

Genetic Selection for Cow Efficiency: What is the Next Step?

World Cattlemen's Cow Efficiency Congress September 2, 2017

Lauren L. Hulsman Hanna, PhD
Assistant Professor, Genetic Improvement of Livestock
Department of Animal Sciences

Economically Relevant Trait

- ERT is a trait that directly impacts cost or revenue.
 - Cow Maintenance Feed Requirement
 - Longevity or Stayability

Credit: Paul Holland

Indicator Trait

- An indicator trait does not have a direct effect on cost or revenue, but is related to an ERT.
- Example:
 - Cow Maintenance Feed Requirement: Mature Cow Weight, Cow Body Condition Score, Milk Production, Gut Weight, Liver Weight
 - Longevity and Stability: Calving Records, Days to Calving, Calving Interval, Milk Production

Biological Efficiency

- "The capacity to convert physical inputs into marketable product under prevailing production conditions." – D. Notter (2002 BIF Proceedings)
- Still... "Cow Efficiency" vs.
 "Growth Efficiency" differ in supporting biological traits.
- Individual-animal level vs. industry level

Economic Efficiency

- Ratio of production cost per unit of animal product (Dickerson, 1976)
 - Avoids market fluctuations and stabilizes selection programs.
 - Need ERT

Cow Efficiency

- # of calves weaned per cow exposed → biological
- Weight of weaned calves → economic
 - Still needs to be coupled with annual feed intake of the cow...
- Other effects?
 - Transmission of post weaning growth to progeny? Milk production based on production environment or threshold level? Optimum size?

Selection?

- Reduce environmental variability as much possible
- Select to improve genetics, BUT:

$$P = G + E + (G * E?)$$

- Early indicators? Genotypes, Metabolic markers
- Focus is on bull selection, but should that be it?

B4072 (LG, FS 8)

F:G at trial: 9.3 (lb:lb)

1st Calf % of BW: 7.5, 28

BW: 86, WW: 442 lb, Steer

B4197 (SM, FS 3)

F:G at trial: 16.7 (lb:lb)

1st Calf % of BW: 8.8, 41.9

BW: 50, WW: 356 lb, Heifer

✓ 2nd calf produced

B4181 (ML, FS 6.5)

F:G at trial: 10.4 (lb:lb)

1st Calf % of BW: 7.7, 35.5

BW: 62, WW: 417 lb, Heifer

B4152 (MS, FS 5) F:G at trial: 10.3 (lb:lb) 1st Calf % of BW: 8.3, 39.6 BW: 76, WW: 481 lb, Heifer

✓ 2nd calf produced

Breeding Goals/Objectives

- Defining a set of traits to be improved or maintained in a given production system.
 - Typically focused on genetic basis of these.
- A selection index is an estimate of a breeding goal.

What does a "cow efficiency" index look like?

- \$ Cow?
- Calving Ease Index?
- Heifer Pregnancy?
- Stayability?
- Cow energy savings?
- None of the above?

Looking Forward: Impact of

FRAME SIZE, EFFICIENCY, AND LONGEVITY in a commercial cow herd.

Project Objectives

- To identify measurable and practical criteria as preferred indicators of efficiency and longevity for potential use in genetic evaluation programs.
- To identify genomic regions contributing to efficiency, longevity, or both in beef cows.
- To determine relationship of the dam's longevity, efficiency, frame size, or a combination of these traits on progeny (steers and heifers) performance or value.

Grouping Key

Frame Size Category

- Based on calculated frame size using BIF guidelines (hip height and age at measurement)
- **Category Levels:**
 - SM is less than 4.00
 - MS is between 4.00 and 5.50
 - ML is between 5.51 and 6.50
 - LG is greater than 6.50

Gain: Feed Category

- Based on population's grouping into quarters, adjusted for year.
- Category Levels: 1, 2, 3, and 4
 - 4 is most efficient
 - 1 is least efficient

Photo Symbol Key:

= Flagged (Lack of 2nd Calf)

Current Status: By the Numbers

2016 Born

62 (45)

55 (45)

Group

SM

MS

ML

LG

Heifer Status	2014 Born	2015 Born
No. to BCRC	99	81
No. Trained & Completed Feed Trial	89	73
No. Bred (Feed Trial)	83	66
No. Successfully Wean First Calf	<u>78</u>	<u>62</u> ?
No. Bred Back	72	
No. Successfully Weaned Second Calf	71?	

orn 5) 5)			
Project	Daughters	Total	
3	11	14	
28	31	59	
21	3	24	
3	0	3	
			© Lauren Hanna

Average Frame Score

Average Trial Final Body Weight (lb)

NDSU NORTH DAKOTA STATE UNIVERSITY

174

NDSU NORTH DAKOTA STATE UNIVERSITY

NDSU NORTH DAKOTA STATE UNIVERSITY

NDSU NORTH DAKOTA STATE UNIVERSITY

NDSU NORTH DAKOTA STATE UNIVERSITY

NDSU NORTH DAKOTA STATE UNIVERSITY

NDSU NORTH DAKOTA STATE UNIVERSITY

NDSU NORTH DAKOTA STATE UNIVERSITY

NDSU NORTH DAKOTA STATE UNIVERSITY

Breakdown of Heifers Lost

	First Year		Second Year	
Size		Total To		Total To
Group	Sold	Date	Flagged	Date
SM	5 (16.7%)	30	0 (0.0%)	17
MS	4 (6.3%)	63	6 (17.6%)	34
ML	8 (16.0%)	50	0 (0.0%)	26
LG	1 (5.3%)	19	1 (7.1%)	14

Average Frame Score

Even with this loss, average frame sizes still follow

NDSU NORTH DAKOTA STATE UNIVERSITY Cow Efficiency Congress

Next Steps?

- Creating or understanding a measure that accurately reflects "cow efficiency"
 - This is long-term, what about early indicators?

 Heritability, genomic control, and selection avenues?

The Research Team

- Principle Investigators:
 - Dr. Lauren Hanna (animal breeding and genetics)
 - Dr. Kendall Swanson (ruminant nutrition)
- Collaborators:
 - Dr. Kim Vonnahme (reproductive physiology)
 - Dr. Carl Dahlen, Beef Cattle Extension Specialist
 - John Dhuyvetter, Area Livestock Extension Specialist
 - Dr. Rob Maddock (meat science)
 - Dr. Gerald Stokka, Livestock Stewardship Extension Specialist
- Contributors:
 - Dr. Kris Ringwall, Dickinson Research Extension Center Director

