Liming strategies: Buffer pH vs. soil type

Picture: www.braenstone.com/agricultural-lime/

Jason Clark Jason.D.Clark@sdstate.edu South Dakota State University

Background

Step 1: Test soil pH

SD lime response: pH < 5.8 (6 in.)

Сгор	4.0	4.5	Soil pH 5.0	5.5	6.0	6.5	7.0	7.5
Least Acid Tolerant							1	T
Alfalfa Sweetclover Barley								E
Medium Acid Tolerant Birdsfoot Trefoil Red Clover White Clover					-		=	
Soybeans Corn Sorghum Alsike Clover Grasses Oats, Rye, Wheat				_				
Tobacco Most Acid Tolerant Buckwheat Vetch Potatoes Blueberries						_		

Source: Spies and Harms. Soil acidity and liming of Indiana soils. In Agronomy Guide AY-267

Source: Nutrient management for agronomic crops in Nebraska, EC155

What are the soil factors that likely need to be considered when estimating buffering capacity?

Source: https://iowaagliteracy.wordpress.com/2017/12/21/why-do-they-do-that-liming-fields/

• Organic matter

OM functional groups

Acidic functional groups (donate protons, become negatively charged)

- Organic acids in the soils release H⁺
- Holds onto other cations increasing reserve acidity

- Cation Exchange Capacity
 - Exchangeable H⁺ and Al³⁺ by cation exchange and hydrolysis
 - Varies by clay type

2:1 Soil Mineral i.e. Smectites

Range in CEC depends on clay type

Clay type	CEC (cmolc/kg)			
Kaolinite	1-10			
Mica, illite, and chlorite	10-40			
Vermiculite	100-200			
Smectite	0-150			
Organic matter	150+			

CEC also varies by soil type

Soil type	CEC (meg/100g)
Light colored sands	3-5
Dark colored sands	10-20

Source: David Mengel Agronomy Guide AY-238 "Fundamentals of soil CEC"

Buffering capacity measures active + reserve acidity

Measurement of the reserve acidity varies by:

Soil organic matter

Direct measurement (Buffer pH)

Method 1: Estimate Buffering Capacity

Step 2: Estimate buffering capacity

Estimate based on CEC, texture, and soil organic matter categories (Illinois)

- Soil color, soil texture, and CEC
- Soil color based on SOM:
 - light < 2.5%; Medium 2.5 4.5%; Dark > 4.5%
- **Soil A**: Dark-colored silty clays and silty clay loams (CEC > 24).
- Soil B: Light- and medium-colored silty clays and silty clay loams; darkcolored silt and clay loams (CEC 15–24).
- Soil C: Light- and medium-colored silt and clay loams; dark- and medium-colored loams; dark-colored sandy loams (CEC 8–15).
- Soil D: Light-colored loams; light- and medium-colored sandy loams; sands (CEC < 8).
- Soil E: Muck and peat. Soil color is usually related to organic matter. Light-colored soils 4.5% organic matter.

Estimate based on CEC, texture, and soil organic matter categories (Illinois)

Method 2: Measure Buffering capacity

Step 2: Measure buffering capacity

Direct measurement

• Determine pH (soil:water)

Step 2: Measure buffering capacity

Direct measurement

- Measure soil pH with a buffer
 - Buffer pH solution: Combination of chemicals that are formulated to change pH slowly with increased acidity.

Step 3: Determine the target pH

Crop	MN; Raise pH to:	IA; Raise pH to:
Corn	6.0	6.5 (low pH subsoil) 6.0 (high pH subsoil)
Soybean	6.0	6.5 (low pH subsoil) 6.0 (high pH subsoil)
Wheat	6.0	
Oats	6.0	
Barley	6.0	
Sunflower	6.0	
Sorghum	6.0	
Alfalfa	6.5	6.9

Step 4: Determine lime rate using soil's buffer pH and target pH (South Dakota)

Buffer pH	Lime requirement to raise pH to 6.0: 0-6 in. (tons/ac)
> 6.5	0
6.2 – 6.5	2.0
5.9 – 6.2	2.5
5.6 – 5.9	3.0
< 5.6	3.5

*Based on 90% CaCO₃ equivalent and 70% effectiveness

Step 4: Determine lime rate using soil's buffer pH and target pH (lowa)

	Target soil pH				
Buffer pH	6.0	6.5	6.9		
	Amount of CaCO ₃ to apply (lbs./ac)				
7.0	0	0	1,100		
6.8	0	600	2,700		
6.6	0	2,100	4,400		
6.4	800	3,500	6,000		
6.2	2,000	5,000	7,700		
6.0	3,100	6,400	9,300		
5.8	4,300	7,900	11,000		

Source: Mallarino, Sawyer, and Barnhart. 2013. A General guide for crop nutrient and limestone recommendations in Iowa. Iowa State University.

Estimating vs. measuring buffering capacity

Estimate based on CEC, texture, and soil organic matter **OR**

Measure with buffer pH

Soil Texture	CEC (meq/100g)	Soil pH	Buffer pH	Lime requirement (t/ac)
Loamy sand	6	5.6	6.8	1
Silt loam	14	5.5	6.6	2
Silty clay loam	24	5.6	6.2	4

Source: Wortman et al. 2014. EC155 UNL Extension

Thank You!

Picture: www.braenstone.com/agricultural-lime/

