Soybean and Corn Production Update

www.ag.ndsu.edu/CarringtonREC/agronomy/extension-outreach

Greg Endres, Extension agronomist NDSU Carrington Research Extension Center gregory.endres@ndsu.edu 701-652-2951

Projected 2019 soybean acres: 2018: 6.860 K (harvested) x 6% decrease = 6.450 K acres

ND farmer:

"What production advice can you provide from NDSU research and recommendations to make money with soybean in 2019?" Start with high yield potential
 Variety selection
 Plant establishment and nutrition
 Protect yield potential
 Manage weeds, disease and insects

CREC 2018 Annual Report p. 96

Soybean - Dryland,	Roundup Ready	Varie ti	es								1	Vis he k
											Seed	Yield -
		Mat.	Days to	Pod	Plant	Plant	Seeds/	Seed	Seed	Test		3-vr.
Brand	Variety	Group ¹	PM^2	Ht	Ht	Lodge	pound	Oil	Protein ³	Weight	2018	Avg.
				inch	inch	0 to 9		%	%	Ib/bu	bu	/ac
Channel	0819R2X	0.8	105.5	4.1	27.0	1.0	3097	16.9	38.4	57.5	40.3	-
Channel	1117R2X	1.1	108.0	3.4	26.8	1.0	2845	18.0	37.1	57.1	40.9	-
Channel	1219R2X	1.2	105.3	3.0	28.7	1.5	3571	17.9	36.9	57.5	42.7	-
Dairyland	DSR-1509R	1.4	110.0	4.6	24.5	1.5	3067	16.6	39.4	57.5	30.7	-
Legacy Seeds	LS-0738N RR2X	0.7	104.5	4.3	28.1	1.0	3123	17.5	38.0	57.6	9.2	
Legacy Seeds	LS-0935N RR2	0.9	107.3	4.9	28.2	1.0	2885	17.7	37.2	56.8	48.5	51.6
Legacy Seeds	LS-1138N RR2X	1.1	108.0	4.8	27.4	1.3	2783	17.7	38.4	57.2	44.2	
LG Seeds	LGS0774RX	0.7	106.8	2.5	27.0	2.3	2956	17.0	37.7	57.2	39.3	
LG Seeds	LGS0886RX	0.8	106.0	4.5	26.9	1.0	3043	17.0	38.8	57.7	38.2	
LG Seeds	C1000RX	1.0	108.8	5.0	23.9	1.5	2671	17.4	38.8	57.3	36.1	
LG Seeds	C1337RX	1.3	108.8	4.1	29.1	1.3	2901	17.6	37.5	57.2	40.4	
LG Seeds	LGS1575RX	1.5	109.8	3.5	29.0	1.3	2899	16.9	38.1	56.6	44.9	
NDSU	ND17009GT	00.9	92.5	4.7	28.7	1.0	3561	16.6	40.4	59.1	33.4	
Nutech	6097R2	0.9	103.5	2.9	27.5	1.3	3058	19.1	35.8	57.3	40.8	47.9
Nutech	6136X	1.3	107.8	4.8	26.5	1.3	2461	17.9	37.7	56.9	34.7	-
Peterson Farms Seed	18X08N	0.8	105.3	4.2	26.9	1.0	2905	17.5	38.1	57.7	40.7	
Proseed	XT70-60	0.7	104.3	3.6	29.5	1.0	3167	17.8	36.1	57.1	41.1	
Proseed	XT 80-80	0.8	106.3	4.6	30.4	1.0	2897	17.3	38.6	57.7	45.1	
Proseed	30-80	0.8	106.8	4.9	30.1	1.8	2890	17.5	37.8	57.1	40.8	
REA	RX0516	0.5	99.8	4.3	27.1	0.8	3129	17.4	38.0	57.6	37.7	
REA	RX0628	0.6	103.3	3.7	26.2	0.8	3090	17.5	38.3	56.8	38.1	
REA	RX0719	0.7	102.3	4.6	25.2	1.3	3004	18.1	37.4	57.1	28.4	
REA	RX0929	0.9	105.8	3.5	30.4	1.0	2919	16.9	38.4	57.2	49.0	
REA	RX1027	1.0	107.3	4.2	28.6	1.0	2868	17.2	37.8	57.5	45.2	
	MEAN		104.7	4.1	28	1.2	3053	17.4	38.0	57.4	39.9	
	C.V. (%)		1.3	30.7	10.4	68.8	4.2	2.0	1.8	0.8	15.1	·
	LSD 0.10		1.6	NS	3.4	NS	150	0.4	0.8	0.5	7.1	
	LSD 0.05		1.9	NS	NS	NS	179	0.5	1.0	0.6	8.5	

Planting Date = May 25 ; Harvest Date = October 16 ; Previous Crop = Spring Wheat

¹ Maturity group based on data provided by seed company.

