Improving management of white mold in soybeans and dry beans: Impact of row spacing

Michael Wunsch
North Dakota State University Carrington Research Extension Center
Impact of row spacing on soybean agronomic performance under white mold pressure
Racine, Wisconsin (1977, 1980)

White mold incidence (% of plants; R7 growth stage)

Seeding rates: 15-inch row: 213,000 seeds/ac 30-inch row: 160,000 seeds/ac

- **15-inch row spacing**
 - Racine, WI (1977)
 - Hodgson: 41%
 - Corsoy: 52%
 - SRF-200: 54%
 - Wells: 65%
 - Steele: 70%
 - Asgrow 2656: 76%

- **30-inch row spacing**
 - Racine, WI (1977)
 - Hodgson: 3%
 - Corsoy: 15%
 - SRF-200: 26%
 - Wells: 30%
 - Steele: 6%
 - Asgrow 2656: 46%

- **10-inch**
 - Racine, WI (1980)
 - Corsoy: 36%
 - Wells: 54%

- **30-inch**
 - Corsoy: 37%
 - Wells: 56%
Impact of row spacing on soybean agronomic performance under white mold pressure
Racine, Wisconsin (1977, 1980)

Soybean Yield (bushels/acre; 13% moisture)

Seeding rates:
- 15-inch row: 213,000 seeds/acre
- 30-inch row: 160,000 seeds/acre

15-inch row spacing
- Racine, WI (1977)
 - Hodgson: 50
 - Corsoy: 41
 - SRF-200: 54
 - Wells: 45
 - Steele: 27
 - Asgrow 2656: 42

30-inch row spacing
- Racine, WI (1977)
 - Hodgson: 78
 - Corsoy: 86
 - SRF-200: 76
 - Wells: 70
 - Steele: 69
 - Asgrow 2656: 54

10-inch row spacing
- Racine, WI (1980)
 - Corsoy: 35
 - Wells: 27

30-inch row spacing
- Corsoy: 35
 - Wells: 33
Impact of row spacing on soybean agronomic performance under white mold pressure

White mold incidence (% of plants; R7 growth stage)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maple Arrow 9 in. 17 in. 27 in.</td>
<td>30 in. 7.5 in. 7.5 in.</td>
</tr>
<tr>
<td></td>
<td>Evans 9 in. 17 in. 27 in.</td>
<td>50 42 53</td>
</tr>
<tr>
<td></td>
<td>S1346 9 in. 17 in. 27 in.</td>
<td>28 25 23</td>
</tr>
<tr>
<td></td>
<td>Corsoy 79 9 in. 17 in. 27 in.</td>
<td>14 13 9</td>
</tr>
</tbody>
</table>

Ontario - Seeding rates: 9-inch row: 264,000 seeds/ac 18-inch row: 180,000 seeds/ac 27-inch row: 147,000 seeds/ac

Michigan - Seeding rates: 30-inch row: 174,000 seeds/ac 7.5-inch row: 174,000 and 224,000 seeds/ac
Impact of row spacing on soybean agronomic performance under white mold pressure

Eberts and Wallaceburg, Ontario (1985-1986)
Ingham County, Michigan (1999-2000)

Soybean Yield (bushels/acre; 13% moisture)

Eberts and Wallaceburg, Ontario
1985-1986

<table>
<thead>
<tr>
<th>Variety</th>
<th>Maple Arrow</th>
<th>Evans</th>
<th>S1346</th>
<th>Corsoy 79</th>
<th>Three varieties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Width</td>
<td>9 in.</td>
<td>9 in.</td>
<td>9 in.</td>
<td>9 in.</td>
<td>30 in.</td>
</tr>
<tr>
<td>Seeding Rate</td>
<td>264,000</td>
<td>180,000</td>
<td>174,000</td>
<td>174,000</td>
<td>174,000</td>
</tr>
</tbody>
</table>

Ontario - Seeding rates: 9-inch row: 264,000 seeds/acre
18-inch row: 180,000 seeds/acre
27-inch row: 147,000 seeds/acre

Michigan - Seeding rates: 30-inch row: 174,000 seeds/acre
7.5-inch row: 174,000 and 224,000 seeds/acre

Impact of seeding rate on soybean agronomic performance under white mold pressure

