Advanced Crop Advisors Workshop, Feb. 11-12, 2020

Development of Management Zones and the Use of Proximal/Remote Sensing for Site-Specific Nutrient Management

Dr. Yuxin Miao

Precision Agriculture Center Dept. of Soil, Water and Climate University of Minnesota

Precision Agriculture Center

University of Minnesota Driven to Discover®

Precision Agriculture was started at the U of M in the early 1980s

U of M founded the International Conference on Precision Agriculture in 1992

The first Precision Agriculture Center in the world was established at the U of M in 1995

U of M founded the Precision Agriculture journal in 2000

University of Minnesota Driven to Discover®

> Director, Dr. David J. Mulla Associate Director, Dr. Yuxin Miao

Dept. Soil, Water and Climate

Dr. Jay Bell

Dr. Fabian Fernandez

Dr. Daniel Kaiser

Dr. Carl Rosen

Dr. Vasudha Sharma

Precision agriculture, geospatial analysis precision conservation, environmental quality remote sensing

Precision agriculture, nutrient management integrated precision crop management remote sensing

Soil-landscape analysis

Nutrient management and water quality research and extension

Nutrient management research and extension

Nutrient management, potato management, vegetable and fruit

Precision irrigation

UNIVERSITY OF MINNESOTA **Driven to Discover®**

Dept. of Agronomy & Plant Genetics

Dr. Jeffrey Coulter

Corn management

Dr. Axel Garcia

Dr. Candice Hirsch

Dr. Gregg Johnson

Integrated weed management

Dr. Seth Naeve

Soybean management

Sustainable cropping systems, crop modeling, cover crops

High throughput phenotyping, hyperspectral remote sensing

Multi-disciplinary Team

Multi-disciplinary Team

University of Minnesota Driven to Discover®

Dept. of Bioproduction and Biosystems Engineering

Dr. Abdennour Abbas

Dr. Peter Marchetto

Environmental and biological sensing, robotics, UAVs

Dr. Ce Yang

Hyperspectral imaging, machine learning, computer vision

Dr. Zhenong Jin

Crop growth modeling, remote sensing

Multi-disciplinary Team

UNIVERSITY OF MINNESOTA Driven to Discover®

Dept. of Computer Science & Engineering

Dr. Ibrahim Volkan Isler

Dr. Vassilios Morellas

Dr. Vipin Kumar

Dr. Shashi Shekhar

Dr. Nikolaos Papanikolopoulos

Robotics for environmental monitoring

Distributed robotics, computer vision

Data mining, object recognition

Spatial computing, data mining, parallel computing

Computer vision

University of Minnesota Driven to Discover®

Dept. of Entomology

Dr. Robert Koch

Dr. Ian MacRae

Dept. of Forest Resources

Dr. Joseph Knight

Dept. of Plant Pathology Dr. Cory Hirsch

Dept. of Aerospace Engineering & Mechanics

Dr.Demoz Gebre-Egziabher

Multi-disciplinary Team

Integrated pest management in soybean, environmental and economic sustainability

Site-specific integrated pest management, landscape ecology, GIS, spatial statistics

Remote sensing and geospatial analysis, land use impacts on environment and natural resources

Phenotypic information to understand abiotic and biotic stresses

Navigation, guidance, and control of aerospace vehicles, image georegistration

Challenges of World Agriculture

Foley et al. 2011; FAO "How to Feed the World 2050"; West et al., 2014

Precision Agriculture

The next agricultural revolution!

http://www.cema-agri.org/

What is Precision Agriculture?

Precision Agriculture is a management strategy that gathers, processes and analyzes temporal, spatial and individual data and combines it with other information to support management decisions according to estimated variability for improved resource use efficiency, productivity, quality, profitability and sustainability of agricultural production

Precision Agriculture

Spatial and temporal optimization of key factors influencing crop yield, profitability and environmental footprint

Gebbers and Adamchuk. 2010. Science

Steps of Precision Agriculture

(Pierce and Nowak, 1999. Advances in Agronomy)

Precision Nitrogen Management

Matching N supply with crop N requirement in:

How are you managing N?

An Integrated Precision Nitrogen Management Strategy

What is Management Zone?

Management zones: subregions of a field with unique yet relatively homogeneous soil or landscape conditions and similar yield limiting factors that can be managed uniformly with a single rate of crop input or single set of management practices (Mulla et al., 1993; Doerge, 1999).

A way of classifying the spatial variability within a field

Zone-based Precision N Management is Profitable

Miao et al., 2018

Studies in Colorado (Delgado et al., 2005; Koch et al., 2004): Reduced 25% nitrate-N leaching losses; Reduced 6-46% N fertilizers; Increased 18-30 \$ ha⁻¹ profits

Management Zone Delineation

To be successful, the delineation strategy must be based on:

True cause and effect relationships between site characteristics and crop yield.

