

Long-term Grazing Intensity Research in the Missouri Coteau Region of North Dakota: Effects on Plant Production and Composition

Bob Patton and Anne Nyren

Central Grasslands Research Extension Center - NDSU, Streeter

The effects of grazing intensity on plant species and the sustainability of forage production have been monitored on 12 pastures at the CGREC since 1989. Plant responses to grazing fall into four groups: plants favored by no grazing, moderate or heavy grazing, and invaders. The optimum stocking rate depends on objectives, but the greatest forage production falls between a light stocking rate (35 percent utilization) and a moderate stocking rate (50 percent utilization).

Summary

This study began in 1989. Five treatments were included: no grazing, and light, moderate, heavy and extreme grazing. Our goal was to stock the pastures each year so when the cattle were removed in the fall, 65, 50, 35 and 20 percent of the forage produced in an average year remains on the light, moderate, heavy and extreme treatments, respectively.

Thus far, on loamy and loamy overflow ecological sites, the extreme grazing treatment produced the least forage ($P \le 0.05$). On loamy ecological sites, the light treatment produced the most forage ($P \le 0.05$). On loamy overflow ecological sites, the light and moderate treatments produced the most forage but were not significantly different from each other ($P \le 0.05$).

Of the 166 plant species monitored on loamy ecological sites, 66 responded to grazing based on frequency, density or basal cover. Of the 177 plant species monitored on loamy overflow ecological sites, 53 responded to grazing.

Introduction

The question of how heavily to stock native range is complex. The answer primarily depends on how much forage is available, which varies each year, depending on the temperature and precipitation. If stocking rates are too low, profits will not be maximized, but if rates are too high, cattle performance will suffer and the resource will be damaged.

The optimum stocking rate varies with objectives, but we cannot know what stocking rate is optimum for any particular objective without knowing how cattle and rangeland respond to the stocking rate. Heavy stocking can damage the resource, reducing total forage production and shifting the species composition to species that are more resistant to grazing (Thurow 1991).

Procedures

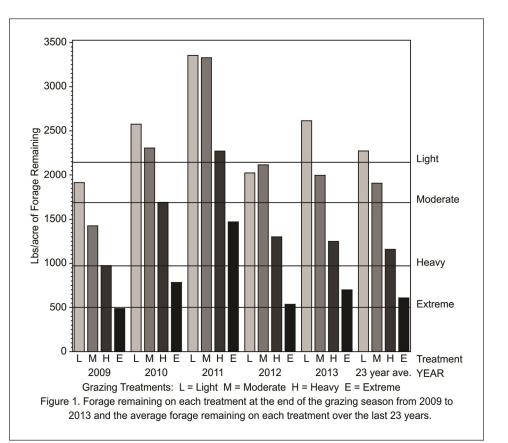
This ongoing study began in 1989 at the Central Grasslands Research Extension Center in Kidder County northwest of Streeter, N.D. The site was divided into 12 pastures of approximately 30 acres each. Grazing intensities were light, moderate, heavy and extreme. The target was to leave 65, 50, 35 and 20 percent of the forage produced in an average year on the light, moderate, heavy and extreme treatments, respectively. Exclosures were used to provide a fifth, ungrazed treatment to determine how rangeland changes when it is not grazed.

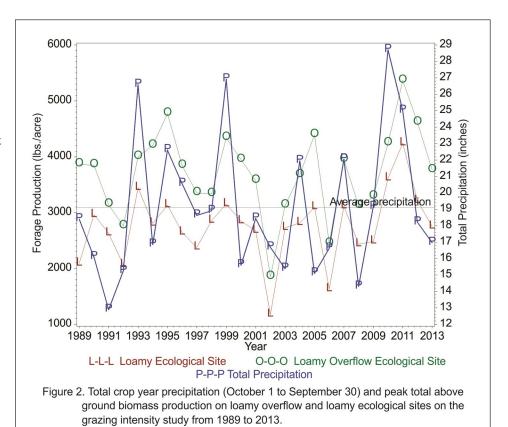
Grazing began each year in mid-May, and cattle were removed when forage utilization on half of the pastures had reached desired grazing intensity (approximately mid-October). Table 1 presents the stocking history of the study and Figure 1 shows how much forage remained at the end of the grazing season each year.

