
Challenges managing Sclerotinia head rot of sunflowers with partially resistant hybrids and with fungicides

Michael Wunsch, Jesse Hafner, Billy Kraft, Suanne Kallis, Michael Schaefer and Thomas Miorini NDSU Carrington Research Extension Center Leonard Besemann, Kelly Cooper, Heidi Eslinger, and Seth Nelson NDSU Robert Titus Research Farm, Oakes Scott Halley, Amanda Arens and Pravin Gautam

Scott Halley, Amanda Arens and Pravin Gautam NDSU Langdon Research Extension Center

Susceptibility of oilseed hybrids to Sclerotinia head rot

Carrington, ND (2015)

J ¹ ,	(,	% incidence		% by weight		pounds/acre	
Croplan	432 E	18	ab	0.7	а	1965	а
NuTech	69M2	35	a-f	3.3	abc	1916	а
NuSeed	Camaro II	37	a-f	4.6	abc	1819	ab
SunOpta	15S20E	12	а	1.6	abc	1782	abc
Croplan	343 DMR HO		abc	3.4	abc	1746	a-d
Croplan	553 CL HO		a-d	4.0	abc	1733	a-d
ProSeed	E1402 CL		abc	0.9	ab	1730	a-d
NuSeed	EXP8962		abc	2.1	abc	1665	а-е
Pioneer	63HE60	34	a-f	2.0	abc	1649	а-е
Thunder	11N94	41	a-g	4.9	abc	1645	а-е
ProSeed	E85 CL		a-e	5.6	abc	1633	а-е
NuTech	68H7		bac	0.9	ab	1620	a-f
Mycogen	MY82427		a-d	3.4	abc	1563	a-f
SunOpta	1628E		d-h	5.7	abc	1554	a-f
Croplan	545 CL	21	ab	0.6	abc	1545	a-f
Croplan	549 CL	52 34	c-h	4.9	abc	1518	a-f
Syngenta	7111 HO CL DM	34	a-f	1.2	ab	1454	a-f
ProSeed	E21 CL		a-d	1.2	ab	1429	a-f
Croplan	458 E HO	44	b-g	7.6	bc	1412	a-f
Syngenta	SY7717	35	a-f	2.3	abc	1383	a-f
ProSeed	E31 CL	21	ab	1.1	ab	1351	a-f
Thunder	44H94		d-h	6.6	abc	1314	a-f
Mycogen	MY8H456CL	39	a-f	3.8	abc	1261	a-g
Syngenta NuSeed	3845 HO EXP6561	75 62	h	6.9	abc abc	1138 1111	a-h
	MY411280		fgh d-h	6.1 6.8	abc		a-h b-h
Mycogen Thunder	35H92		e-h	4.8	abc	989 927	c-h
Mycogen	MY324820		gh	6.8	abc	899	d-h
Syngenta	3495 NS CL DM		fgh	7.1	abc	844	e-h
SunOpta	4311E	69	gh	7.9	C	754	fgh
Mycogen	V358 CL DM	6 <u>9</u> 77	h	6.8	abc	448	gh
Croplan	305 DMR NS	79	h	3.5	abc	378	h
		<i>P>F:</i> < 0.0001		<i>P>F:</i> < 0.0001		P>F: < 0.0001	

Sclerotia

uncleaned grain

in Grain

P > F: < 0.0001 CV: 25.0

Sclerotinia

Head Rot

R9 growth stage

P > F: < 0.0001 CV: 59.7

Yield

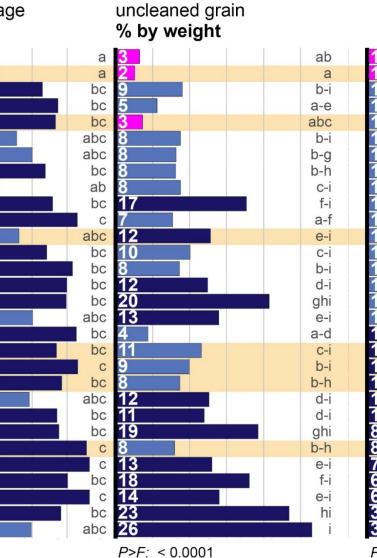
10% moisture

Yellow background = commercial hybrid

White background = experimental hybrid

P>F: < 0.0001 CV: 22.9

Susceptibility of oilseed hybrids to Sclerotinia head rot


Carrington, ND (2016)