Doerge, 1999.

What are the Practical Considerations for Defining Management Zones?

Relationship with crop yield:

Direct effect on crop yield

Cost of the data:

Free or low cost data:

Grower's local knowledge

Soil survey maps

DEM data and terrain attributes

Remote sensing images

Yield maps

LiDAR data

Doerge, 1999.

What are the Practical Considerations for Defining Management Zones

Data that are quantitative and repeatable:

Topography (DEM)

EC

Soil color (or brightness)

Some soil physical properties

Density of the data:

Yield maps

DEM

EC and other proximal sensor-based data

Remote sensing data

Doerge, 1999.

What variables are you using in your management zone delineation approaches?

Three Basic Approaches to Management Zone Delineation

Soil and/or landscape variables

. . .

Soil survey maps; Soil sampling data; Soil electrical conductivity (EC); Soil organic matter estimated using proximal or remote sensing; Bare soil images or soil brightness; Cation exchange capacity; Soil texture; Landscape properties or terrain attributes;

Yield maps and remote sensing images

Integrated approaches combing soil-landscape factors and yield/remote sensing images

1. Soil and/or Landscape Factors

1). Traditional Soil Survey

Roberts, et al., 2010. Agronomy Journal

Limitation of Soil Survey Maps

- Based on soil genesis;
- Not necessarily result in yield differences;
- Not necessarily require different input rates;
- Ignore internal variability;
- Coarse resolution;

1. Soil and/or Landscape Factors

2). Grid soil sampling

H	T . D . (14)			
Year : 2013	Total Amount : 4813.3 lb	(lb/ac)		
Operation : Fertilizing Prescription (Dry)	Average Rate : 194.0 lb/ac	300.0(0.4 ac)		
Crop / Product : Potash	Minimum Rate : 125.0 lb/ac	200.0(19.6 ac)		
Op. Instance : SB Higher Fertilizer	Maximum Rate : 300.0 lb/ac	125.0(3.6 ac)		
Area : 24.8 ac	Count : 211			
11/14/2014 4:59:00 PM Data Altered/Created through Analysis	Ag Leader Technology SMS Advanced	Page 2 of 2		

1. Soil and/or Landscape Factors

3) Proximal Soil Sensing and Mapping

(Adamchuk et al., 2018)

1. Soil-based Management Zones (Units)

4) Remote Sensing-based Soil Mapping

Soil reflectance gives indication of soil texture, moisture, organic matter, etc.

Soil Brightness

UAV RS-based SOM Mapping

(Gillingham, 2016)

(Stoorvogel et al., 2015)

1. Soil and/or Landscape-based MZ

5). Topography and Terrain Attributes

- 1. Soil and/or Landscape-based MZ
- 6). Soil-landscape properties

Topographic attributes + EC

pH + EC + Elevation

(Vitharana et al., 2008)

2. Crop-based MZ

1). Multi-year crop yield maps

2. Crop-based MZ

1). Multi-year crop yield maps

(Blackmore, S. 2000. Computers and Electronics in Agriculture)

2. Crop-based MZ

2). Multi-year remote sensing data

Wang et al., 2012.

3. Integrated Approaches (Soil-Landscape + Yield) 1). Yield + EC + Elevation

Fig. 5. Interpolated maps of all data layers available for analysis. Maps are presented using a common legend based on SDs.

Fig. 7. The two management class map overlain with the stratified soil sample locations in 2001 and 2004.

Taylor et al., 2007.

3. Integrated Approaches (Soil Landscape + Yield)
 2). Yield + Bare soil image + CEC+ OM+ Soil texture

Fig. 1. (a) Soil-color-based management zone technique and (b) yieldbased management zone technique for Site Year I. Low productivity = dark gray, medium productivity = light gray, high productivity = white.

Hornung et al., 2006.

How to determine the factors or variables for management zone delineation?

Key Factors Identification

Multivariate statistical analysis and machine learning for key factors identification

Artificial Neural Network Analysis

Fig. 1 Basic structure of a feed-forward multilavered perceptron (MLP) artificial neural network (adapted from StatSoft, 2002)

Fig. 10 Relationship between corn yield and aspect in Field 1 (33Y18, left) and 2 (34K77, right), 2000

Precision Agric (2006) 7: 117-135

Table 3 Ranking of important factors influencing corn yield and quality variability