² Days to PM: average of 105, equates to September 7.

³ Seed oil and protein contents reported at 13% moisture.

NDSU Carrington Research Extension Genter 🗇 2018 Grop and Livestock Review 🗇 Page 96

Maturity group map 2014-2017

Soybean yield reduction with increasing soil EC

NDSU Research Summary of Soybean Plant Establishment Factors (Dec. 2018)

Factor	Option A	A Yield > B Option B (%)		NDSU trials (conducted during 1999-2018)
Tillage system	reduced till	4	conventional till	37
Previous crop	wheat	5	soybean	6
Planting date	<pre>< early May</pre>	8	mid May	9
Planting rate (pls/A)	150-175,000	6	100-130,000	44
Row spacing (inches)	14-21	4	28-30	24
Seed fungicide	yes	6	no	29
Seed inoculation with soybean history	yes	2	no	16
P app at planting time	broadcast	0.5	band (away from seed)	7
Timing of initial weed control	at planting	5	early POST (2- to 4-inch weeds)	8

Benchmarking Soybean Production Systems in the North Central US

ND Soybean Growing Regions and observatins 2014-2017

NDSU

EXTENSION

Cartographer: J. Stanley

Current Production

Benchmarking Soybean Production Systems in the North Central US

Summary of the North Dakota Soybean Benchmarking and Yield Gap Surveys

North Dakota accounted for about 7% of the U.S soybean harvested acres over the past five years (www.nass.usda.gov). North Dakota participated in a multistate project to assess soybean yield gaps and the management practices responsible for them. The yield gap is defined as the difference between yield potential, as determined by climate and soil, *versus* producer average yields. Producers were asked to provide field-specific information from fields planted with soybean from 2014 to 2017. Collected data included field location, yield, crop management, and applied inputs from 1,002 North Dakota fields.

Fields were grouped into regions called TEDs (technology extrapolation domains), which represent regions within which climate and soil are reasonably similar. Specifically, TEDs are based on annual growing-degree day accumulation, precipitation, and temperature fluctuations, as well as plant available water-holding capacity in the rooting zone. In our analysis, we only included fields located in TEDs that represent >5% of soybean area within the state and TEDs that have at least 100 surveyed fields. In the case of North Dakota, there were a total of 3 TEDs meeting these criteria (see map below).

Within each TED, fields were sorted into two groups based on their yields: the highest third were assigned to the 'high yield' (HY) and the lowest third to the 'low-yield' (LY). Then, average management practices implemented by the two groups were compared to identify the management practices responsible for the yield gap within a TED. Details on methodology can be found (details on methodology can be found on page 8).

In most TEDs in North Dakota (2-3 out of 3), the high-yield category (significantly higher yield $p \le 0.10$) consisted of fields with <u>earlier planting date</u> and those treated with foliar insecticide and/or fungicide. In one TED, high-yield fields were also associated with tillage and artificial drainage. In TEDs 7D and 13D, there were more fields with 15-inch <u>row spacing</u> in the HY group compared to the LY group while in TED 12D there were more fields with 7.5-inch row spacing in the HY group (see the table Management Practices Comparison Between High- and LOW-yield Fields on next page).

Our study focused on those management practices with greatest yield impact; there may be other reasons for adopting (or not) a given practice, e.g., economic and logistic consideration, pest resistance, soil erosion, etc.