Oakes, ND (2015-2017) Combined analysis across three seeding rates: 132,000; 165,000; and 198,000 viable seeds/ac

Canopy closure (days before or after bloom initiation - 90% of plants at R1)

Row Spacing

<table>
<thead>
<tr>
<th>row</th>
<th>14 in</th>
<th>21 in</th>
<th>28 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairyland DSR-0711</td>
<td>2015</td>
<td>0.3, 6, 11</td>
<td>-0.7, 2, 6</td>
</tr>
<tr>
<td>Pioneer 90Y90</td>
<td>2015</td>
<td>4, 10, 17</td>
<td>0, 10, 15</td>
</tr>
<tr>
<td>Dairyland DSR-0711</td>
<td>2016</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Dairyland DSR-0711</td>
<td>2017</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Dairyland DSR-0711</td>
<td>2015</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Dairyland DSR-0711</td>
<td>2016</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Dairyland DSR-0711</td>
<td>2017</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Dairyland DSR-0907</td>
<td>2016</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Pioneer P07T36R</td>
<td>2015</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Pioneer P07T50R</td>
<td>2015</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Pioneer P07T50R</td>
<td>2016</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Pioneer 90M80</td>
<td>2016</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
<tr>
<td>Dairyland DSR-0988</td>
<td>2017</td>
<td>14, 21, 28</td>
<td>14, 21, 28</td>
</tr>
</tbody>
</table>
Impact of seeding rate on soybean agronomic performance under white mold pressure
Oakes, ND (2015-2017) Combined analysis across three seeding rates: 132,000; 165,000; and 198,000 viable seeds/ac

White mold incidence (% of plants; R7 growth stage)
Impact of seeding rate on soybean agronomic performance under white mold pressure

Oakes, ND (2015-2017) Combined analysis across three seeding rates: 132,000; 165,000; and 198,000 viable seeds/ac

Soybean Yield (bushels/acre; 13% moisture)
Impact of row spacing on soybean agronomic performance under white mold pressure

Carrington, ND (2014) Seeding rate: 165,000 viable seeds/ac

White mold incidence (% of plants; R7 growth stage)
Impact of row spacing on soybean agronomic performance under white mold pressure

Carrington, ND (2014) Seeding rate: 165,000 viable seeds/ac

Soybean Yield (bushels/acre; 13% moisture)
Impact of seeding rate on soybean agronomic performance under white mold pressure
Carrington, ND (2015, 2017) Combined analysis across three seeding rates: 132,000; 165,000; and 198,000 viable seeds/ac

Canopy closure (days before or after bloom initiation - 90% of plants at R1)

Row Spacing

- Pioneer P06T28R maturity = 0.6 2017
- Pioneer P08T96R maturity = 0.8 2017
- Pioneer P05T24R maturity = 0.8 2017
- Pioneer P08T59R maturity = 0.8 2017
- Pioneer P06T28R maturity = 0.6 2016
- Pioneer 90Y50 maturity = 0.5 2015
- ProSeed 20-70 maturity = 0.7 2015
- Mycogen 5B066 maturity = 0.6 2015
- Mycogen 5B080 maturity = 0.8 2015
Impact of seeding rate on soybean agronomic performance under white mold pressure

Carrington, ND (2015, 2017) Combined analysis across three seeding rates: 132,000; 165,000; and 198,000 viable seeds/ac

White mold incidence (% of plants; R7 growth stage)

<table>
<thead>
<tr>
<th>Row Spacing</th>
<th>14 in. 21 in. 28 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pioneer P06T28R</td>
<td>maturity = 0.6</td>
<td>2017</td>
<td>Pioneer P06T96R</td>
<td>maturity = 0.8</td>
<td>2017</td>
<td>Pioneer P05T24R</td>
<td>maturity = 0.5</td>
<td>2017</td>
<td>Pioneer P08T59R</td>
</tr>
<tr>
<td>Pioneer P06T28R</td>
<td>maturity = 0.6</td>
<td>2017</td>
<td>Pioneer P06T28R</td>
<td>maturity = 0.6</td>
<td>2015</td>
<td>Pioneer 90Y50</td>
<td>maturity = 0.5</td>
<td>2015</td>
<td>ProSeed 20-70</td>
</tr>
<tr>
<td>Pioneer 5B066</td>
<td>maturity = 0.6</td>
<td>2015</td>
<td>Pioneer 5B066</td>
<td>maturity = 0.6</td>
<td>2015</td>
<td>ProSeed 20-70</td>
<td>maturity = 0.7</td>
<td>2016</td>
<td>Mycogen 5B066</td>
</tr>
<tr>
<td>Pioneer 5B080</td>
<td>maturity = 0.8</td>
<td>2016</td>
<td>Pioneer 5B080</td>
<td>maturity = 0.8</td>
<td>2016</td>
<td>Mycogen 5B066</td>
<td>maturity = 0.6</td>
<td>2015</td>
<td>Mycogen 5B080</td>
</tr>
</tbody>
</table>
Impact of seeding rate on soybean agronomic performance under white mold pressure

