When the Growing Season Ends Before the Corn Crop is Mature

Emerson Nafziger University of Illinois ednaf@Illinois.edu

ILLINOIS

Crop Sciences college of agricultural, consumer & environmental sciences

From Cornell comes this:

SPEEDY RECOVERY ...

New corn performs better in cold

New strain of corn recovers much more quickly after a cold snap

PUBLISHED ON FEBRUARY 4, 2020

Source: National Agricultural Statistics Service (NASS), Crop Progress Report

1

Source: National Agricultural Statistics Service (NASS), Crop Progress Report

100%

80%

60%

40%

20%

0%

Source: National Agricultural Statistics Service (NASS), Crop Progress Report

Illinois

Climate Division Data by State between Two Dates From Midwestern Regional Climate Center

Minnesota

5/ 1/2019 to 10/31/2019 Modified Growing Degree Days, Base 50 - Ceiling 86

93

-163

cd	DD	Normal	Departure	e Percent
1	2095	2294	-199	91
2	1950	2114	-164	92
3	1691	1850	-160	91
4	2455	2608	-153	94
5	2449	2629	-179	93
6	2297	2433	-136	94
7	2544	2708	-164	94
8	2602	2757	-155	94
9	2580	2701	-120	96

State 2235 2397

North Dakota 5/ 1/2019 to 10/31/2019 Modified Growing Degree Days, Base 50 - Ceiling 86

cd	DD	Normal	Departure	Percent
1	2078	2178	-100	95
2	1997	2208	-212	90
3	2022	2201	-179	92
4	2094	2325	-232	90
5	2133	2364	-231	90
6	2185	2414	-229	91
7	2120	2360	-240	90
8	2221	2475	-254	90
9	2279	2507	-228	91

State 2115 2323 -208 91

Climate Division Data by State between Two Dates From Midwestern Regional Climate Center

lowa

5/ 1/2019 to 10/31/2019 Modified Growing Degree Days, Base 50 - Ceiling 86

1 2734 2851 -117 96	
2 2687 2838 -151 95	
3 2718 2816 -98 97	1
4 2935 3088 -153 95	
5 2915 2979 -65 98	
6 3049 3065 -16 99	
7 3203 3236 -33 99	Ł
8 3127 3178 -51 98	
9 3221 3270 -48 99	

State 2938 3023 -85 97

Illinois 5/ 1/2019 to 10/31/2019 Modified Growing Degree Days, Base 50 - Ceiling 86

cd	DD	Normal	Depart	ure Pe	rcent
1	3030	3002	29	101	
2	2992	2970	22	101	
3	3406	3327	79	102	
4	3319	3259	60	102	
5	3301	3209	92	103	
6	3583	3466	117	103	
7	3666	3491	174	105	
8	3838	3632	206	106	
9	3903	3673	230	106	

State 3430 3322 108 103

North Dakota corn yields, 1980-2019

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

North Dakota weather and corn production:

- Growing season rainfall is increasing
- More precipitation means more clouds
- More clouds means less sunshine
- Growing season temperatures show little trend

April-September precipitation (in.), ND CRD 6

YEARLY AVERAGE SOLAR RADIATION TIME SERIES (1990-2014) FOR FARGO, ND

Corn Development and GDD

Approx. no. from planting				Approx. pla	no. from nting
Stage	MGGD*	Days**	Stage	MGGD*	Days**
VE	115	10	VT (tassel)	1350	73
V2	235	19	R1 (silk)	1400	75
V4	395	29	R2 (blister)	1660	86
V6	555	38	R3 (milk)	1925	96
V8	715	46	R4 (dough)	2190	108
V10	845	52	R5 (dent)	2450?	119
V12	945	56	R6 (mature)	2700	132
V14	1045	61	* MGGD = modifie	d growing degre	e days
V16	1140	65	hybrid	ay I II central I	iiiii0is, 111-0dy

GDD and development of a 90-day hybrid planted May 1 at Fargo, ND

	Approx. no.	from planting
Stage	MGGD	Days
VE	115	14
V2	188	21
V4	316	31
V6	444	41
V8	572	49
V10	676	55
V12	756	59
V14	836	64
V16	912	68
VT (tassel)	1090	76
R1 (silk)	1110	77
R2 (blister)	1328	88
R3 (milk)	1540	99
R4 (dough)	1725	110
R5 (dent)	1900	120
R6 (mature)	2160	140

