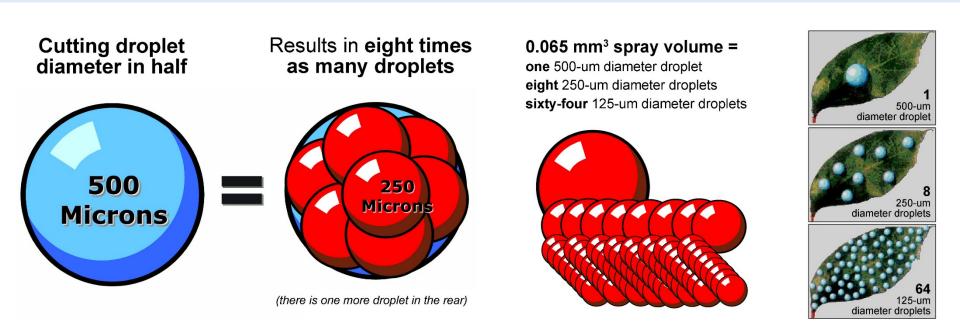


Optimizing fungicide spray droplet size for improved management of Ascochyta blight of chickpeas

Michael Wunsch, Jesse Hafner, Suanne Kallis, Billy Kraft and Thomas Miorini NDSU Carrington Research Extension Center

Research funded by the Northern Pulse Growers Association and the North Dakota Crop Protection Product Harmonization Board and Registration Board



OPTIMIZING FUNGICIDE DEPOSITION WITHIN A CROP CANOPY Droplet size

Reducing droplet size increases spray coverage.

Modern systemic fungicides exhibit only limited systemic movement – limited upward movement from the point where the fungicide was deposited and movement from the upper to the lower surface of the leaf. Older contact fungicide have no systemic movement.

Due to the limited systemic movement by fungicides within plants, fine to medium spray droplets that optimize fungicide coverage to the upper canopy are generally recommended for fungicides.

OPTIMIZING FUNGICIDE DEPOSITION WITHIN A CROP CANOPY

Droplet size

... But reducing droplet size reduces droplet velocity and increases the risk of drift.

Because fine droplets lack the velocity to penetrate dense canopies, medium or even coarse droplets (depending on canopy height and density) may optimize disease control when targeting a disease that develops in the interior of a dense canopy.

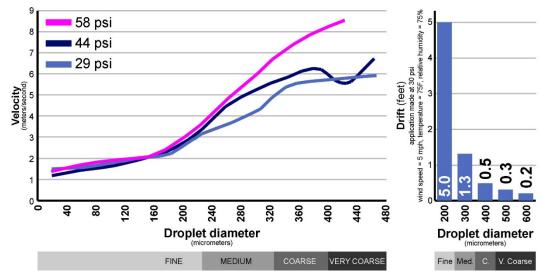


Image adapted from a presentation by Bob Wolf (Kansas State Univ.); Bobby Grisso and Pat Hipkins (Virginia Tech Univ.); and Tom Reed (TeeJet)

What fungicide droplet size is optimal for chickpeas?

Ascochyta blight of chickpeas is a splash-dispersed disease that spreads when raindrops hit pathogen fruiting structures within diseased lesions. Because the most severe raindrop-facilitated spread would be expected in the upper canopy, theory suggests that applying fungicides with fine droplets will optimize management of Ascochyta blight.

Fine droplets optimize fungicide coverage to the upper canopy.

OPTIMIZING FUNGICIDE SPRAY DROPLET SIZE Methods

Applications were made with a tractor-mounted sprayer equipped with a pulse-width modulation system from Capstan AG.

Spray volume: 15 gal/ac Pulse width manually calibrated to maintain a constant spray volume across tips differing in output.

Driving speed: 8.9 mph in 2019, 10.5 mph in 2020.

optimizing fungicide spray droplet size Methods

Studies were conducted with nozzles from two manufacturers.

The droplet size spectrum considered to be "fine" vs. "medium" vs. "coarse" can differ by manufacturer. Testing was conducted with nozzles from different manufacturers to confirm that the results were not specific to a specific nozzle manufacturer.

Spray droplet size estimates were based on information provided by the manufacturer.