Planting day of the year vs yield in bushel per acre 2014-2017 (1023 fields)

ND Survey soybean yield in bushel per acre for row spacing, 2014-2017 (N 1,119 fields)

N is number of fields with specific row spacing

Kandel, Herman

Final Report - ND Soybean Benchmark Study

Results Soybean Survey 2014-17

Conclusions based on the grower survey data (See Attachment):

- 1. Growing <u>soybean after corn</u> resulted in about <u>5 bushel higher yields</u> compared to growing soybean after soybean. Rotation is important.
- 2. An established soybean plant stand of 150,000 plants per acre is recommended.
- 3. Planting soybean before mid-May, if conditions are favorable, provided the highest soybean yields. Delaying planting, between May first and June first, based on 2014 to 2017 data, resulted in an average reduction of 0.35 bushel per acre per day.
- 4. Selecting the latest maturing soybean adapted for your growing region may increase yields.
- 5. Row spacing 15-22 inch provided the highest yields during the period 2014 to 2017.
- 6. Seed treatments resulted in higher yields during the period 2014-2017.
- 7. There are difference in yield responses with different seed treatments.
- 8. Fields with iron deficiency chlorosis (IDC) issues had 0.8 bushel per acre lower yield than fields without IDC. It is critical to pick the right varieties (tolerant to chlorosis) for fields with IDC issues.
- 9. On average, 12.3% of planted seeds did not result in an established soybean plant.
- 10. There is a positive relationship between established stand and soil cover by the soybean crop.
- 11. There is about a 6.3% stand loss between stand establishment and the end of the season population.

0 2

Seeding Rate Effect on Yield

Economic Analysis

	Market Price (\$ bu ⁻¹)									
Seeding Rate	8.00	8.50	9.00	9.50	10.00					
live seed ac ⁻¹										
80 000	334c	355c	377c	399c	420c					
100 000	337bc	360bc	381bc	404bc	426bc					
120 000	341 abc	364abc	386abc	409abc	431 abc					
140 000	345 ab	368ab	391 ab	414ab	437ab					
160 000	343 abc	366abc	389abc	412ab	435ab					
180 000	349a	372a	396a	419a	443a					
200 000	347 ab	370ab	394a	418a	441a					
LSD (0.05)	11	11	12	13	13					

[‡]Soybean seed prices were estimated as \$52 for 140 000 seeds (Duffy, 2018).

Soybean summary

- Do your homework on variety selection
- Use reduced tillage system and manage salt-affected soil areas
- Plant early and narrow at adequate rate
- Keep plant nutrition simple

D.W. Franzen Extension Soil Science Specialist

Soybeans need

14 mineral nutrients: nitrogen (N), phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), boron (B), chloride (Cl), molybdenum (Mo) and nickel (Ni).

Of these, North Dakota soils provide adequate amounts for soybean production except for N, P, K, S and Fe.

Nitrogen Nodulation

Although the atmosphere is 78 percent nitrogen gas, plants cannot use it directly. Plants can use only ammonium-N or nitrate-N. Soybean is a legume and normally should provide itself N through a symbiotic relationship with N-fixing bacteria of the species *Bradyrhizobium japonicum*. In this symbiotic relationship, the plant supplies carbohydrates and minerals to the bacteria, and the bacteria transform nitrogen gas from the atmosphere into ammonium-N for the plant to use.

Soybean infection by N-fixing bacteria and symbiotic N fixation is a complex process between the bacteria and the plant. The right species of N-fixing bacteria must be present in the soil, either through inoculation of the seed or the seed zone at planting. D.W.Fcarpter photo

N-fixing bacteria are attracted to soybean roots by chemical signals from the soybean root in the form of flavenoid compounds (1). Once in contact with the root hairs, a root compound binds the bacteria to the root hair cell wall. The bacteria release a chemical that causes curling and cracking of the root hair, allowing the bacteria to invade the interior of the cells and begin to change the plant cell structure to form nodules (2)(3)(4) (Figure 1, Page 2).

The bacteria live in compartments, up to 10,000 in each nodule, called bacteroids (Figure 1). Each bacteroid is bathed in nutrients from the host plant, and the bacteroid takes nitrogen gas from the soil air and converts it to ammonium-N using the enzyme nitrogenase, which consists of one Fe-Mo (iron-molybdenum)-based protein and two Fe (iron)-based proteins. In this region, iron deficiency chlorosis (IDC) may result in poor nodulation and may contribute to N deficiency as well as iron deficiency.