Monitoring locations were on loamy and loamy overflow ecological sites in each pasture, as were six exclosures for the ungrazed treatment. Frequency of occurrence of all plant species was monitored each year to determine changes in the plant community. Plant density of shrubs, forbs and bunch grasses was sampled in conjunction with the frequency sampling. Forage production and utilization was determined using the paired plot cage comparison method.

Table 1. Stocking history of the grazing intensity trial for 1989through 2013 at Central Grasslands Research Extension Center,Streeter, N.D.

Year	Class of Animal	Stocking Date	Removal Date	Length of Grazing Season (Days)
1989	steers	May 22	Aug 22	92
1990	bred heifers	May 30	Nov 27	181
1991	bred heifers	May 29	Sept 25	119
1992	bred heifers	June 1	Aug 25	85
1993	bred heifers	May 29	Sept 26	120
1994	open heifers & steers	May 17	Nov 10	177
1995	open heifers	May 18	Oct 30	165
1996	open heifers	May 20	Sept 23	126
1997	open heifers	May 27	Nov 5 ¹	162 ¹
1998	open heifers	May 16	Oct 28	165
1999	open heifers	May 27	Nov 4	161
2000	open heifers	May 18	Sept 25	130
2001	open heifers	May 21	Sept 11	113
2002	open heifers	May 23	July 17	55
2003	open heifers	May 23	Sept 19	119
2004	open heifers	May 19	Sept 9	113
2005	open heifers	May 17	Oct 27	163
2006	open heifers	May 11	July 27	77
2007	open heifers	May 18	Oct 1	136
2008	open heifers	May 20	Aug 25	97
2009	open heifers	May 21	Sept 1	103
2010	open heifers	May 11	Sept 20	132
2011	open heifers	May 18	Oct 17	152
2012	open heifers	May 7	Sept 25	141
2013	open heifers	May 22	Aug 28	98


¹Due to lack of forage, livestock were removed early (August 27) from the extreme grazing treatment, resulting in 92 days of grazing on that treatment.


Results

Forage production. Figure 2 shows the average production on the loamy and loamy overflow ecological sites during each year of the study and the total precipitation for the year. Monthly precipitation for 2010 through 2013 is shown on page 48.

The average forage production by treatment for the past 21 years is shown in Tables 2 and 3. On loamy ecological sites, the light grazing resulted in the highest production ($P \le 0.05$). On loamy overflow ecological sites, no difference (P>0.05) in forage production was found on light, moderate and heavy treatments in end-ofthe-season forage production. The ungrazed treatment produced significantly less forage than the light treatment on the loamy ecological site and less than the light, moderate and heavy treatments on the loamy overflow ecological site $(P \le 0.05)$. The extreme grazing treatment produced the least forage ($P \leq 0.05$) on both ecological sites.

Year x *treatment* interactions (*P*≤0.05) have been found only at the beginning of the grazing season for both ecological sites. On loamy overflow ecological sites, the treatment with the most forage production at the beginning of the season was light, moderate or heavy, but different treatments produced the most forage in different years (P≤0.05). On loamy ecological sites at the beginning of the grazing season, the treatment with the highest forage production was ungrazed, light or moderate in different years, with the extreme or heavy treatments always having the lowest forage production (*P*≤0.05).

Table 2. Average above ground biomass production by grazingtreatment on **loamy** ecological sites from 1992 to 2013.

Above-ground biomass (lbs/acre)				
Treatment	Beginning of season	Middle of season	Peak yield	End of season
Ungrazed	1,273 b ¹	2,587 b	2,829 b	2,649 c
Light	1,352 a	2,906 a	3,297 a	3,172 a
Moderate	1,201 c	2,659 b	3,019 b	2,886 b
Heavy	938 d	2,261 c	2,510 c	2,416 d
Extreme	751 e	1,938 d	2,278 d	2,213 d
LSD (0.05)	61	166	205	221

¹Means in the same column followed by the same letter are not significantly different at *P*=0.05.