		70 mence
Syngenta	NX54267	29
SunOpta	4415	28
NuSeed	EXP8914	67
NuSeed	EXP6967	74
Croplan	343 DMR HO	73
NuSeed	EXP8962	55
NuSeed	EXP0857	62
SunOpta	EX25	68
NuSeed	EXP8973	47
NuSeed	EXP6912	72
Syngenta	NX64290	83
NuSeed	FALCON	56
NuSeed	EXP2570	69
NuSeed	EXP5457	81
NuSeed	EXP3331	78
NuSeed	EXP8912	78
Syngenta	NX64189	63
NuSeed	EXP6561	83
Syngenta	SY7919	74
NuSeed	CAMARO II	83
NuSeed	COBALT II	76
NuSeed	EXP1157	61
NuSeed	EXP6938	74
NuSeed	EXP3712	75
Croplan	305 DMR NS	87
NuSeed	EXP0757	89
Syngenta	NX64288	<u>/9</u>
NuSeed	EXP2548	89
NuSeed	EXP2577	/ 6
SunOpta	EX21	02
		<i>P>F</i> : < 0.0001

Sclerotinia Head Rot

R9 growth stage % incidence

Sclerotia in Grain

Yield

10% moisture pounds/acre

poundo/dore	
1876	a
1849	ab
1723	abc
1697	a-d
1660	a-d
1656	a-d
1492	a-e
1446	a-f
1360	a-g
1324	a-g
1312	a-h
1296	a-h
1284	a-h
1248	a-i
1226	a-i
1222	a-i
1220	b-i
1186	c-i
1131	c-j c-i
1115	c-i
1072	C-j
1070	C-j
1057	d-j
843	e-k
812	f-k
741	g-k
669	h-k
619	ijk
348	k
347	jk
P = C < 0.0001	

P>F: < 0.0001 CV: 19.8

Yellow background = commercial hybrid

CV: 18.9

White background = experimental hybrid

CV: 18.7

Susceptibility of oilseed hybrids to Sclerotinia head rot Carrington, ND (2014)