Carrington, ND (2015, 2017) Combined analysis across three seeding rates: 132,000; 165,000; and 198,000 viable seeds/ac

Soybean Yield (bushels/acre; 13% moisture)

Row Spacing

<table>
<thead>
<tr>
<th>Seeding Rate</th>
<th>2015</th>
<th>2017</th>
<th>2015</th>
<th>2017</th>
<th>2015</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pioneer P06T28R</td>
<td>68</td>
<td>68</td>
<td>61</td>
<td>61</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>Pioneer P08T96R</td>
<td>71</td>
<td>70</td>
<td>64</td>
<td>64</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Pioneer P05T24R</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Pioneer P08T59R</td>
<td>51</td>
<td>46</td>
<td>43</td>
<td>43</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Pioneer P06T28R</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Pioneer 90Y50</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>ProSeed 20-70</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Mycogen 5B066</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Mycogen 5B080</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
</tbody>
</table>
Carrington, ND 2015: 0.3-maturity soybean variety
Combined analysis, three seeding rates (132,000; 165,000; 198,000 viable seeds/ac) and four row spacings
SCLEROTINIA MANAGEMENT

Row spacing

Carrington, ND 2015: 0.3-maturity soybean variety

Combined analysis across three seeding rates (132,000; 165,000; 198,000 viable seeds/ac)

<table>
<thead>
<tr>
<th>Row spacing</th>
<th>Canopy Closure</th>
<th>Sclerotinia Incidence</th>
<th>Soybean Yield</th>
<th>Sclerotia in Grain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days after 90% bloom</td>
<td>Sept. 5-6; R7 %</td>
<td>13% moisture bu/ac</td>
<td>% by weight</td>
</tr>
<tr>
<td>IRRIGATION: R2 to R4 growth stage (July 22 - Aug. 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-inch 5</td>
<td>37 (b)</td>
<td>40 (ab)</td>
<td>1.25 (a)</td>
<td></td>
</tr>
<tr>
<td>14-inch 6</td>
<td>38 (b)</td>
<td>43 (ab)</td>
<td>1.42 (a)</td>
<td></td>
</tr>
<tr>
<td>21-inch 14</td>
<td>35 (ab)</td>
<td>44 (a)</td>
<td>1.26 (a)</td>
<td></td>
</tr>
<tr>
<td>28-inch 19</td>
<td>29 (a)</td>
<td>39 (b)</td>
<td>1.02 (a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV: 22.0</td>
<td>CV: 10.0</td>
<td>CV: 22.7</td>
<td></td>
</tr>
<tr>
<td>IRRIGATION: R4 to R7 growth stage (Aug. 8 - 31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-inch 4</td>
<td>31 (b)</td>
<td>51 (ab)</td>
<td>0.77 (a)</td>
<td></td>
</tr>
<tr>
<td>14-inch 5</td>
<td>33 (b)</td>
<td>54 (a)</td>
<td>0.72 (a)</td>
<td></td>
</tr>
<tr>
<td>21-inch 14</td>
<td>28 (ab)</td>
<td>51 (ab)</td>
<td>0.57 (a)</td>
<td></td>
</tr>
<tr>
<td>28-inch 21</td>
<td>23 (a)</td>
<td>48 (b)</td>
<td>0.51 (a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV: 19.8</td>
<td>CV: 32.1</td>
<td>CV: 6.2</td>
<td></td>
</tr>
<tr>
<td>IRRIGATION: R5 to R7 growth stage (Aug. 16 - 31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-inch 4</td>
<td>23 (b)</td>
<td>49 (bc)</td>
<td>0.53 (a)</td>
<td></td>
</tr>
<tr>
<td>14-inch 6</td>
<td>24 (b)</td>
<td>53 (a)</td>
<td>0.42 (a)</td>
<td></td>
</tr>
<tr>
<td>21-inch 12</td>
<td>19 (ab)</td>
<td>52 (ab)</td>
<td>0.42 (a)</td>
<td></td>
</tr>
<tr>
<td>28-inch 23</td>
<td>15 (a)</td>
<td>47 (c)</td>
<td>0.36 (a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV: 19.8</td>
<td>CV: 32.1</td>
<td>CV: 6.2</td>
<td></td>
</tr>
</tbody>
</table>
Impact of seeding rate on soybean agronomic performance under white mold pressure
Carrington, ND (2017)
Combined analysis across three seeding rates: 132,000; 165,000; and 198,000 viable seeds/ac