Plant community dynamics. Table 4 lists the 10 most dominant plants species on the loamy ecological site as determined by average frequency of occurrence in 25- by 25-centimeter (cm) frames across the 26 years and five treatments.

A total of 166 species have been found on the loamy ecological sites and 63 have shown a response to grazing treatment based on frequency, density or basal cover. Eight species are favored by no grazing (Table 5). Twenty-six species are favored by moderate grazing (Table 6). These are species that increase as grazing pressure increases from ungrazed to moderately grazed but decrease as grazing pressure increases from moderate to extreme. Twenty-seven **Table 3.** Average above ground biomass production by grazingtreatment on loamy overflow ecological sites from 1993 to 2013.

Above-ground biomass (lbs/acre)				
Treatment	Beginning of season	Middle of season	Peak yield	End of season
Ungrazed	1,005 b ¹	3,364 c	3,511 c	3,050 b
Light	1,177 a	4,127 a	4,407 a	4,156 a
Moderate	1,249 a	3,789 b	4,226 ab	4,067 a
Неаvy	1,219 a	3,646 b	4,009 b	3,952 a
Extreme	819 c	2,310 d	2,703 d	2,633 c
LSD (0.05)	74	255	269	284

¹Means in the same column followed by the same letter are not significantly different at *P*=0.05.

species are favored by heavy grazing (Table 7). Five species are "invaders," or species that appear on the site only after heavy grazing (Table 8).

Table 9 lists the 10 most dominant plants species on the loamy overflow ecological site as determined by average frequency of occurrence in 25- by 25-cm frames across the 26 years and five treatments. Of the 177 species on the loamy overflow ecological sites, 53 have responded to grazing treatment. Six are favored by no grazing (Table 10), 16 by moderate grazing (Table 11), 26 by heavy grazing (Table 12) and five are "invaders" (Table 13).

Table 4. The dominant plant species on the **loamy** ecological site: those with the highest average frequency of occurrence in 25 cm by 25 cm frames over the 26 years on the five treatments and their average frequency of occurrence in 1988 and 2013.

Scientific name	Common name	1988 average (percent)	2013 average (percent)
Poa pratensis L.	Kentucky bluegrass	84	98
Pascopyrum smithii (Rydb.) A. Löve	western wheatgrass	51	69
Carex inops Bailey ssp. heliophila (Mackenzie) Crins	sun sedge	70	40
Symphyotrichum ericoides (L.) Nesom var. ericoides	heath aster	38	45
Artemisia ludoviciana Nutt.	cudweed sagewort	20	33
Nassella viridula (Trin.) Barkworth	green needlegrass	38	29
Carex obtusata Lilj.	obtuse sedge	13	37
Achillea millefolium L.	western yarrow	4	45
Taraxacum officinale F.H. Wigg.	common dandelion	0	49
Bouteloua gracilis (H.B.K.) Lag. ex Griffiths	blue grama	38	19

Table 5. Plant species which appear to have been favored by no grazing on the **loamy** ecologicalsite.

Scientific name	Common name
Poa pratensis L.	Kentucky bluegrass
Lotus unifoliolatus (Hook.) Benth. var. unifoliolatus	deer vetch
Lactuca tatarica (L.) C.A. Mey. var. pulchella (Pursh) Breitung	blue lettuce
Helianthus pauciflorus Nutt. ssp. pauciflorus	stiff sunflower
Artemisia absinthium L.	wormwood
Tragopogon dubius Scop goat's beard	goat's beard
Pediomelum esculentum (Pursh) Rydb.	breadroot scurf-pea
Symphyotrichum lanceolatum (Willd.) G.L. Nesom ssp. lanceolatum var. lanceolatum	panicled aster

Table 6. Plant species which appear to have been favored by moderate grazing on the**loamy** ecological site.