Sclerotinia Head Rot

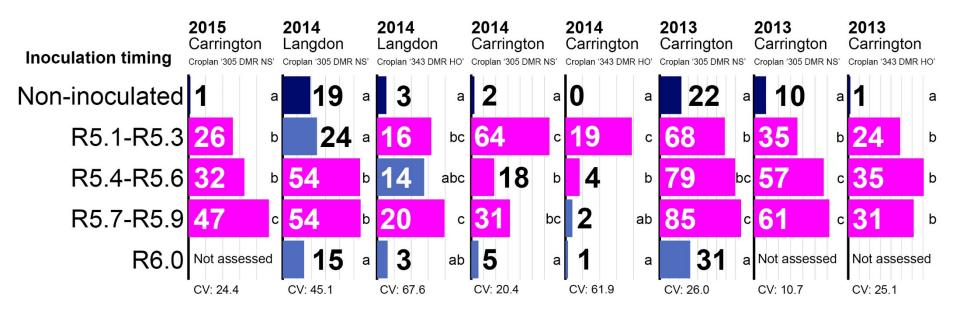
R9 growth stage % incidence

Sclerotia in Grain

uncleaned grain

% by weight

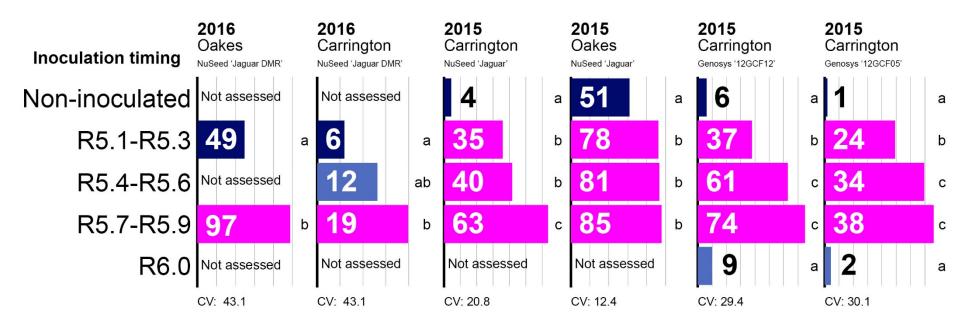
Yield 10% moisture **pounds/acre**


				, , <u>.</u>			
Syngenta	NX34240	4	а	0.9	ab	2505	а
Croplan	343 DRM HO	7	а	0.6	ab	2140	ab
NuSeed	NSK12016	16	а	1.0	ab	1847	abc
NuSeed	NSK12015	28	ab	1.1	ab	1776	abc
Mycogen	915321	27	ab	2.7	abc	1552	bc
Syngenta	7717 HO/CL/DM	21	ab	1.7	ab	1513	bc
Mycogen	416321	25	ab	2.3	abc	1279	cd
NuSeed	NHKE30489D	22	ab	0.5	а	1177	7 cd
Mycogen	101321	22	ab	1.4	ab	1060	cd
Croplan	305 DMR NS	52	b	6.4	С	1041	cd
NuSeed	NSK12014	44	b	3.8	bc	737	d
		<i>P>F</i> : < 0.0001 CV: 20.9		<i>P>F</i> : 0.0002 CV: 46.0		<i>P>F</i> : < 0.0001 CV: 20.1	

Yellow background = commercial hybrid

White background = experimental hybrid

Susceptibility to Sclerotinia head rot relative to sunflower growth stage


Oilseed sunflowers:

- In six of eight trials, susceptibility increased as bloom progressed
- In two trials, susceptibility was highest in the first third of bloom
- Susceptibility dropped sharply at the R6 growth stage

Susceptibility to Sclerotinia head rot relative to sunflower growth stage

Confection (non-oil) sunflowers:

- In five of six trials, susceptibility increased as bloom progressed
- In one trial, sunflowers were equally susceptible throughout bloom
- Susceptibility dropped sharply at the R6 growth stage

Susceptibility to Sclerotinia head rot relative to sunflower growth stage

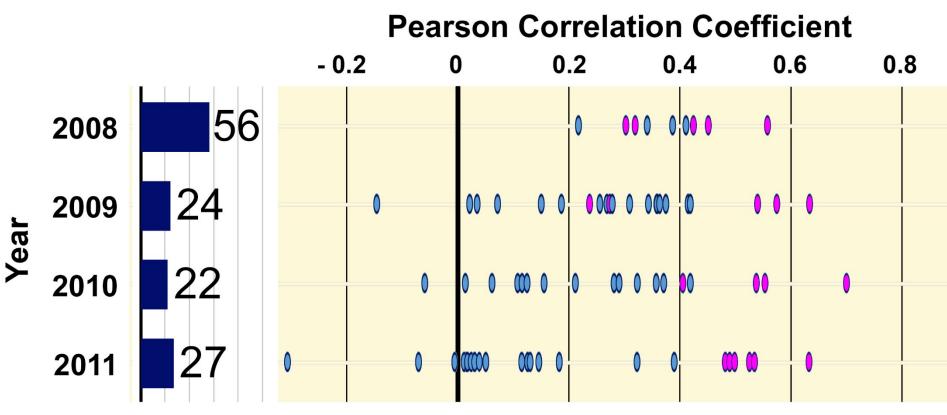
Conclusions from infection timing studies:

Susceptibility to Sclerotinia head rot is conditioned by (1) growth stage and (2) environmental conditions.

- Susceptibility increases as bloom progresses unless environmental conditions strongly favor infection at early bloom and become unfavorable at late bloom
- Susceptibility drops sharply at the end of bloom

Susceptibility to Sclerotinia head rot relative to sunflower growth stage

Implications for identifying partially resistant hybrids:


Obtaining unbiased, replicable results from screening nurseries is likely to be facilitated by

- (1) inoculating every sunflower head at the same growth stages
 - Reduces bias from differences in susceptibility related to growth stage
- (2) inoculating each head twice (on different dates)
 - Reduces bias from differences in susceptibility related to environmental conditions

