

MAKING A DIFFERENCE IN MINNESOTA: ENVIRONMENT + FOOD & AGRICULTURE + COMMUNITIES + FAMILIES + YOUTH

European Corn Borer Management to Bt or not to Bt 2020 Advanced crop advisers workshop Fargo, ND

Bruce Potter

(507) 276-1184

bpotter@umn.edu

http://swroc.cfans.umn.edu/ag/pest-management https://twitter.com/SWMNpest

EUROPEAN CORN BORER: DAMAGE

© 2020 Regents of the University of Minnesota. All rights reserved.

Slide Dr. K.R.Ostlie 1998

ECB Population Decline Population general equilibrium level (GEL) decreased 99% in Minnesota over past 23 years with widespread use of Bt corn

Minn. Dept. of Agriculture, & Dept. of Entomology, UMN

European Corn Borer populations (data interpolation) based on fall stalk dissections of MN field corn

*European corn borer data collected and summarized by Minn. Dept. of Agriculture and Univ. of Minnesota staff.

So...If you wanted to find a corn borer?

Relative location of fields sampled in 2019 for ECB (left) and those cooperator fields where Bt protection from corn borer was known to be absent (right).

Legend: White - no damage, Yellow – tunnels but no larvae, Red – tunnels and larvae both found (E.C. Burkness, W.D. Hutchison, & B.D. Potter). Funding provided by MN Corn Research and Promotion Council

Corn hybrid area, containing one or more Bt traits for ECB

Hutchison et al. (2010) *Science* 330:222-(Company Sales Data, as of 2006 field season), ABSTC

UNIVERSITY OF MINNESOTA EXTENSION

ZA'N

Published by AAAS

Percentage corn acres planted to all Bt hybrids by year and state

University of Minnesota | extension

CORN BORER LARVAL DECLINE: MINNESOTA PRE-BT MAIZE (20 YR), POST-BT (23 YR) POST-BT DECLINE, SLOPE (-0.090)

Source: Hutchison, Burkness, Moon, Mitchell

The Halo Effect: Why the Benefit to Non-Bt Corn Corn?

"Halo Effect" with ECB (& many insect species) occurs at different spatial scales. When moths emerge from a non-Bt field, mated females will randomly select Bt and Non-Bt plants to lay eggs. However, few larvae (or moths) will survive on Bt plants; when planted over a large area, the Non-Bt plants adjacent to Bt plants, will not likely be attacked by the pest *(i.e., Net Loss Moths Dispersing away from Non-Bt maize)*

European corn borer moth European corn borer moth No moths emerge No damage from caterpillars More damage from caterpillars Little damage from caterpillars Non-Bt corn Non-Bt corn Non-Bt corn Bt corn

Science

Bruce E. Tabashnik Science 2010;330:189-190

EUROPEAN CORN BORER: RISK & Bt

- Statewide, as a result of suppressive effects of Bt, ECB population are very low but they are not zero.
- Risk of economic problems increase over time when a high percentage of fields without an above-ground Bt trait planted.

EUROPEAN CORN BORER: RISK & Bt

- Bt resistance not known in United States
- Bt resistant ECB reported in eastern Canada are Estrain, a different biotype than ours.
 - 2018 Twenty moth MN sample all *Z*-strain

EUROPEAN CORN BORER: BIOLOGICAL CONTROL

Nosema pyrausta:

- Single cell pathogen (microsporidian)
- Occurs throughout Europe, U.S.
- Transovarial (female-egg)
 & Horizontal (larva-larva)
- At ultra-low host densities = mostly transovarial transmission

Nosema is still a factor at low 2018 MN ECB populations. Infections: Larvae (2/10), Adult F (10/10), Adult M(4/10)

Source: Hutchison, Burkness, Moon, Mitchell

R suppression and associated economic

EUROPEAN CORN BORER and Bt : SUMMARY

- ECB suppression and associated economic benefits continue
- Bt corn is compatible with biological control, crop rotation, native host plant resistance traits (tolerance)
- ECB population cannot go much lower with current Bt use (>80% Bt = <0.005/plant)</p>
- ECB rebound depends on rate of Non-Bt use?
 - Tracking this in parts of MN where "substantial non-Bt" occurs.
 - In NW Minn., with current Non-Bt use, model projection is 2-3 yrs could > 0.5/plant (\$EIL)

Photo: Jan Samanek, Phytosanitary Administration, Bugwood.org

Corn Borer Flights in MN

Source: K.R.Ostlie 1998

EUROPEAN CORN BORER: SCOUTING

EUROPEAN CORN BORER: SCOUTING

1st Generation

2nd Generation

2018 Hanson and Hutchison U of M, Entomology

Source: https://www.vegedge.umn.edu/mndd

EUROPEAN CORN BORER: SCOUTING

University of Minnesota | Extension

EUROPEAN CORN BORER: MANAGEMENT

- Investment in scouting
- Larvae susceptible to insecticides for 10-14 days during each generation.
 - Time scouting well!
- Control declines as later generations infest lower in canopy
 - 80%+ (1st generation)
 - 75% (univoltine)
 - 50 -70% (2nd generation)
 - Bt traits (>99.5%).