Comparing Illinois and North Dakota growing seasons

- ND is much cooler, with normal May-October GDD accumulations about 1,000 higher in IL, 3300 to 2300
 - The GDD cushion to allow for later planting or cooler temps is also much larger in IL: roughly 3100 – 2700 = 400 in IL; maybe 2,300 – 2100 = 200 in ND
 - GDD in ND is decreasing slowly
- Days are longer during the spring and summer in ND May-Aug about 40 minutes longer per day in Fargo than in Peoria, or 80 hours total
- ND has less rain so more average daily solar radiation than IL
- So, a "good day" for photosynthesis is as good in ND as in IL, but between dryness and low temps, ND does not have as many such days

A note on growing degree days and corn development

- This system was arrived at by taking a lot of temperature and crop stage data; it's not "theoretical"
- The "modified" GDD in the US:
 - 50° as the base temp implies no growth or Ps below 50
 - 86° as the high temperature "cutoff" implies that growth/Ps rates above that are the same as at 86
- Corn photosynthesis increases with temperature, up to maybe 100°; the cutoff is because factors like drought (and maybe night temps) often restrict plant development in the field
- But it's altogether possible that the crop grows faster at 65/98 than at 65/88, even though MGGD are the same
 - Under long days in ND, could the amount of growth/day be higher at the same temps and sunlight as it is in Illinois?

Have you seen pre-tassel corn "sit still" when under drought stress and accumulate GDD without adding new leaves?

1

From Bender et al., Agron J. (Illinois)

? The "dent" in dry weight accumulation has not been found in most studies

And, having the rate linear between R5 and R6 is not the way most have reported this

From Elmore and others, Iowa State U.

-Compare different "era" hybrids; 2 hybrids per era x 2 years

From V6 to R5, the 2000-era hybrids accumulated about 20 Ib dry matter per acre per GDD, or about 500 Ib per (warm) day.

Why do you think it looks like DM accumulation stopped at about R5?

Corn defoliation study Urbana IL 2013

Corn defoliation study Urbana IL 2013

Table 1. Estimated percent corn yield loss due to defoliation occurring at various stages of growth.

Stage of growth	Percent leaf area destroyed
-----------------	-----------------------------

	20	40	60	80	100
Tassel	7	21	42	68	100
Silked	7	20	39	65	97
Blister	5	16	30	50	73
Milk	3	12	24	41	59
Dough	2	8	17	29	41
Dent	0	4	10	17	23
Black layer	0	0	0	0	0

Recent work has shown that these losses are likely similar for current hybrids

When during each stage loss occurs is important, though

derived from Vorst (1990)

Corn defoliation x timing, 3-yr avg

R5 Stage: Dent

R5 Stage: Dent

- All or most kernels show some dent in the crown
- Cob is mature color (red, white, pink)
- Kernels ~60% moisture: moisture loss accelerates
- Sugars pour into the kernels, where they are converted into starch, and the starch begins to "pack" into endosperm cells and to lose water
- A <u>starch line</u> (packed starch at the crown, less and "looser" starch below) appears early in R5, starting at the top of the kernel and proceeding down to the cob

The "main event" during R5

- More than half of kernel dry weight is deposited during R5
- Sugars produced in the leaves and moving out of the stalk are "pulled into" the kernels, where they are converted into starch
- This conversion to starch is critically important:
 - It keeps the (sugars) in the kernel
 - And taking sugar out of solution lowers the osmotic strength of the cell, creating a "pull" for more sugars to come in
- A <u>starch line</u> appears at R5, starting at the top of the kernel and proceeding down to the cob; accumulated starch is hard above the starch line and soft below it

Hundreds of glucose molecules

This is amylose (unbranched) Amylopectin (branched) is another form

Breaking down R5:

- Iowa State Guide PMR 1009 (2009)

			For sta	age:
R stage	<u>% moisture</u>	Dry wt*	GDD accum	Days
R5.0	60%	45%	75	3
R5.25	52%	65%	120	6
R5.5	40%	90%	175	10
R5.75	37%	97%	205	14
R6.0	35%	100%		
Total for	R5	55%	575	33

* Total of final kernel DW at the start of stage indicated.