(1) WILGER Combo-Jet flat-fan nozzles

ER110-04, 50 psi – fine droplets SR110-04, 50 psi – medium droplets MR110-04, 50 psi – coarse droplets

(2) TEEJET

Extended-range flat-fan nozzles

XR11004, 50 psi – fine droplets XR11005, 50 psi – medium-fine droplets XR11006, 35 psi – medium droplets XR11008, 40 psi – medium-coarse droplets

(And)

PSI

						ATIVE I					((1
					and and	15	20	25	30	40	50	60	
	ERIIO-0	SR110-04	MR 1 10-04	DR 1 10-04	XR11004 50 psi FINE DROPLETS	XR11004	М	М	М	М	М	F	F
	Recommended Pressure: 25-70 PSI	Recommended Pressure: 30-100 PSI	Recommended Pressure: 30-100 PSI	Recommended Pressure: 35-100 PSI									
Tip Flow	VMD (Droplet :	Size in µ); %<141µ (Drift %)); %<200µ (Drift %); %<600	µ (Small Droplets)	XR11005 40 psi	XR11005	М	М	м	М	M	E	E
Tip Flow Cap Rate P No. USGPM	SI 110° ER Series	110° SR Series	110° MR Series	110° DR Series 0 VMD <141 <200 <600	MEDIUM-FINE DROPLETS	ARTIOUS		IVI		101		E.	F
04 0.43 5	50 209 26% 47% 96%	The second interesting interesting to the second	6 355 8% 17% 919	the statement income and an and the second									
	Fine	Medium	Coarse	Very Coarse	XR11006 35 psi	XR11006	C	М	М	М	м	M	E
	106-235µ	236-340µ	341-403µ	404-502µ	MEDIUM DROPLETS	ARTIOUO	C	IVI		101		101	Г
	ED440.04	SD440.04	MD440.04	DD110.04									
	ER110-04	SR110-04	MR110-04	DR110-04	XR11008 40 psi	XR11008	C	C	C	C	NA.	М	м
	50 psi	50 psi	50 psi	50 psi	MEDIUM-COARSE DROPLETS	7811008	C	C	C	C		IVI	IVI
	FINE	MEDIUM	COARSE	VERY COARSE									
	DROPLETS	DROPLETS	DROPLETS	DROPLETS	XR11010 30 psi	XR11010	VC	C	C	C	NA.	NA	М
					COARSE DROPLETS	AKTIOTO	VC	C	C	C		М	IVI

OPTIMIZING FUNGICIDE SPRAY DROPLET SIZE Methods

The initial calibration was conducted with water.

Objectives:

- 1. Nozzle selection: Tips with output deviating from advertised specifications discarded
- 2. Initial identification of pulse width needed to deliver <u>15 gal/ac</u> spray volume at <u>8.9 mph</u> driving speed

Spot-On sprayer calibrator model SC-1 (Innoquest, Inc.; Woodstock, IL)

The final calibration was conducted with fungicide in the field immediately before application.

Objectives:

- Ensure a precise spray volume of 15 gal/ac. Manual adjustments to pulse width were made as needed.
- 2. Confirm that all nozzles are operating correctly – consistent output across all nozzles; no plugs.

OPTIMIZING FUNGICIDE SPRAY DROPLET SIZE Methods

To ensure rigorous results, a large number of experimental replicates was utilized.

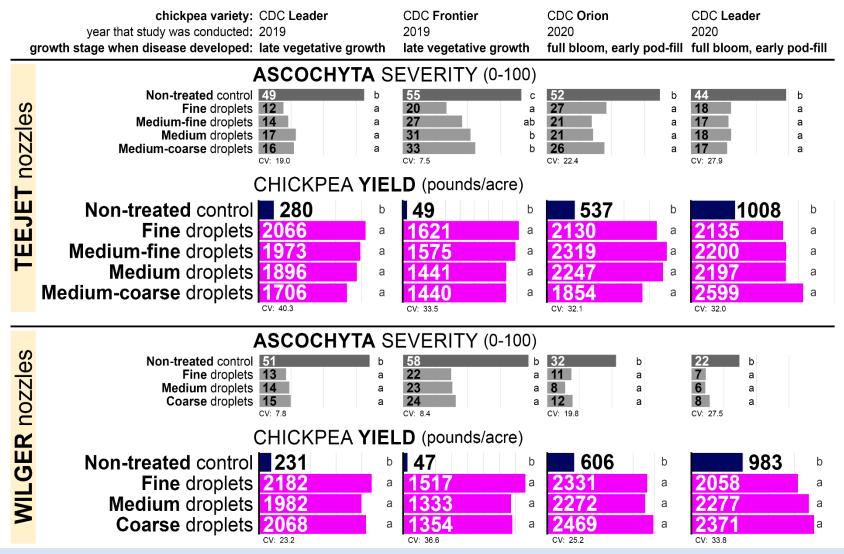
Studies were conducted with six to eight replicates.