Scientific name	Common name
Symphyotrichum ericoides (L.) Nesom var. ericoides	heath aster
Artemisia ludoviciana Nutt.	cudweed sagewort
Ambrosia psilostachya DC.	western ragweed
Dichanthelium wilcoxianum (Vassey) Freckmann	Wilcox dichanthelium
Hesperostipa curtiseta (Hitchc.) Barkworth	western porcupine grass
Cirsium flodmanii (Rydb.) Arthur	Flodman's thistle
Elymus repens (L.) Gould	quackgrass
Ratibida columnifera (Nutt.) Woot. & Standl.	prairie coneflower
Pediomelum argophyllum (Pursh) J. Grimes	silver-leaf scurf-pea
Solidago mollis Bartl.	soft goldenrod
Comandra umbellata (L.) Nutt.	comandra
Rosa arkansana Porter	prairie rose
Bromus inermis Leyss.	smooth brome
Artemisia dracunculus L.	green sagewort
Carex filifolia Nutt.	thread-leaved sedge
Anemone cylindrica A. Gray	candle anemone
Lithospermum incisum Lehm.	yellow puccoon
Calamagrostis montanensis (Scribn.) Scribn.	plains reedgrass
Sisyrinchium montanum Greene.	blue-eyed grass
Asclepias ovalifolia Dcne.	ovalleaf milkweed
Arabis hirsuta (L.) Scop. var. pycnocarpa (Hopkins) Rollins	rock cress
Erysimum asperum (Nutt.) DC.	western wallflower
Heterotheca villosa (Pursh) Shinners var. villosa	golden aster
Physalis virginiana Mill.	Virginia groundcherry
Erysimum inconspicuum (S. Wats.) MacM.	smallflower wallflower
Orthocarpus luteus Nutt.	owl clover

Table 7. Plant species which appear to have been favored by heavy grazing on the **loamy**ecological site.

Scientific name	Common name
Pascopyrum smithii (Rydb.) A. Löve	western wheatgrass
Carex inops Bailey ssp. heliophila (Mackenzie) Crins	sun sedge
Nassella viridula (Trin.) Barkworth	green needlegrass
Achillea millefolium L.	western yarrow
Taraxacum officinale F.H. Wigg.	common dandelion
Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths	blue grama
Artemisia frigida Willd.	fringed sagewort
<i>Vicia americana</i> Muhl. ex Willd.	American vetch
Grindelia squarrosa (Pursh) Dun.	curly-cup gumweed
Cerastium arvense L.	prairie chickweed
Astragalus agrestis Dougl. ex G. Don	field milk-vetch
Koeleria macrantha (Ledeb.) J.A. Schultes	Junegrass
Androsace occidentalis Pursh	western rock jasmine
Carex duriuscula C.A. Mey.	needle-leaved sedge
Oxalis stricta L.	yellow wood sorrel
Chamaesyce serpyllifolia (Pers.) Small ssp. serpyllifolia	thyme-leaved spurge
Hedeoma hispida Pursh	rough false pennyroyal
Plantago patagonica Jacq.	wooly plantain
Potentilla pensylvanica L.	Pennsylvania cinquefoil
Penstemon gracilis Nutt.	slender beardtongue
Geum triflorum Pursh	prairie smoke
Sphaeralcea coccinea (Pursh) Rydb.	scarlet globe mallow
Draba nemorosa L.	yellow whitlowort
Antennaria neglecta Greene	field pussy-toes
Bouteloua dactyloides (Nutt.) J.T. Columbus	buffalograss
Lepidium densiflorum Schrad.	peppergrass
Potentilla norvegica L.	Norwegian cinquefoil

Table 8. Plant species which only appear after heavy grazing on the**loamy** ecological site.

Scientific name	Common name
Medicago lupulina L.	black medic
Agrostis hyemalis (Walt.) B.S.P.	ticklegrass
Juncus interior Wieg.	inland rush
Trifolium repens L.	white clover
Polygonum ramosissimum Michx.	bushy knotweed

Table 9. The dominant plant species on the **loamy overflow** ecological site: those with the highest average frequency of occurrence in 25 cm by 25 cm frames over the 26 years on the five treatments, and their average frequency of occurrence in 1988 and 2013.