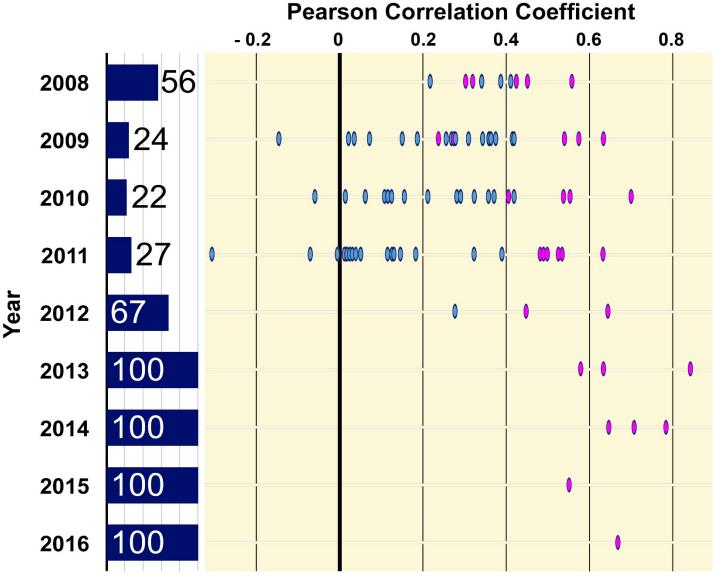
2008-2011:

Before modified inoculation methods were implemented.

Multi-location nurseries conducted to screen sunflowers for resistance to Sclerotinia head rot produced highly variable results.

Bars ilustrate the frequency of observing significantly correlated results (*P*<0.05) across screening nurseries.

Each oval illustrates the strength of the correlation between trials in which the same hybrids were evaluated.


Pink denotes a statistically significant correlation (P < 0.05).

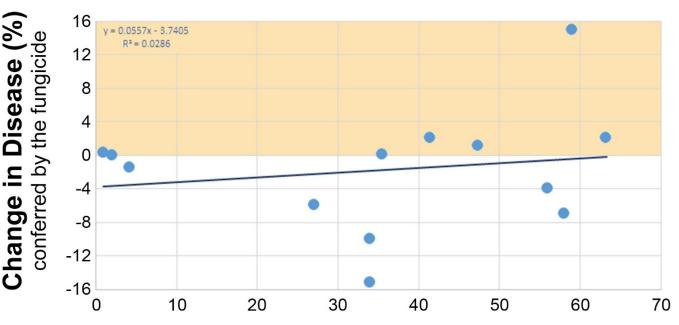
2012-2016:

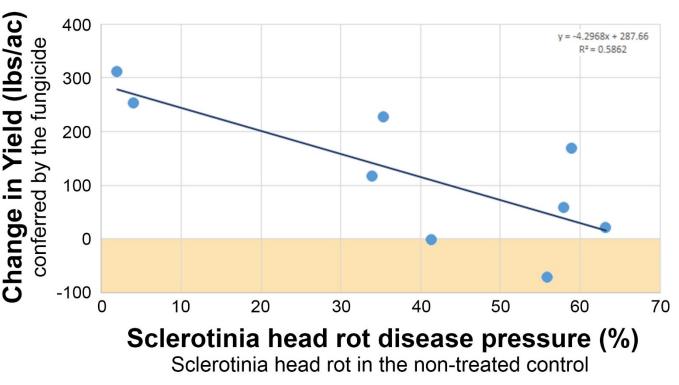
The new inoculation procedures produced replicable results.

BAR GRAPH: Bars represent the frequency with which significantly correlated results (P < 0.05) were observed across screening nurseries. Year SCATTER PLOT: Each oval represents the strength of the correlation in results across a pair of screening nurseries.

Pink denotes statistically significant correlations (P < 0.05).

Fungicide efficacy Endura 9 oz/ac



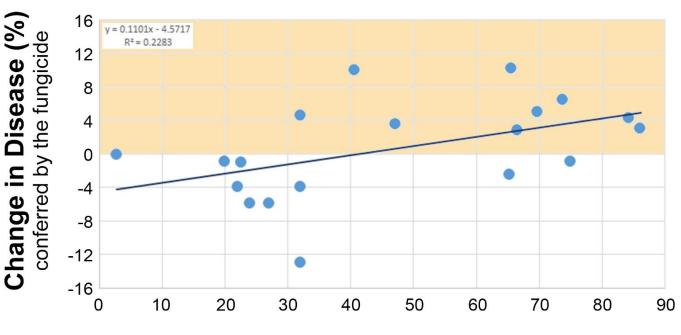

Study locations (years): Carrington (2012, 2013, 2015) Oakes (2013) Langdon (2013)