Table 1. Nutrient content of several crops at selected yield levels. Field measurements will vary depending on environmental conditions and soil nutrient levels.

Over and Dertien	Weight	Yield	Nutrients accumulated in crops at harvest, Ib/A											
Analyzed	(lb/A)	Acre	N	P₂O₅	K ₂ O	Ca	Mg	S	CI	в	Cu	Fe	Mn	Zn
Alfalfa hay	12000	6 T	270	60	270	168	32	29	41	0.09	0.09	1.20	0.66	0.63
Barley, grain	3840	80 bu	70	30	20	2 ·	. 4	6	6	0.08	0.06	0.30	0.06	0.12
Barley straw	4000	2 T	30	10	60	16	4	8	1	0.01	0.02	0.01	0.64	0.10
Canola seed	2000	40 bu	124	22	15	9	7	24	0.6	0.03	0.01	0.10	0.08	0.10
Corn, grain	8400	150 bu	135	64	42	15	22	14	2	0.12	0.06	0.15	0.09	0.15
Corn stover	9000	4.5 T	101	36	144	27	18	11	1	0.05	0.03	1.00	1.50	0.30
Oat, grain	3200	100 bu	63	25	19	3	4	6	1		0.04	0.80	0.15	0.36
Oat, straw	5000	2.5 T	31	19	100	10	10	11	1		0.04	0.15	0.15	0.36
Pea, vines and pods	5000	2.5 T	120	31	121	175	15	12	8	0.04	0.06	0.60	0.40	0.02
Potato, tubers	40000	40 cwt	133	50	250	6	10	10	26	0.09	0.07	0.89	0.15	0.09
Sorghum, grain	5000	100 bu	81	44	25	5	6	6			0.01		0.05	0.05
Sorghum, stover	7500	3.75 T	106	31	156	36	23							
Sugarbeet, root	40000	20 T	16	20	32	240	40	40	8				0.20	0.08
Soybean, seed	3000	50 bu	188	44	66	9	9	5	1	0.06	0.05	0.50	0.06	0.05
Soybean, straw	5000	2.5 T	127	30	76	56	25	15	20	0.03	0.01	1.00	0.50	0.30
Sunflower, seed	2000	1 T	52	8	12	2	5	4		0.03	0.03	0.06	0.03	0.10
Sunflower, stover	3000	1.5 T	35	3	51	37	19	7		0.10	0.01	0.46	0.08	0.10
Wheat, grain	3600	60 bu	75	38	23	2	9	5	1	0.06	0.05	0.45	0.14	0.21
Wheat, straw	4500	2.5 T	30	8	53	9	5	8	20	0.02	0.02	1.95	0.24	0.08

Data from Table 1 accumulated from various sources. NFSA Liquid Fertilizer Manual, 1967; Frank, 1995, Blamey, et al., 1987; Grant and Bailey, 1993, Mengel and Kirby, 1987.

Seed inoculation with Bradyrhizobium japonicum

- Continue as long-term practice on field?
- If so, single or 'double' inoculate?

NDSU Research Summary of Soybean Plant Establishment Factors (Dec. 2018)

Factor	Option A	A Yield > B (%)	Option B	Number of NDSU trials (2004-18)
Seed inoculation with soybean history (1-3 years separating soybean crops)	yes	2	no	16

Base yield	Yield increase at 2%	Max inoculant cost with \$8/bu soybean
bu/A	bu/A	\$/A
40	0.8	6.40
50	1.0	8.00

Soybean seed yield with bacteria inoculation of seed options on ground with previous soybean production, Carrington and Wishek, 2015-18 (6 site-years)

Inoculation option			Seed	d yield ((bu/A)		
	Carr 2015	Wish 2015	Wish 2016	Carr 2017	Wish 2017	Carr 2018	6 site-yr average
untreated check	30.8	22.4	57.6	68.0	40.2	41.9	43.5
liquid	28.7	22.2	56.7	65.0	45.9	46.5	44.2
granular	25.3	24.5	56.8	61.0	45.8	49.4	43.8
🔶 liq+gran	27.1	25.4	58.0	69.5	45.3	44.1	44.9
LSD (0.05)			N	S			NS
Years separating soybean	1	1	1	2	1	3	
Prior 4 years with soybean	1	2	2	1	2	1	

SF882 (Revised)

North Dakota Fertilizer Recommendation Tables and Equations

D.W. Franzen

NDSU Extension Soil Specialist

The following soil test recommendation tables are based on field research data obtained in North Dakota, South Dakota, western Minnesota and the Canadian Prairie Provinces. In the case of some crops, data in the literature also were used to supplement data available from this area.