ECB Scouting	Multivoltine	Univoltine		
Guide	1st generation	2nd Generation	biotype	
When	Late May - Early June	Mid-late August	Late July- Early August	
Action sites	Grassy areas	Grassy corn /Soybean	Grass/Soybean	
Corn stage	Early-planted	Late-planted	Pre tassel - Pollinating	
Where	Whorl (> 17 " extended leaf) 6	Ear +/- 3 leaves	Ear shoot - tassel	
What	shot holing / larvae	egg masses	larvae / egg masses	
% Loss /	5.5 - 6.0 (early whorl)	4.4 (pollen shed)	6.0 - 6.5 (pretassel)	
borer / plant*	4.4 - 5.0 (late whorl)	3.0 (post pollination)	4.4 (pollen shed)	
Insecticide % Control	80	50 (50-70)	75	
DDs First moths**	374	1400	< 911	
DDs Start scouting**	800	1550	1100	
DDs Stop scouting**	1000	2100	1300	

* Physiogical loss is variable and may not include indirect losses and disease

** base 50F from March. Using a 1st moth capture biofix will be more acccurate.

University of Minnesota | extension

EUROPEAN CORN BORER: MANAGEMENT

ECONOMIC THRESHOLD

Control Costs

X Return

X Return

(Corn Price X Yield X Loss/Borer X Survival X Insecticide Efficacy)

Control Costs

Preventable loss / borer

EUROPEAN CORN BORER: MANAGEMENT

Dynamic economic threshold for ECB in post-tassel stage corn (example)

-							
1	34	egg masses found* ÷	0.91	correction ¹ factor	Π	37.36	adjusted ¹ egg masses
2	37.36	adjusted egg masses ÷	50	plants examined	=	0.75	egg masses/plant
3	0.75	egg masses / plant *	3.0	larvae/egg mass ²	=	2.24	larvae/plant
4	2.24	larvae/plant *	0.03	percent loss/larva ³	=	0.067	percent loss
3	0.07	percent loss *	200	expected yield (bushels/acre)	Ш	13.45	bushels loss/acre
4	13.45	bushels loss / acre *	\$3.70	expected price/bushel	Ш	\$49.77	expected \$ loss/acre
5	\$49.77	expected \$ loss / acre *	0.60	percent control ⁴	=	\$29.86	preventable loss / acre
6	\$29.86	preventable loss -	\$15.00	cost of control	=	\$14.86	(profit /loss) / acre

In five parts of the field, carefully examine plants for egg masses on the ear leaf and 3 lvs. above and below *Can total counts from previous visit to field.

Use decimals to represent percentages, for example 1.0 = 100%, 0.50 = 50%, 0.03 = 3%

¹ Correction factor to account for egg masses on parts of plant other than 7 leaves examined

² Assumption of 3 larvae from each egg mass survive. Can be none or as high as 4.5. See ISU for estimation based on days after start of flight sample taken.

³Use 4% when pollinating, 3% post pollination

⁴ *Typically 50-70 %*

EUROPEAN CORN BORER MGMNT. SUMMARY

- Overall population low but ...
- Know your problem
- Prioritize fields/farms based on history and crop stage
- Highest risk
 - History of corn borer or prolonged widespread non-Bt
 - Early or Late planted
- Primary risk is resistance!

EUROPEAN CORN BORER MGMNT. SUMMARY

Choose your weapons

- Remember economics
- Use knowledge of ECB biology for scouting and control efficiency
- Use moth captures, degreedays, scouting and thresholds to decide on insecticide use

New Corn Borer Publication

Thank you!

Special thanks to : MN Corn Research & Promotion Council MN farmers who allowed access to their fields Entomologists and others who initiated (1940s) and maintained ECB surveys

Questions? <u>bpotter@umn.edu</u>

Products are mentioned for illustrative purposes only. Their inclusion does not mean endorsement and their absence does not imply disapproval.

© 2020 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. In accordance with the Americans with Disabilities Act, this PowerPoint is available in alternative formats upon request. Direct requests to the Extension Store at 800-876-8636.