Things that can go wrong during R5

- The supply of sugars in the plant starts to run out, caused by:
 - Slow photosynthesis due to
 - Too cool
 - Too cloudy
 - Leaf disease or loss to hail or frost
 - Lack of water in the soil
 - Interrupted movement of sugars from leaves to the stalk or stalk to the cob then to the kernels
 - Stalk breakage (near the ear is worse)
 - Stalk diseases
 - Not enough water in the plant for transport through the phloem
- The demand by kernels is low or diminishes, caused by:
 - Lack of adequate kernel numbers "sink" too small
 - Slow conversion of sugars to starch (rare, but lack of P?)
 - Kernel diseases

 85%
 65%
 55%
 40%

 "milk"
 milk
 milk
 milk

Source: Iowa State University

Starch Line Location vs. Grain Yield

Starch line 20% down on August 3

Starch line 50% down on August 17

Source: Jeff Coulter, U Minn.

Lamberton, MN, 2009

80

Summary - Maturity Line Weight Study

Kernel stage	Milk in kernel	Average yield underestimate with maturity line weight method	Current "yield factor" for maturity line weight method	Average observed "yield factor" in our trials
1/4	≥75%	44%	7.1	12.7
1/2	50 - 74%	35%	7.5	11.5
3/4	25 - 49%	30%	8.0	11.5
Doughy	5 - 24%	26%	8.5	11.6
Extended	1 - 4%	1%	10.6	10.8

24-Oct

Urbana 2010

151

90

45

-1

-4

Grainfilling Rates During "Linear" Phase, 2010

	Mon	mouth	Urb	ana		
Week	109-day	113-day	109-day	113-day		
bu per acre per day						
1	10.2	8.0	9.6	8.8		
2	5.1	8.4	6.2	6.4		
3	7.5	9.0	3.7	6.5		
4	4.2	2.4	2.5	0.4		
5	0.0	3.9	-3.9	-0.9		

Effective Filling Period, days, 2010

Mor	nmouth	<u>Ur</u>	bana
109-day	113-day	109-day	113-day
29	33	31	32

In 2009 the EFP was about 50 days, at about 5 bu/ac/day, at both locations.

Does corn grain lose dry matter as it dries in the field?

- This first came from Bob Nielsen at Purdue, who in the early 1990s suggested a loss of 1 bushel per point of moisture, from the high 20s to 15%; this was later dropped to ½ bu per %
- Work at a number of universities was unable to show this; at the UI, we did a 3year study that showed a 1.2% increase in kernel weight going from 29 to 20% moisture
- Some seed companies claimed that hybrids differ in the tendency to do this, with some showing no loss
- Some farmers feel strongly that this is real, and harvest early and pay to dry to prevent it
- While no one can say it never happens, there is no known physiological reason for it, outside of the possibility for ear rots and loss of ears to droppage
- Because so much "proof" of this comes from yield monitors, some believe that it's mostly a consequence of subtle differences in how yield monitors sense moisture and weigh between grain at high v low moisture

Proportion of final dry weight

Management considerations during grainfill

- If pollination wasn't very successful or there was a lot of kernel abortion, so that kernel number per acre less than 10,000,000, keeping a healthy canopy to maturity might have a limited effect on yield:
 - At 80,000 k/bu, yield ay 10M k = 125
 - At 70,000 k/bu, yield = 143
- If kernel numbers are high, every day with full light interception (at max fill rate) can add 10-11 bushels of yield
- Leaf loss after pollination is irreversible, but disease or insect control may be cost-effective, depending on how much damage there is and how early it was detected and treated

Point to ponder:

A chemical company says that using its foliar fungicide at R1 will help leaves stay green longer, which will mean higher corn yield

- Do you think that having leaves stay green up to black layer would always increase yields?
- If not, when might that not happen?
- What would you tell a farmer (if you don't work for the chemical company?)
 - And if you do work for the chemical company?

Lodging problems in corn and assimilate translocation

Stalk Rot / Plant Stress

- Stressed plants make less sugar. Stresses include disease, drought, lack of sunlight, high plant populations, etc.
- Developing ears take priority. Amount of sugars required depends upon kernel
 number (yield potential).
- Root and stalk tissue have lower priority. Under stress, tissues receive less sugar
 and weaken. Stalk rot fungi infect and
 initiate disease.