This publication contains major changes from previous publications. Please dispose of older editions. Changes to tables were based on new or re-evaluated data.

This publication contains several major changes from previous versions, including revised potassium recommendations for alfalfa, corn and sugar beet, and the elimination of yield-based nutrient recommendation formulas.

Recommendation Tables

Fertilizer needs should be determined after evaluating the current fertility level of the soil through soil testing, preferably using a site-specific zone sampling approach, as well as the nutrient needs of the crop to be grown, and knowing the historic productivity of the soil.

The most important reason for abandoning yield goal as a consideration in fertility recommendations is that the data from modem fertilizer rate trials indicate that a similar rate of nutrient results in the highest yield regardless of the maximum yield in any experiment. In other words,

NDSU EXTENSION SERVICE the rate of nutrient resulting in the highest yield in a low-yield environment was similar to the rate that resulted in the highest yield in a high-yield environment.

A logical way to explain this is that in a low-yield environment resulting from too wet or too dry conditions, nutrient use efficiency is quite low, so a greater rate of nutrient is required to produce a unit of yield. In a high-yield environment, nutrient use efficiency is quite high because release from the soil is maximized, root growth is maximized and the movement of nutrient to the root is maximized, so a lower rate of nutrient is required to produce a unit of yield. Therefore, the recommended N-rate table values should be utilized regardless of what yield a grower believes will result from the barley cultivation.

Several of our N recommendations are "capped" at a maximum rate. In years that support higher yields, our data indicate that greater N release from the soil and greater ability of crops to capture available soil N will support these higher yields without requiring supplemental N fertilizer greater than capped rates. In addition, sunflower N recommendations are capped due to greater lodging risk as the N rate increases.

Nitrogen

Nitrogen (N) recommendations for most crops except some legumes are based on the amount of nitrate N (NO_5 -N) in the top 2 feet of soil and the yield potential. Omission of the 2-foot nitrate-N analysis results in random numbers for the N recommendation.

The 2-foot nitrate-N soil test is extremely important in this region for optimal N recommendations and to promote N-use efficiency, greater farm profitability and environmental stewardship.

Can you apply needed P for previous crop and let soybean feed on the residual?

Yes if you have high (>15 ppm) P tests

No for most growers.

Dave Franzen, March 2019

Soybean response to special inputs¹, Carrington, 2005-12

FERTILIZER

- farmer fertilizer blend
- Quickroots; Liquid sufl/ can/soy mix
- 6-0-0-9 (Zn)
- 9.5-0-0-5-10 (Zn)
- Max-In; Max-In MnNF; Winfield Solutions experimentals
- UAN
- CoRon; zinc
- Micro500; Sure-K
- EB mix
- sugar
- MicroMix
- Moly

¹RR soybean: 2005-06=RG200RR, 2007=NT-0090, 2008-12=DSR0401.

Study partially funded by private industry

PESTICIDES

- Headline (+ Fastac)
- Stratego Pro/YLD (+ Leverage)
- Priaxor (+ Fastac)
- Quilt Xcel (+ Warrior T)
- Evito (+ Leverage)
- Cobra
- Makaze Yield Pro (GP)

GROWTH PROMOTERS

- Ratchet
- Soil Builder; Ag blend
- Bin Buster XP; KQ-XRN
- X-tra Power; Sugar Mover
- MegaGro; HappyGro
- SeedProd; CropProd
- BTN+; T1
- BioForge; Golden Harvest
 Plus GA
- NBS
- N-Hibit; ProAct
- Foliar Blend

NDSU EXTENSION

EXTENDING KNOWLEDGE >> CHANGING LIVES

A1718 (Revised January 2019)

Selected Management Factors for Economically Increasing Soybean Yield

Greg Endres Extension Area Agronomist Carrington Research Extension Center

> Hans Kandel Extension Agronomist Fargo

Other researchers contributing to this study include:

Carrington Research Extension Center – Blaine Schatz, Mike Ostlie and Steve Metzger Fargo/Prosper – Chad Deplazes and Sam Markell

Photos by Greg Endres and Hans Kandel

About 3 million acres of soybean were planted in North Dakota in 2003. That number reached 4.7 million acres a decade later in 2012. The growth in acreage can be attributed to the relative ease in producing the crop and its profitability.