White mold incidence (% of plants; R7 growth stage)

<table>
<thead>
<tr>
<th></th>
<th>Dryland DSR-0711</th>
<th>Dryland DSR-0619</th>
<th>Irrigated V5-R4 DSR-0711</th>
<th>Irrigated V5-R4 DSR-0619</th>
<th>Irrigated R2-R5 DSR-0711</th>
<th>Irrigated R2-R5 DSR-0619</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 in. 21 in. 28 in.</td>
</tr>
<tr>
<td>6</td>
<td>19 a</td>
<td>52 a</td>
<td>74 a</td>
<td>83 b</td>
<td>54 a</td>
<td>79 ab</td>
</tr>
<tr>
<td>5</td>
<td>19 a</td>
<td>50 a</td>
<td>73 a</td>
<td>84 a</td>
<td>58 a</td>
<td>80 ab</td>
</tr>
<tr>
<td>7</td>
<td>21 a</td>
<td>58 a</td>
<td>76 a</td>
<td>78 a</td>
<td>57 a</td>
<td>74 ab</td>
</tr>
<tr>
<td>4</td>
<td>16 a</td>
<td>45 a</td>
<td>65 a</td>
<td>78 a</td>
<td>51 a</td>
<td>79 ab</td>
</tr>
</tbody>
</table>
Impact of seeding rate on soybean agronomic performance under white mold pressure

Carrington, ND (2017)

Combined analysis across three seeding rates: 132,000; 165,000; and 198,000 viable seeds/ac

Soybean Yield (bushels/acre; 13% moisture)

<table>
<thead>
<tr>
<th>Dryland</th>
<th>Irrigated V5-R4</th>
<th>Irrigated R2-R5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSR-0711</td>
<td>DSR-0619</td>
<td>DSR-0711</td>
</tr>
<tr>
<td>DSR-0619</td>
<td>DSR-0711</td>
<td>DSR-0619</td>
</tr>
</tbody>
</table>

Row Spacing:

- DSR-0711: 7, 14, 21, 28
- DSR-0619: 7, 14, 21, 28
- DSR-0711: 7, 14, 21, 28
- DSR-0619: 7, 14, 21, 28
- DSR-0711: 7, 14, 21, 28
- DSR-0619: 7, 14, 21, 28

- **53 b**
- **56 a**
- **48 c**
- **48 b**
- **50 b**
- **54 a**
- **45 c**
- **38 a**
- **41 a**
- **38 a**
- **40 a**
- **29 a**
- **27 a**
- **27 a**
- **28 a**
- **41 b**
- **42 b**
- **45 a**
- **40 b**
- **28 ab**
- **28 bc**
- **31 a**
- **26 c**
White mold incidence:
Wide (28- to 30-inch) vs. Narrow (14- or 15-inch) rows

Soybean maturity: 00 and 0

Locations: Carrington, Hofflund, Langdon, and Oakes, ND

Years: 2013-2017

- 2013-2014: Single seeding rate (165,000 viable seeds/ac)
- 2015-2017: Combined analysis across three seeding rates (132,000; 165,000; 198,000 viable seeds/ac)

Change in White Mold Incidence
percentage-point change as soybean row spacing narrowed from 28 or 30 inches to 14 or 15 inches

y = -0.2591 + 0.3404x - 0.0018x^2
R^2 = 0.5482

White mold incidence (% of plants diseased) in soybeans seeded in 14- or 15-inch rows
White mold incidence:
Wide (28- to 30-inch) vs. Intermediate (21- or 22.5-inch) rows

