Aphanomyces root rot

Aphanomyces Root Rot

Photos: Lyndon Porter, USDA-ARS

Symptoms:

- Initial root rot symptoms: honey-brown root and epicotyl tissue, often up to soil line
- <u>Later root rot symptoms</u>: necrotic root and epicotyl tissue, often up to soil line; poor nodulation
- <u>Wilt:</u> plants yellow from the bottom up

Causal pathogen: Aphanomyces euteiches (an oomycete; "water mold")

Aphanomyces euteiches produces oospores – thick-walled resting structures – in diseased tissue. Oospores persist in soils.

viewed through a microscope Photos: University of Wisconsin

Oospores germinate in response to chemical exudates from roots of susceptible hosts.

- Germination is direct (to produce mycelium) or
- **indirect** (to produce sporangia and zoospores).

Aphanomyces root rot (common root rot) of legumes. The Plant Health Instructor; online.

Aphanomyces typically becomes economically important after peas or lentils have been cropped to a field 3+ times

- The first epidemic is usually preceded by a previous lentil or pea crop that yielded well but conditions were favorable for disease, causing pathogen to increase
- Long crop rotations are most important when last lentil or pea crop was grown in a wet year

Susceptibility:

- Field peas, lentils >> chickpeas
 - Chickpeas are not very susceptible.
 - Lentils and field peas are highly susceptible.

Suceptibility to Aphanomyces, chickpeas vs. a representative field pea variety University of Saskatchewan (Cho and Banniza)

Conditions that favor infection:

- Soil moisture: high
- <u>Soil temperature</u>: high

Pfender and Hagedorn 1982 Phytopathology 72:306-310

Aphanomyces - Response to soil temperature

Pfender and Hagedorn 1982 Phytopathology 72:1200-1204

Carrington, ND (2018)	Plant	Root rot	Wilt	
No-till production	population:	severity	symptoms	Yield
	6-7 nodes	7-11 nodes	late pod-fill	13.5% moisture
Planting date	plants/ac	%	%	bu/ac
1 Early (April 30)	365468 a*	36 a*	10 a*‡	55 a*
2 Intermediate (May 10)	343137 a	65 b	20 b	39 b
3 Late (May 21)	361025 a	65 b	31 c	27 c
CV	: 8.2	14.5	8.6	10.1
Carrington, ND (2018)	Plant	Root rot	Wilt	
Conventional tillage	population:	severity	symptoms	Yield
	6-8 nodes	7-10 nodes	late pod-fill	13.5% moisture
Planting date	plants/ac	%	%	bu/ac
1 Early (April 29)	320353 a*	42 a*	12 a*‡	52 a*
2 Intermediate (May 10)	327455 a	62 b	27 b	41 b
3 Late (May 21)	346447 a	62 b	48 c	20 c
CV	: 7.5	14.5	8.6	10.1

* Within-column means followed by different letters are significantly different (P < 0.05; Tukey multiple comparison procedure).

‡ To meet model assumptions of normality and/or homoskedasticity, analysis of variance was conducted on data subjected to a systematic natural-log transformation. For ease of interpretation, treatments means are presented for the non-transformed data.

Carrington, ND (2017) - No-till production

		Plant population:	Root rot severity	Wilt symptoms	Yield
	-	4-7 nodes	4-8 nodes	late pod-fill	13.5% moisture
Planting date		plants/ac	%	%	bu/ac
1 Early planting (April	17)	223027 a*	52 a*	3 a*	33 a*
2 Intermediate (May 2	2)	223318 a	66 a	9 ab	31 a
3 Late (May 15)		204442 a	88 b	13 b	13 b
	CV:	18.8	12.7	26.3	14.4

* Within-column means followed by different letters are significantly different (P < 0.05; Tukey multiple comparison procedure).

Aphanomyces Efficacy of fungicide seed treatments

Seed treatments:

- <u>Metalayxl</u> and <u>mefenoxam</u>: ineffective.
- <u>Ethaboxam</u> (Intego Solo): registered on lentils and chickpeas.

Control of Aphanomyces with seed treatments is difficult:

• Aphanomyces root rot develops during vegetative growth and bloom, when the concentration of fungicide active ingredients in the target tissues (tap root, epicotyl) is low.

Aphanomyces Efficacy of fungicide seed treatments

Intego Solo combined analysis across nine field pea studies

active ingredient: ethaboxam

	Plant Population plants/ac	Root Rot % severity	Yield bushels/ac
BASE SEED TREATMENT Evergol Energy 1.0 fl oz/cwt + Gaucho 1.6 fl oz/cwt	327,300 a	59 a	39 b
Intego Solo 0.2 fl oz/cwt + BASE SEED TREATMENT	327,339 a	60 a	41 ab
Intego Solo 0.3 fl oz/cwt + BASE SEED TREATMENT	330,398 a CV: 3.9	61 a CV: 5.9	42 b CV: 5.6