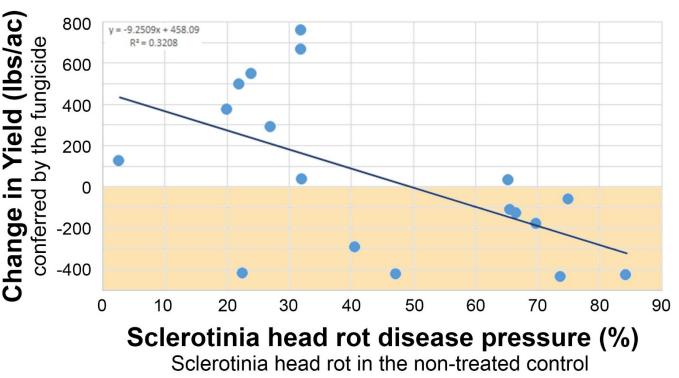
Spray volume: 10, 15 or 20 gal/ac

Spray nozzles, pressure: flat-fan nozzles, fine to medium droplet size. XR8001, 35 psi; R8002, 30 psi; XR8004, 55 psi; or TT11001, 40 psi

Application method: tractor-mounted boom (11 studies), hand-boom (2 studies)

Fungicide efficacy Proline 5.7 fl oz/ac



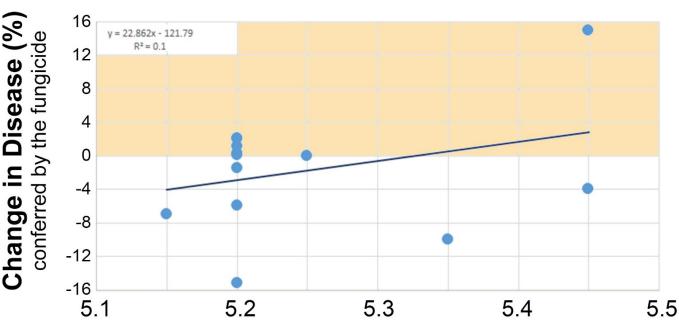

Study locations (years): Carrington (2017, 2018) Oakes (2017, 2018)

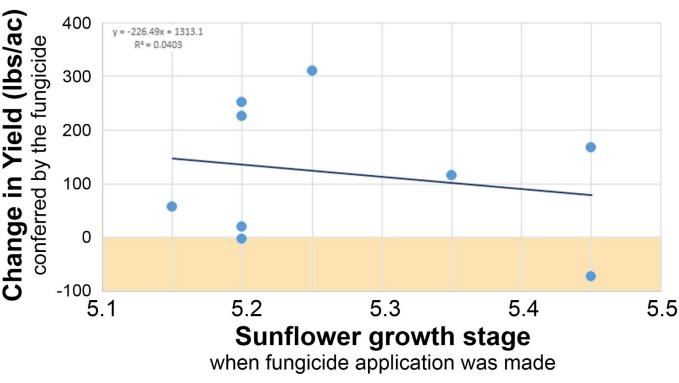
Spray volume: 15 gal/ac

Spray nozzles, pressure: flat-fan nozzles, very fine to fine droplet size. XR11001, 60 psi or XR11002, 40 psi

Application method: tractor-mounted boom (all studies)

Fungicide efficacy Endura 9 oz/ac



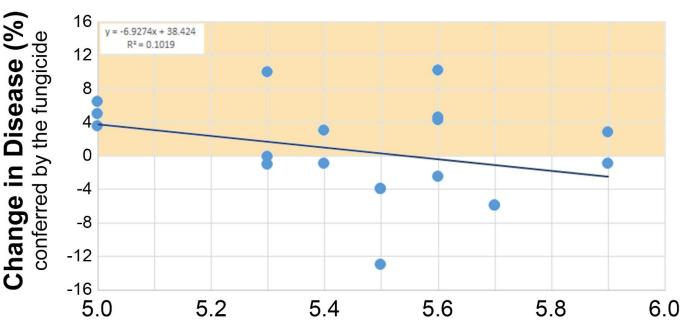

Study locations (years): Carrington (2012, 2013, 2015) Oakes (2013) Langdon (2013)