Scientific name	Common name	1988 average (percent)	2013 average (percent)
Poa pratensis L.	Kentucky bluegrass	66	97
Bromus inermis Leyss.	smooth brome	28	64
Symphoricarpos occidentalis Hook.	buckbrush	57	39
Oligoneuron rigidum (L.) Small var. humile (Porter) Nesom	stiff goldenrod	25	48
Symphyotrichum ericoides (L.) Nesom var. ericoides	heath aster	33	38
Artemisia ludoviciana Nutt.	cudweed sagewort	28	30
Carex obtusata Lilj.	obtuse sedge	20	26
Helianthus pauciflorus Nutt. ssp. pauciflorus	stiff sunflower	46	18
Achillea millefolium L.	western yarrow	5	38
Taraxacum officinale F.H. Wigg.	common dandelion	0	50

Table 10. Plant species which appear to have been favored by no grazing on the loamy overflow ecological site.

Scientific name	Common name
Bromus inermis Leyss.	smooth brome
Symphoricarpos occidentalis Hook.	buckbrush
Helianthus pauciflorus Nutt. ssp. pauciflorus	stiff sunflower
Rosa arkansana Porter	prairie rose
Sonchus arvensis L.	field sow thistle
Liatris ligulistylis (A. Nels.) K. Schum.	round-headed blazing star

Table 11. Plant species which appear to have been favored by moderate grazing on the**loamy overflow** ecological site.

Scientific name	Common name
Oligoneuron rigidum (L.) Small var. humile (Porter) Nesom	stiff goldenrod
Ambrosia psilostachya DC.	western ragweed
Solidago canadensis L.	Canada goldenrod
Glycyrrhiza lepidota Pursh	wild licorice
Solidago mollis Bartl.	soft goldenrod
Carex pellita Muhl. ex Willd.	wooly sedge
Anemone cylindrica A. Gray	candle anemone
Spartina pectinata Bosc ex Link	prairie cordgrass
Carex praegracilis W. Boott.	clustered field sedge
Muhlenbergia racemosa (Michx.) B.S.P.	marsh muhly
Juncus arcticus Willd. ssp. littoralis (Engelm.) Hultén	Baltic rush
Campanula rotundifolia L.	harebell
Sisyrinchium montanum Greene.	blue-eyed grass
Agrimonia striata Michx.	striate agrimony
Poa palustris L.	fowl bluegrass
Packera plattensis (Nutt.) W.A. Weber & A. Löve	prairie ragwort

loamy overflow ecological site.				
Scientific name	Common name			
Poa pratensis L.	Kentucky bluegrass			
Symphyotrichum ericoides (L.) Nesom var. ericoides	heath aster			
Artemisia ludoviciana Nutt.	cudweed sagewort			
Carex obtusata Lilj.	obtuse sedge			
Achillea millefolium L.	western yarrow			
Taraxacum officinale F.H. Wigg.	common dandelion			
Carex inops Bailey ssp. heliophila (Mackenzie) Crins	sun sedge			
Oxalis stricta L.	yellow wood sorrel			
Pascopyrum smithii (Rydb.) A. Löve	western wheatgrass			
Cerastium arvense L.	prairie chickweed			
<i>Viola pedatifida</i> G. Don	larkspur violet			
Grindelia squarrosa (Pursh) Dun.	curly-cup gumweed			
Elymus caninus (L.) L.	slender wheatgrass			
Nassella viridula (Trin.) Barkworth	green needlegrass			
Agrostis hyemalis (Walt.) B.S.P.	ticklegrass			
Solidago missouriensis Nutt.	Missouri goldenrod			
Androsace occidentalis Pursh	western rock jasmine			

Table 12. Plant species which appear to have been favored by heavy grazing on the **loamy overflow** ecological site.

1		2
R	3	
	R	
	in .	

Astragalus agrestis Dougl. ex G. Don

Erysimum inconspicuum (S. Wats.) MacM.

Conyza canadensis (L.) Cronq.

Geum triflorum Pursh

Artemisia frigida Willd.

Erigeron philadelphicus L.

Penstemon gracilis Nutt.

Draba nemorosa L.

