloprid	Prey, Admire Pro, ADAMA Allas, Wrangler, Nuprid, Sherpa
	4D	Butenolide	Flupyradifurone	Sivanto Prime
EXTENSION	9B	Pyropenes	Afidopyropen	Sefina Inscalis

IPM Toolbox – IRM Approach

Pest Identification

Pest Monitoring

Economic Thresholds

Predictive Models

EXTENSION

NDSU

Cultural Control

Biological Control

Host Plant Resistance

Chemical Control

Acknowledgements

NDSU

EXTENSION

- Dr. Robert Koch
- James Menger

Soybean Gall Midge

T.J. Prochaska¹, J. Knodel², P. Beauzay², and A.J. McMechan³

¹North Dakota State University Extension, NCREC, Minot, ND ²North Dakota State University Extension, Fargo, ND ³University of Nebraska Extension, Lincoln, NE

Soybean Gall Midge

- Resseliella maxima (Gagné); Also known as gall gnats
- New soybean pest described by Gagné & Yukawa 2019
- 16 species in USA
- Not Found in North
 Dakota

EXTENSION

•

A.J. McMechan 2019; Nebraska Extension

2019 Soybean Gall Midge Survey in Soybeans in North Dakota

- R2 (full bloom) to R8 (maturity)
- >100 plants per field on field edge
- 78 fields in 11 counties
- Plan to continue to survey work in 2020

EXTENSION

Identification

- About ¼ inch long
- Black and white banding on legs; reddish abdomen
- 2 other Cecidomyiid pests of ND crops
 - Hessian fly
 - Wheat midge
- 2-3 generations per year

Life Cycle

- Complete metamorphosis
- Likely overwinter as larval cocoons in the soil
 - Like wheat midge
- 2-3 generations per year
 - In 2019, adult emergence of the 1st generation ranged from mid-June in Nebraska through early July in Minnesota
 - Larvae were observed in soybean stems from late June though July in Minnesota

Crop Damage

- Entomologists are not sure how the larvae get into the stem, maybe from naturally occurring cracks in epidermis or other wounds like hail injury
- Soybeans with severe feeding injury will wilt and die
- Lodging at soil level is also a symptom of heavily infested stems with soybean gall midge larvae

Soybean Gall Midge Field Symptoms

- Damage greatest at the field edge
 - Plants easily snapped off
 - Some plants with swollen stems (galls)

Source: Dr. Justin McMechan, University of Nebraska

Soybean Gall Midge: Yield Impacts

 Small, dead plants and reduced pods/seeds translate to yield loss ranging from 20-100% on field edges

NDSU EXTENSION

Source: Dr. Justin McMechan, University of Nebraska

Scouting

- Easy insect to scout for since infestations
 - On field edges
 - Adjacent to infested soybeans from last year
- Early instar larvae are white; mature orange to red
- Walk along field edges and look for plants with darken stems at the base near the soil level
- If you peel back the stem epidermis with your fingernail, the larva will be visible
- Soybeans with severe feeding injury will wilt and die

White Mold Gall Midge *Karshomyia caulicola* on Soybeans

- Genus Karshomyia
 - Holarctic distribution
 - New Jersey, NE USA
 - Europe: United Kingdom, Netherlands, Germany, Russia, Latvia, Lithuania & Ukraine
 - 51 species worldwide
- Mycetophagous

EXTENSION

NDSU

- Associated with plants infected with the fungus Sclerotinia sclerotiorum
- Soybeans, dry beans, canola, potatoes and sunflowers, poppy
- Confuse with larvae of soybean gall midge?