Soybean maturity: 00 and 0 Locations: Carrington, Hofflund, Langdon, and Oakes, ND Years: 2013-2017
• 2013-2014: Single seeding rate (165,000 viable seeds/ac)
• 2015-2017: Combined analysis across three seeding rates (132,000; 165,000; 198,000 viable seeds/ac)

White mold disease pressure
White mold incidence (% of plants diseased) in soybeans seeded in 21- or 22.5-inch rows

\[
y = -0.7647 + 0.3807x - 0.0026x^2
\]

\[R^2 = 0.5476\]
Soybean yield:
Wide (28- to 30-inch) vs. Narrow (14- or 15-inch) rows

Soybean maturity: 00 and 0
Locations: Carrington, Hofflund, Langdon, and Oakes, ND
Years: 2013-2017
- 2013-2014: Single seeding rate (165,000 viable seeds/ac)
- 2015-2017: Combined analysis across three seeding rates (132,000; 165,000; 198,000 viable seeds/ac)

White mold disease pressure
White mold incidence (% of plants diseased) in soybeans seeded in 14- or 15-inch rows
Soybean Yield:
Wide (28- to 30-inch) vs. Intermediate (21- or 22.5-inch) rows

Soybean maturity: 00 and 0
Locations: Carrington, Hofflund, Langdon, and Oakes, ND
Years: 2013-2017
• 2013-2014: Single seeding rate (165,000 viable seeds/ac)
• 2015-2017: Combined analysis across three seeding rates (132,000; 165,000; 198,000 viable seeds/ac)
Sclerotia contamination of the grain:
Wide (28- to 30-inch) vs. Narrow (14- or 15-inch) rows

Soybean maturity: 00 and 0 Locations: Carrington, Hofflund, Langdon, and Oakes, ND Years: 2013-2017
- 2013-2014: Single seeding rate (165,000 viable seeds/ac)
- 2015-2017: Combined analysis across three seeding rates (132,000; 165,000; 198,000 viable seeds/ac)

Change in Sclerotia Contamination
percentage-point change (% by weight) as soybean row spacing narrowed from 28 or 30 inches to 14 or 15 inches

White mold disease pressure
White mold incidence (% of plants diseased) in soybeans seeded in 14- or 15-inch rows

$y = 0.0005 + 0.0004x + 0.00005x^2$
$R^2 = 0.61111$
Sclerotinia contamination of the grain:
Wide (28- to 30-inch) vs. Intermediate (21- or 22.5-inch) rows

Soybean maturity: 00 and 0
Locations: Carrington, Hofflund, Langdon, and Oakes, ND
Years: 2013-2017
• 2013-2014: Single seeding rate (165,000 viable seeds/ac)
• 2015-2017: Combined analysis across three seeding rates (132,000; 165,000; 198,000 viable seeds/ac)

Change in Sclerotinia Contamination

percentage-point change (% by weight) as soybean row spacing narrowed from 28 or 30 inches to 21 or 22.5 inches

\[y = 0.0005 + 0.0004x + 0.00005x^2 \]

\[R^2 = 0.61111 \]

White mold disease pressure
White mold incidence (% of plants diseased) in soybeans seeded in 21- or 22.5-inch rows
Impact of row spacing on white mold:

- When end-of-season white mold incidence was less than 50%, soybean yield was maximized when soybeans were grown in narrow (14- or 15-inch) or intermediate (21- or 22.5-inch) rows.

- **Intermediate row spacing was optimal.** Soybeans seeded to 21- or 22.5-inch rows generally developed less white mold and had higher yields than soybeans seeded to 14- or 15-inch rows.