Based on NDSU Extension crop budgets, projected return to labor and management during 2012-14 ranged from \$73 to \$114/acre in the east-central region and \$63 to \$122/acre in the southern Red River Valley.

Opportunities exist for farmers to increase soybean yield and profitability by improving plant establishment practices. Also, numerous special inputs that may add to soybean profits are being marketed.

A study was conducted by NDSU with selected intensive management practices and inputs to examine potential increases in yield and profit.

Soybean intensive mgmt study, NDSU, 8 site-yr (2008-11)¹: SEED YIELD and HIGHEST NET RETURN with <u>row spacing</u>, <u>planting rate and foliar inputs</u>.

 1 LSD (0.05) = NS for each site-yr

Endres, Kandel et al.

Soybean plant nutrition summary

- With recent production (1-3 years between soybean crops), limited yield response with continued inoculation of soybean seed.
 - no statistical (or economic) response with double inoculation
- Use fertilizer \$ on P and K if soil analysis indicates need for these nutrients
- IDC use tolerant varieties
- Carefully scrutinize use of specialty fertilizers are you confident of ROI?

ND farmer:

"I don't anticipate soil insect problems but should I use <u>fungicide plus insecticide</u> seed treatment?"

ND 2014-17 Survey farmers using seed treatment in percent (total fields 1120) and yield in bushel per acre

NDSU Research Summary of Soybean Plant Establishment Factors

Factor	Option A	A Yield > B (%)	Option B	NDSU trials (conducted during 1999-2016)
Seed fungicide	yes	6	no	29

Soybean yield response to <u>fungicide and fung+insecticide seed treatment</u> compared to untreated check, eastern ND*, 2012-15 (11 site-years)

*locations: Casselton, Emerado, Harwood, Leonard, Mapleton

J. Knodel and P. Beauzay

The Effectiveness of Neonicotinoid Seed Treatments in Soybean

E-268

Neonicotinoid insecticides are highly water soluble, and plants can absorb them and move them through their "circulatory system" from the root zone up into leaves and other tissues. This quality has made neonicotinoids a popular insecticidal seed treatment of many crops (Figure 1). In 2011, more than 80 percent of corn, more than 50 percent of cotton, and about 40 percent of soybean acres were planted with neonicotinoid-treated seed, a total area described as "roughly the size of California." (Douglas and Tooker 2015). Neonicotinoid seed treatments of soybean rank only behind corn in total acreage.

This publication reviews the current research regarding the efficacy of these neonicotinoid seed treatments, their non-target effects, and the potential role for neonicotinoid seed treatments in soybean production.

THIS IS A JOINT PUBLICATION OF:

Iowa State University Kansas State University University of Nebraska-Lincoln North Dakota State University Michigan State University University of Minnesota

University of Missouri Ohio State University Penn State University Purdue University South Dakota State University University of Wisconsin

Design by Purdue University

Figure 1. Neonicotinoid-treated soybean seed before soil covering.

Do Neonicotinoid Seed Treatments Work in Soybean?

Neonicotinoid seed treatments offer soybean plants a narrow window of protection — a maximum of three weeks after planting (McCornack and Ragsdale 2006). As such, they can be useful for managing early-season pests in targeted, high-risk situations. Examples of such high-risk situations include:

 Fields transitioning to soybean production from pasture, Conservation Reserve Program (CRP) land, or grassland to soybean production. Such fields tend to have higher populations of longlived soil pests, such as wireworms or white grubs, which cannot be controlled with foliar insecticides.