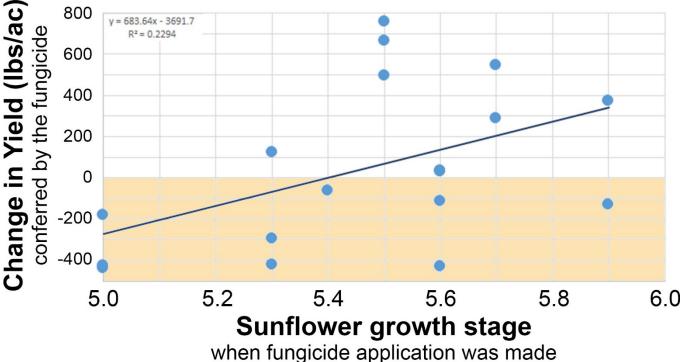
Spray volume: 10, 15 or 20 gal/ac

Spray nozzles, pressure: flat-fan nozzles, fine to medium droplet size. XR8001, 35 psi; R8002, 30 psi; XR8004, 55 psi; or TT11001, 40 psi

Application method: tractor-mounted boom (11 studies), hand-boom (2 studies)

Fungicide efficacy Proline 5.7 fl oz/ac




Study locations (years): Carrington (2017, 2018) Oakes (2017, 2018)

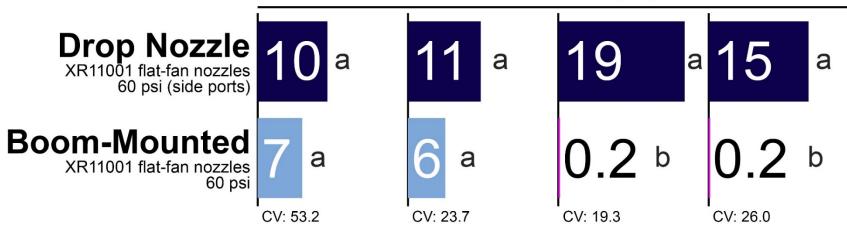
Spray volume: 15 gal/ac

Spray nozzles, pressure: flat-fan nozzles, very fine to fine droplet size. XR11001, 60 psi or XR11002, 40 psi

Application method: tractor-mounted boom (all studies)

Applying fungicides with drop nozzles Managing Sclerotinia head rot with fungicides

Fungicides applied with '360 Undercover' drop nozzles (360 Yield Center; Morton, IL) equipped with 110° flat-fan nozzles on side ports



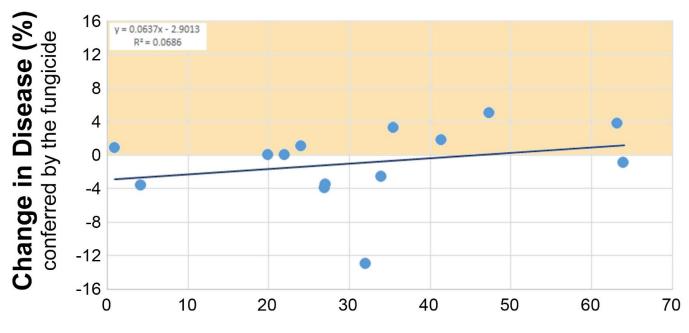
Fungicide application timing Field trials conducted in 2018

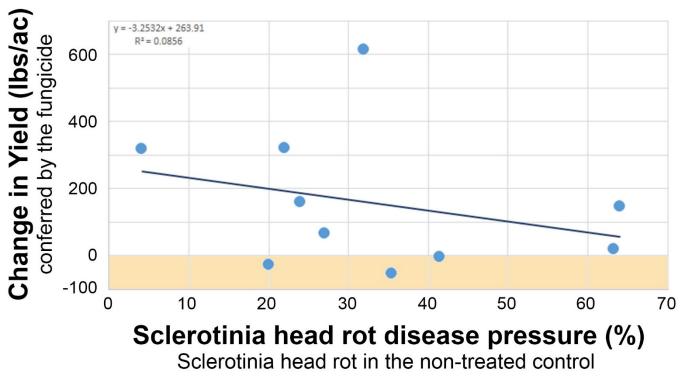
Fungicide coverage relative to fungicide application method and sunflower growth stage