Chamaesyce serpyllifolia (Pers.) Small ssp. serpyllifolia

Table 13. Plant species which only appear after heavygrazing on the **loamy overflow** ecological site.

field milk-vetch

horse-weed

prairie smoke

fringed sagewort

Philadelphia fleabane

slender beardtongue

yellow whitlowort

smallflower wallflower

thyme-leaved spurge

Scientific name	Common name	
Medicago lupulina L.	black medic	
Trifolium repens L.	white clover	
Polygonum ramosissimum Michx.	bushy knotweed	
Lithospermum incisum Lehm.	yellow puccoon	
Lepidium densiflorum Schrad.	peppergrass	

On loamy sites, total forb density has become highest on the extreme treatment and lowest on the light and ungrazed treatments ($P \le 0.05$). Total plant density (including forbs, bunchgrasses and shrubs, but not rhizomatous grasses) has increased more on the extreme treatment than on the ungrazed or light treatments ($P \le 0.05$).

From 1994 to 2001, total grass density decreased on the ungrazed and light treatments and has not recovered on those treatments, while a steady increase has occurred in grass density on the moderate, heavy and extreme treatments ($P \le 0.05$). Also, on loamy ecological sites, total plant basal cover decreased on all treatments, but it decreased less on the extreme than on the other treatments ($P \le 0.05$). On loamy overflow sites, the total density of non-rhizomatous grasses has increased on the extreme grazing treatment and decreased on the ungrazed treatment ($P \le 0.05$). Total forb density has increased with grazing intensity and has become greatest on the extreme treatment and least on the ungrazed ($P \le 0.05$). Total plant density also has increased with grazing intensity $(P \le 0.05)$. Total plant basal cover has increased on the extreme and heavy treatments and decreased on the ungrazed and light treatments ($P \leq 0.05$).

In addition to the changes listed for plant species, litter has decreased on loamy ecological sites under heavy grazing, and bare ground has increased on loamy and loamy overflow ecological sites under heavy grazing ($P \le 0.05$).

Discussion

During the past 24 years, forage production on our loamy ecological sites has averaged 2,759 pounds/acre. In a year with average production, 0.34 acre of this ecological site would be enough to supply this amount of forage for a month. However production has varied through the years from being able to supply this amount of forage with 0.22 acre to requiring 0.79 acre. This emphasizes the importance of knowing how productive pastures are and being able to predict weather trends early in the grazing season. Differences in biomass production among treatments indicate that grazing reduces the amount of carbohydrate reserves the plants are able to carry over to the next season. This was evident more on the loamy sites than the loamy overflow sites (Tables 2 and 3).

So instead of season-long grazing, we recommend a rotational grazing system at a moderate stocking rate to take advantage of higher forage quality found on the extreme grazing treatment (Patton et al., 2002) and still give plants a rest, thereby avoiding reduced production.

Also, a light or moderate stocking rate is better than a period of rest that is too long. The low level of production on the ungrazed treatment likely is due to litter buildup that prevents rainfall and sunlight from reaching the ground.

We plan to continue this research for a number of years because changes in forage production and plant species composition still are apparent in response to grazing intensity and weather. These factors, in turn, will affect animal response to the grazing treatments.

Literature Cited

- Patton, B.D., P.E. Nyren, B.S. Kreft and A.C. Nyren. 2002. Grazing intensity research in the Missouri Coteau of North Dakota. North Dakota State University Central Grasslands Research Extension Center 2001 Grass and Beef Research Review, Streeter, N.D. North Dakota State University - Central Grasslands Research Extension Center. P. 12-16. Available online at: www.ag.ndsu.edu/archive/streeter/2001report/ Grazing_intensity_Intro.htm#TableofContents
- Thurow, T.L. 1991. Hydrology and Erosion. In: Heitschmidt, R.K. and Stuth, J.W. (eds.). *Grazing Management: An Ecological Perspective.* Portland, Ore.: Timber Press. 259 pp.

Acknowledgements

We thank Dwight Schmidt, Rodney Schmidt, Rick Bohn and former staff members, along with nearly 100 summer employees, who have contributed to this study during the past 25 years.