Row spacing: 7.5 inches (seven rows per plot)

Seeding rate: 4.5 pure live seed/square foot

Plot size: In the tractor-applied studies conducted in Carrington in 2019, fungicide treatments were applied to 60-foot-long plots consisting of 30-foot lengths of each of two varieties ('CDC Leader' and 'CDC Frontier').

Experimental design: Randomized complete block with split-plot arrangement (main factor = fungicide, sub-factor = droplet size).


Disease assessments:

- Initial disease assessments (during mid-bloom) were conducted by estimating the percent of the canopy diseased in each of four locations per variety per plot.
- Final disease assessments (when chickpeas were senescing) were conducted by assessing the incidence of pods with Ascochyta lesions. In each of four locations per variety per plot, all of the pods on 2 to 4 plants were evaluated for Ascochyta lesions (average 348 pods evaluated per plot).

IMPACT OF FUNGICIDE SPRAY DROPLET SIZE: **TEEJET** AND **WILGER NOZZLES** Ascochyta management in **chickpeas**

Fungicide #1: Proline (5.7 fl oz/ac)

The droplet size optimizing performance of Proline was contingent on canopy characteristics.

Wilger Combo-Jet flat-fan nozzles. FINE DROPLETS: ER110-04, 50 psi (2019); ER110-05, 60 psi (2020); MEDIUM: SR110-04, 50 psi (2019); SR110-05, 60 psi (2020); COARSE: MR110-04, 50 psi (2019); MR110-05, 60 psi (2020). TeeJet XR flat-fan nozzles. FINE: XR11004, 50 psi (2019), XR11005, 60 psi (2020); MEDIUM-FINE: XR11005, 40 psi (2019), XR11006, 30 psi (2019), XR11006, 35 psi (2019, 2020); MEDIUM-COARSE: XR11008, 40 psi (2019, 2020). Spray volume: 15 gal/ac Driving speed: 8.9 mph (2019), 10.5 mph (2020)

IMPACT OF FUNGICIDE SPRAY DROPLET SIZE: **TEEJET** AND **WILGER NOZZLES** Ascochyta management in **chickpeas**

Fungicide #2: Proline (5.7 fl oz/ac) + Bravo WS (1.38 pt/ac)

Fine droplets (TeeJet) or fine to medium droplets (Wilger) optimized fungicide performance

Wilger Combo-Jet flat-fan nozzles. FINE DROPLETS: ER110-04, 50 psi (2019); ER110-05, 60 psi (2020); MEDIUM: SR110-04, 50 psi (2019); SR110-05, 60 psi (2020); COARSE: MR110-04, 50 psi (2019); MR110-05, 60 psi (2020). TeeJet XR flat-fan nozzles. FINE: XR11004, 50 psi (2019), XR11005, 60 psi (2020); MEDIUM-FINE: XR11005, 40 psi (2019), XR11006, 50 psi (2020); MEDIUM-COARSE: XR11008, 40 psi (2019, 2020). Spray volume: 15 gal/ac Driving speed: 8.9 mph (2019), 10.5 mph (2020)

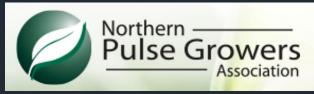
Optimizing fungicide spray droplet size Chickpeas

TeeJet and Wilger Nozzles

For modern locally systemic fungicides, calibrating fungicide droplet size relative to canopy characteristics may maximize fungicide performance (Ascochyta control, chickpea yield).

For contact fungicides or tank-mixes with contact fungicides, fine droplets (TeeJet) or fine to medium droplets (Wilger) may maximize fungicide performance irrespective of canopy characteristics.

The droplet size spectrum considered to be "medium", "coarse", "very coarse", etc. may be different for Wilger vs. TeeJet.


Quantification of droplet size spectrums will be conducted in 2021.

NDSU NORTH DAKOTA AGRICULTURAL

Thank you!

Research funded by: Northern Pulse Growers Association North Dakota Crop Protection Product Harmonization Board & Registration Board