Rank	Com Yield			Com Quality				
	1998	Ratio ^a	2000	Ratio	Protein	Ratio	Test wt.	Ratio
Field 1								
1	Aspect	2.05	Hybrid	2.15				
2	CEC	1.68	R_elev.	1.19	Acn	oot		
3	R_elev.	1.49	CEC	1.16	ASU	IECI		
4	S	1.37	Aspect	1.15	•			
5	EC	1.35	Slope	1.07				
6	Zn	1.27	EC	1.07	EL			
7	К	1.19	S	1.06				
8			pH	1.05				
9			K	1.05	Rela	ατιν	ееп	evatior
10			Zn	1.03				••••••
11			CTI	1.02				
12			Tcurv.	1.00	LEL			
R^{2b}		0.68		0.80				
Field 2					7			
1	Aspect	1.68	S	2.23	Zn			
2	R_elev.	1.42	R_elev.	2.00				
3	EC	1.38	CEC	1.84	^			
4	Slope	1.35	pH	1.70	S			
5	pH	1.31	Zn	1.49	$\mathbf{}$			
6	CEC	1.27	EC	1.43	·			
7	Р	1.19	Hybrid	1.43	pH	4.35	Slope	1.91
8	Zn	1.17	Aspect	1.42	EC	4.28	S	1.83
9	S	1.10	Slope	1.31			pН	1.82
10	Pcurv.	1.05	Р	1.25			Р	1.79
11	Tcurv. ^a	1.05	CTI	1.12			CTI	1.29
12			Tcurv.	1.04			Tcurv.	1.07
13			Pcurv.	1.03			Pcurv.	1.05
R~		0.68		0.83		0.99		0.99

^aSensitivity ratio

^bCoefficient of determination for the whole dataset

c,dProfile and tangential curvature

¹²⁵
An Integrated Approach to MZ Delineation Relative elevation + OM + Slope + EC + Yield

What are the Criteria for Evaluating Delineated Management Zones

- The ability to group areas with similar soil test results into the same zone (soil nutrient variability minimization);
- The ability to group areas with similar yields into the same zone(yield variability minimization); and
- The ability to improve fertilizer recommendations (fertilizer recommendation error minimization).
- Increase profitability or resource use efficiency (benefit optimization).

Chang et al., 2004; Hornung et al., 2006.

How to Evaluate a Management Zone Strategy?

Historical:

Yield and income

Yield or profitability difference map

Doerge, 1999.

How to Evaluate a Management Zone Strategy? Direct:

Side-by-side comparison

Quantitative, spatially robust, and requires no specialized equipment beyond a yield monitoring and mapping system.

Limited risk

Doerge, 1999.

How to determine suitable N rates in different MZs?

High yield zone?

Normal yield zone?

Low yield zone?

Diagnosis of yield limiting factors

Unstable?

Need dynamic decision making

An Integrated Precision Nitrogen Management Strategy

Crop Growth Model-based Zone-Specific N Management

Zone- & Hybrid-specific N Application

Miao et al., 2006. Agronomy Journal

An Integrated Precision Nitrogen Management Strategy

ΜZ

Crop Growth Model

MZ-specific N rates

1/3 as preplant application

What are the Proximal or Remote Sensing Technologies you are using?

Active Canopy Sensor: GreenSeeker

R: 650<u>+</u>10nm NIR: 770<u>+</u>15nm

NDVI=(NIR-R)/(NIR+R)

RVI=NIR/R

Other Two Band Active Canopy Sensors

Crop Circle ACS 210

590<u>+</u>5.5, 880<u>+</u>10

Three Band Active Canopy Sensors

Crop Circle ACS-430

670nm, 730nm and 780 nm

Height independent spectral reflectance measurements. (0.25 m to 2.0 m)

RapidSCAN CS-45

670nm, 730nm and 780 nm

0.8 kg

Integrates a data logger, graphical display, GPS, crop sensor and power source into one, small compact instrument.

Height independent spectral reflectance measurements.

(0.3 m to 3 m)

User Configurable Active Canopy Sensors

Active Canopy Sensor Crop Circle ACS 470

 450 ± 20 nm, 550 ± 20 nm, 670 ± 11 nm, 730 ± 10 nm, 650 ± 20nm, 760LWP (interference filters)

- ACS 470 active canopy sensor, user configurable
- Choice of 6 possible wave bands
- Red edge and green bands more sensitive to plant N status than red band

Active Canopy Sensor-based Precision N Management Strategy (NFOA Algorithm)