- The **increase in sclerotia contamination of grain** associated with planting to narrow or intermediate rows was negligible when end-of-season white mold incidence was less than 30% and moderate when white mold incidence was less than 50%.
Dry bean performance in narrow vs. wide rows under white mold pressure

- Oakes (2016)
- ‘Lariat’ pinto beans
- Seeding rate: 85,000 or 92,000 pure live seeds/ac
- Supplemental irrigation applied to facilitate disease pressure
<table>
<thead>
<tr>
<th>Row Spacing:</th>
<th>2013</th>
<th>2014</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carrington</td>
<td>Carrington</td>
<td>Oakes</td>
</tr>
<tr>
<td>SCLEROTINIA SEVERITY INDEX (% of canopy diseased)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 inches</td>
<td>54</td>
<td>a</td>
<td>32</td>
</tr>
<tr>
<td>28 inches</td>
<td>45</td>
<td>a</td>
<td>30</td>
</tr>
<tr>
<td>CV: 32.4</td>
<td>CV: 4.9</td>
<td>CV: 19.7</td>
<td></td>
</tr>
<tr>
<td>YIELD (pounds per acre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 inches</td>
<td>1984 a</td>
<td>2004 a</td>
<td>3090 a</td>
</tr>
<tr>
<td>28 inches</td>
<td>1949 a</td>
<td>2245 a</td>
<td>2679 b</td>
</tr>
<tr>
<td>CV: 7.1</td>
<td>CV: 13.2</td>
<td>CV: 8.0</td>
<td></td>
</tr>
</tbody>
</table>
Carrington (2014):
Differential irrigation utilized to facilitate early vs. late disease onset

Carrington, ND (2014)
‘Lariat’ pinto

14-INCH ROW SPACING

28-INCH ROW SPACING
Growth stages at which intensive irrigation was applied:
- **V4 to R6**
- **R2 to R6**
- **R3 to R6**

SCLEROTINIA SEVERITY INDEX (% of canopy diseased)

<table>
<thead>
<tr>
<th>Row Spacing</th>
<th>14 inches</th>
<th>28 inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>86</td>
<td>77</td>
</tr>
<tr>
<td>CV: 3.1</td>
<td>75</td>
<td>72</td>
</tr>
<tr>
<td>CV: 7.8</td>
<td>63</td>
<td>70</td>
</tr>
<tr>
<td>CV: 10.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YIELD (pounds per acre)

<table>
<thead>
<tr>
<th>Row Spacing</th>
<th>14 inches</th>
<th>28 inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1638</td>
<td>1484</td>
</tr>
<tr>
<td>CV: 8.3</td>
<td>2063</td>
<td>1606</td>
</tr>
<tr>
<td>CV: 7.3</td>
<td>2735</td>
<td>2122</td>
</tr>
<tr>
<td>CV: 4.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Carrington (2015): Differential irrigation utilized to facilitate early vs. late disease onset

- Irrigated June 29 - July 17 (V3 - R1 growth stage)
- Irrigated June 29 - July 31 (V3 - R3 growth stage)
- Irrigated June 29 - July 17, Aug. 8 - 18 (V3 - R1, R4-R6 growth stage)
<table>
<thead>
<tr>
<th>Row Spacing:</th>
<th>Growth stages at which intensive irrigation was applied:</th>
<th>SCLEROTINIA SEVERITY INDEX (% of canopy diseased)</th>
<th>YIELD (pounds per acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 inches</td>
<td>V3 to R1, V3 to R3, V3-R1, R4-R6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 inches</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sclerotinia Severity Index

- **14 inches**
 - V3 to R1: 38 (CV: 16.6)
 - V3 to R3: 53 (CV: 8.2)
 - V3-R1, R4-R6: 36 (CV: 6.3)

- **28 inches**
 - V3 to R1: 36 (CV: 11.2)
 - V3 to R3: 55 (CV: 13.9)
 - V3-R1, R4-R6: 38 (CV: 8.1)

Yield

- **14 inches**
 - V3 to R1: 2294 (a)
 - V3 to R3: 2003 (a)
 - V3-R1, R4-R6: 2478 (a)

- **28 inches**
 - V3 to R1: 2072 (a)
 - V3 to R3: 1752 (a)
 - V3-R1, R4-R6: 2297 (a)
Dry bean performance in narrow vs. wide rows under white mold pressure

Except under very high disease pressure, yields were optimized in 14-inch rows.

Cautionary notes:
• Impact on seed quality is unclear.
• A single variety (‘Lariat’) from a single market class (pinto) was evaluated.
Thank You!

Research funding:
North Dakota Soybean Council
USDA National Sclerotinia Initiative
Northarvest Bean Growers Association
North Dakota Crop Protection Product Registration and Harmonization Board