TO REDUCE STALK ROT => REDUCE STRESS

Point to ponder:

The same chemical company says that using its foliar fungicide at R1 will improve corn standability, even though we know that stalk diseases aren't (much) controlled by foliar fungicide

- Why would having leaves stay green longer (let's assume this happens) make stronger stalks?
- Does it matter that standability is not so often a problem?
- Under what conditions might corn lodge even though fungicide was used?
- What cost for fungicide do you think would justified if it affected only (or mostly) standability?

R6 Stage: Maturity

- <u>Black layer</u>: Black abscission layer formed because the starch line has advanced all the way to the cob
- Kernels have (usually*) reached maximum dry weight
- Leaves/husks are often-but not always-brown; stalk may be green
- Kernels 32-35% moisture (varies from <30 to >35)
- Harvesting now means high drying costs and possible grain damage
- Drydown rate depends on temperature, husk cover, etc.
 *We have found instances of "bonus fill", with what we think is sugars accumulating in the cob and moving into kernels even though the conducting cell layer is dark/dead

When maturity is late: the view from the kernel

- Having GDD accumulations drop to low or to zero slows/stops Ps and with it the chance to add more dry weight to kernels even if there is still some green leaf area
- If GDD accumulation has been enough to allow kernels to black-layer normally, moisture is usually 32-34%, but can be outside this range

If sugar import stops before natural maturity:

- Black layer may form slowly and not be very dark: this is moot when there's no more sugars in the "pipeline" anyway
- Kernel weight and yield will be lowered, but not by much if GDD totals are within 200 or so of PM (~90% of total)
- Grain moisture will be high, and:
 - Sugars often remain in the base of kernel not converted to starch; this will slow drying (more solubles means water is "held" more tightly)
 - With less starch present, the base of the kernel will shrink as it dries
 - Sugars brown at high temperatures, so drying can increase kernel damage (and dockage)
 - Lower endosperm density and kernels whose shape doesn't allow them to fit together as well means lower test weight, even after grain is dried

From Pioneer Field Facts Avg of 6 hybrids; removed all leaves and stalk above the ear

Days from:

¼ ML to BL: 22 d
½ ML to BL: 15 d
¾ ML to BL: 7 d

Test weight is often a "victim" of late maturity

- Weight in lb of a bushel (1.244 ft³) volume of grain(= bulk density)
- Has an official measurement procedure, using funnel apparatus and manual strikeoff; some combines measure it but that's not "official"
- Part of U.S Grain Standards for wheat (60), corn (56), grain sorghum (56), oats (32), but no longer for soybean
- Widely used in the seed corn industry as an advertised trait: many hybrids are said to have "high" TW
- Widely viewed as an indicator of how well a hybrid reached its yield potential
- But TW is a complex measure, including kernel density, size and shape, moisture, and seedcoat slipperiness
 - Example: TW can sometimes be increased by running grain through an auger

Urbana Hybrid Trial 2009

Test weight, moisture, hybrids, and yield: it's complicated:

2009 was a cool season, with a wide range of grain moistures and low test weights as measured on the combine Official test weight measurements were

very different than combine-measured ones

TW measured both ways showed a negative correlation between grain moisture and TW, but it was much stronger with combine-measured TW Yield was higher at higher TW, which means higher with lower moisture: in this season, earlier-maturing hybrids were better able to finish grainfilling

From 26 to 15% moisture:

- TW increased by 7 lb/bu, or 0.63
 lb/point
- This differed some by sample
- From >30% down to 25%, TW decreased some (why?)
- TW increased as grain dried below 15%, but the change rate slowed
- Q: Is air-drying the same as in a dryer?

Test weight and grain moisture, 2017 study

What do we learn from test weight?

- Test weight is an (inexact) indicator of how well the grainfilling process has gone, including the sugar supply, kernel diseases, and weather during the process
- If grainfill has been complete or nearly complete, then low test weights measured on wet grain rebound as grain is dried
- Low test weights mean more volume to handle, but dockage due to low test weights are problematic IF test weight once dried is normal
- Test weight is partly used in marketing as a proxy for "low-quality" (low starch density, unfilled kernels) grain
- But TW is not a reliable indicator of the value of the grain as feed: crude protein can be higher in unfilled kernels