Projected 2019 corn acres: 2018: 2.930 K (harvested) x 30% increase = 3.810 K acres

Critical corn yield development stages

- V3; V4-5
 - Ears initiated; and develop
- V4-7
 - Kernel rows per ear determined (genetics > env)
- V6 (V12-14) to 1-2 weeks prior to tassel
 - Number of kernels per row determined (env > genetics)
- R1 (= silking)
 - Kernel formation and development
 - early grain fill: kernel depth
 - late grain fill: test weight

An Update to Corn Plant Populations in Central North Dakota

Mike Ostlie, Blaine G. Schatz, and Greg Endres

any surrounding states have recently conducted research to update recommendations for corn plant populations using modern hybrids. Much of that research has come to the similar conclusion that recommendations haven't changed much from the 1980s-1990s. Yet with ever increasing input costs, including seed, managing to the optimum economic advantage needs to be considered rather than yield alone. Purdue University did a nice job of examining plant populations economically (<u>https://www.agry.purdue.edu/ext/corn/news/timeless/CornPopulations.pdf</u>). Using this as a template, a similar table can be generated for North Dakota with local data.

(dryland)

From 2012-2014 a plant population study was conducted at the Carrington Research Extension Center. Each year of the study was conducted under dryland management. The study was arranged as a split-plot randomized complete block design with four replicates. Hybrid maturity and plant population were the two factors being evaluated. The <u>four relative maturities (RM) in the trial were 83, 85, 87, and 90</u> day. Hybrids were chosen based on the best performing hybrid within each maturity from the previous season hybrid trial. Each hybrid was tested from <u>20K to 44kK established plants per acre, with 4K plant increments (seven populations total)</u>. Plots were hand thinned to ensure optimum spacing of plants.

For simplicity, the first comparison will be about yield alone. Table 1 shows the plant population that resulted in the maximum yield within each maturity group. Importantly, the trend is that with longer maturities, maximum yield is reached at a lower population than shorter maturities. In fact if population were plotted from maturities of 85-90, it would show that for each day increase in maturity, roughly 1000 less plants were needed to maximize yield. Table 2 is a complimentary dataset that emphasizes the effect of plant maturity on needed population. In this case, *average* yield is considered rather than maximum. It took only 19K plants/ac to reach the average yield at RM 90 (16K plants/ac less than

NDSU Carrington Research Extension Center 🏼 2018 Crop and Livestock Review 🔹 Page 15

Table 3. The plant population that gives maximum economic return based on seed cost / unit (80,000 seeds) and grain price for corn varieties ranging from <u>RM 83-RM 85.</u> 95% stand establishment is assumed.

Cost of seed	Price/bushel of grain								
\$ / unit	2.5	3	3.5	4	4.5	5	5.5	6	
150	32,230	33,070	33,660	34,100	34,440	34,710	34,930	35,120	
175	31,390	32,370	33,070	33,580	33,980	34,300	34,560	34,780	
200	30,530	31,670	32,470	33,070	33,530	33,870	34,190	34,440	
225	29,650	30,960	31,870	32,550	33,070	33,480	33,820	34,100	
250	28,760	30,240	31,270	32,020	32,600	33,070	33,440	33,750	
275	27,840	29,500	30,650	31,490	32,140	32,650	33,070	33,410	
300	26,900	28,760	30,030	30,960	31,670	32,230	32,700	33,070	
325	25,920	28,000	29,400	30,420	31,200	31,810	32,310	32,730	

Table 4. The plant population that gives maximum economic return based on seed cost / unit (80,000 seeds) and grain price for corn varieties ranging from <u>RM 87-RM 90</u>. 95% stand establishment is assumed.

Cost of seed				Price/bush	el of grain			
\$ / unit	2.5	3	3.5	4	4.5	5	5.5	6
150	29,490	30,320	30,910	31,340	31,680	31,950	32,170	32,360
175	28,640	29.630	30,320	30,830	31,230	31,550	31,800	32,020
200	27,810	28,940	29,730	30,320	30,780	31,140	31,430	31,680
225	26,950	28,230	29,140	29,800	30,320	30,730	31,060	31,340
250	26,070	27,520	28,530	29,280	29,860	30,320	30,690	31,000
275	25,170	26,800	27,930	28,760	29,400	29,910	30,320	30,660
300	24,250	26,070	27,320	28,230	28,940	29,490	29,940	30,320
325	23,300	25,320	26,700	27,700	28,470	29,080	29,570	29,980