	Carrington 2018	Carrington 2018	Oakes 2018	Carrington 2018
Plants with open disk flowers: Average growth stage:		79% R5.3	95% R5.6	100% R5.9
Range of growth stages:		R4-R5.8	R4-R5.9	R5.1-R6.0

FUNGICIDE COVERAGE (%)

Fungicide efficacy – drop nozzles Endura 9 oz/ac



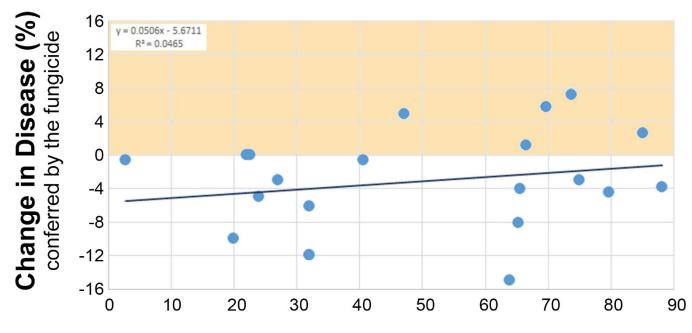

Study locations (years): Carrington (2015, 2017) Oakes (2017)

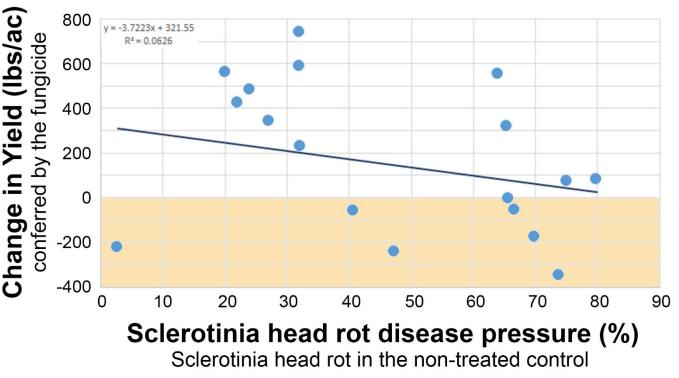
Spray volume: 15 gal/ac

Spray nozzles, pressure: flat-fan nozzles on side ports, fine droplet size. XR11001, 40 psi XR11002, 40 psi

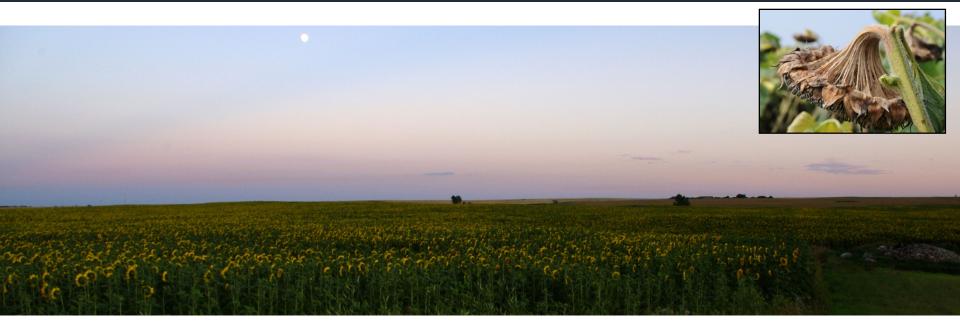
Application method: tractor-mounted boom equipped with '360 Undercover' drop nozzles

Fungicide efficacy – drop nozzles Proline 5.7 fl oz/ac




Study locations (years): Carrington (2017, 2018) Oakes (2017, 2018)

Spray volume: 15 gal/ac


Spray nozzles, pressure: flat-fan nozzles on side ports, fine or very fine droplet size. XR11001, 60 psi or XR11002, 40 psi

Application method: tractor-mounted boom equipped with '360 Undercover' drop nozzles

Thank you!

This research was funded by grants from:

- USDA Specialty Crops Block Grant Program administered by the ND Department of Agriculture
- The National Sunflower Association
- USDA National Sclerotinia Initiative
- North Dakota Crop Protection Product Harmonization Board and Registration Board

SPECIALTY CROP BLOCK GRANT PROGRAM