Source: Dr. Koch, University of Minnesota

Detections from 2018-2019

Koch et al. in review, Jensen 2019, Hamilton 2019, Gavloski & Bajracharya 2016

NDSU EXTENSION

- Val-Saint-François, Québec, 2018-2019
- Pierce Co., Wisconsin, 2019
- Additional detections
 - ✓ Manitoba, 2014 & 2016
 - ✓ Minnesota, sporadically over 25 years

Gall Midge Infestations

Gagné et al. 2019, Koch et al. in review

	K. caulicola	R. maxima
Timing	After flowering & onset of Sclerotinia stem rot	As early as 3 rd leaf stage
Location in field	Throughout field where Sclerotinia stem rot present	Field edges, especially near previous year's soybean
Location on plant	On/in Sclerotinia-infected stems & pods	Under epidermis of stem near base of plant

EXTENSION

Identification of Gall Midge Larvae

Gagné et al. 2019, Koch et al. in review

	K. caulicola	R. maxima
Color	Less intense orange	More intense orange

EXTENSION

Identification of Gall Midge Adults

	K. caulicola	R. maxima
Antennae & legs	Uniformly gray	Striped
Wings	Uniformly gray	Mottled
Abdominal tergites & sternites	Subdivided horizontally	Uniformly sclerotized
Key to genera	Gagné 2018	

Gagné et al. 2019, Koch et al. in review

Everything You Want to Know About Foliage-Feeding Caterpillars in Soybeans

Janet J. Knodel Professor and Extension Entomologist

Foliage-feeding Caterpillars

Alfalfa webworm

Life Cycle of Foliage-feeding Caterpillars

Complete Metamorphosis

- ★ Egg to larval stages to pupae to adult
- ★ Larvae look different from adult
 - * Chewing mouthparts
- ★ Pupal stage, called chrysalis for butterfly (inactive)
- ★ Adult moth / butterfly emerges from pupa / chrysalis

Estimating Insect Defoliation in Dry Beans

- 1. Scout from late vegetative to R6 crop stage
- 2. Walk at least 10 rows into field

NDSU

EXTENSION

- W pattern in fields and sample 10 plants per location & 4 locations.
- 4. Remove leaves from top, middle and bottom of a randomly-selected plant.

Source: A.J. McMechan, UNL

Estimating Insect Defoliation in Dry Beans

- 3. Remove highest and lowest defoliated trifoliate. Keep other leaflet.
- 4. Repeat 1-3 on remaining plants

- 5. Repeat at remaining locations and record defoliation of all 40 leaves.
- 6. Calculate the average defoliation per field

Source: A.J. McMechan, UNL

Economic Thresholds for Foliage-feeding Caterpillars in Soybeans

- Lump all defoliating insects together
 - ***** Grasshoppers, bean leaf beetle
- Percent Defoliation

NDSU

EXTENSION

- ★ Vegetative = above 30% defoliation
- Reproductive stage = above 20% defoliation
- Larvae (or caterpillars) per row foot
 - An average infestation of 4 to 8 larvae per row foot (or 13-27 larvae per row meter) typically cause
 20-30% defoliation.
- As plants reach flowering and pod filling, defoliation poses a greater risk for yield loss.

Natural Control

Diseases

- ★ Fungal (*Nomuraea rileyi*)
- * Viral
 - * Nuclear polyhedrosis virus
- ★ Favored by high humidity and warm temperatures
- Parasitic wasps
- Predators

Soybeans Insecticide Recommendations

Registered Insecticides - 2020

Foliar Insecticides

Always Read and Follow Labels. Pyrethroids: Asana XL*, Declare*, Fastac EC*, Baythroid XL* & generics*, Tundra* & generics*, Bifender FC*, Tombstone Helios*, Warrior II* & generics*, Mustang Maxx*, Delta Gold*, Permethrin* Carbamate: carbaryl (Sevin) Organophosphate: Lorsban* Oxadiazine: Steward EC Premix Products with two a.i.: Brigadier*, Skyraider*, Swagger*; Hero*; Match-up*; Leverage 360*; Tundra Supreme*; Cobalt Advanced*; Stallion*, Endigo ZC*

* Restricted Use Pesticide

NDSU EXTENSION

¥e