NDSU & NFOA

Franzen et al., 2014

Algorithm inputs for GreenSeeker and Holland Scientific Crop Circle sensors in North Dakota corn yield prediction and for directing N rates for side-dress N application.							
West River No-till							
Sensor	Wavelength for NDVI	Growth Stage	Basic Yield Prediction Formula	Minimum INSEY for N rate			
GreenSeeker	Red	V6	Yield = (188094 X INSEY) + 29	0.0001			
GreenSeeker	Red Edge	V6	Yield = (325010 X INSEY) + 46	0.00003			
Crop Circle	Red	V6	Yield = (229555 X INSEY) + 41	0.0001			
Crop Circle	Red Edge	V6	Yield = (399336 X INSEY) + 60	0.00003			
GreenSeeker	Red	V12	Yield = (71686 X INSEY) + 57	0.0002			
GreenSeeker	Red Edge	V12	Yield = (139218 X INSEY) + 50	0.00015			
Crop Circle	Red	V12	Yield = (120175 X INSEY) + 35	0.0002			
Crop Circle	Red Edge	V12	Yield = (2/7/15 X INSEY) + 11	0.00015			
High-clay Soils	Eastern North	n Dakota					
Sensor	Wavelength for NDVI	Growth Stage	Basic Yield Prediction Formula	Minimum INSEY for N rate			
GreenSeeker	Red	V6	Yield = (85506 X INSEY) + 110	0.0002			
GreenSeeker	Red Edge	V6	Yield = (146652 X INSEY) + 93	0.00015			
Crop Circle	Red	V6	Yield = (94286 X INSEY) + 120	0.0002			
Crop Circle	Red Edge	V6	Yield = (161565 X INSEY) + 11	0.00015			
GreenSeeker	Red	V12	Yield = (132082 X INSEY) + 62	0.0004			
GreenSeeker	Red Edge	V12	Yield = (89991 X INSEY) + 91	0.0002			
Crop Circle	Red	V12	Yield = (157411 X INSEY) + 48	0.0003			
Crop Circle	Red Edge	V12	Yield = (274855 X INSEY) + 51	0.0002			
Medium-texture	e Soils Easterr	n North Da	kota				
Sensor	Wavelength for NDVI	Growth Stage	Basic Yield Prediction Formula	Minimum INSEY for N rate			
GreenSeeker	Red	V6	Yield = (59103 X INSEY) + 128	0.0002			
GreenSeeker	Red Edge	V6	Not established				
Crop Circle	Red	V6	Yield = (91892 X INSEY) + 133	0.0002			
Crop Circle	Red Edge	V6	Yield = (55652 X INSEY) + 138	0.00006			
GreenSeeker	Red	V12	Yield = (89116 X INSEY) + 99	0.0003			
GreenSeeker	Red Edge	V12	Not established	0.0000			
Crop Circle	Red Ded Edge	V12	Yield = (88306 X INSEY) + 109	0.0003			
Crop Circle	Red Edge	VIZ	field = (190600 × INSET) + 88	0.0002			
Long-term No-till Eastern North Dakota							
Sensor	Wavelength for NDVI	Growth Stage	Basic Yield Prediction Formula	Minimum INSEY for N rate			
GreenSeeker	Red	V6	Yield = (247906 X INSEY) + 67	0.00015			
GreenSeeker	Red Edge	V6	Not established				
Crop Circle	Red	V6	Yield = (212021 X INSEY) + 103	0.00015			
Crop Circle	Red Edge	V6	Not established				
GreenSeeker	Red	V12	Not established				
GreenSeeker	Red Edge	V12	Not established				
Crop Circle	Red	V12	Not established				
Crop Circle	Red Edge	V12	Yield = (363492 X INSEY) + 7	0.00015			

Franzen et al., 2014

University of Missouri/USDA-ARS

Nrec = 250 * (ISR_{target} / ISR_{reference}) - 200

Kitchen, 2016

Holland–Schepers

Nrec = (N opt - N cred) * SQRT($(1 - SI)/\Delta SI$)

Holland and Schepers, 2010

Contents lists available at ScienceDirect

Field Crops Research

journal homepage: www.elsevier.com/locate/fcr

Do crop sensors promote improved nitrogen management in grain crops? A.F. Colaço^{*}, R.G.V. Bramley

Research

Most studies report N fertilizer savings of 5–45% with little effect on grain yield, but a lack of consistent evidence of economic benefits limits adoption by farmers... Sensor-based N applications which reduced environmental impacts were often not profitable compared to current N practices. Agron. J. 110:2552-8 (2018)

Active-Optical Reflectance Sensing Corn Algorithms Evaluated over the United States Midwest Corn Belt

G. M. Bean,* N. R. Kitchen, J. J. Camberato, R. B. Ferguson, F. G. Fernandez, D. W. Franzen, C. A. M. Laboski, E. D. Nafziger, J. E. Sawyer, P. C. Scharf, J. Schepers, and J. S. Shanahan

Bean et al., 2018

Bean et al., 2018

"This research demonstrated that AORS algorithms developed locally (i.e., within a US state) often will not perform well when its use is scaled to reach a greater region than the data used to develop the algorithm originally included."

"This outcome demonstrates that for an algorithm to be utilized over a broad region, development would be best if done employing datasets that give context representing the range of soil and weather conditions."

How to Improve the Algorithms?

Agron. J. 110:2541-2551 (2018)

Improving an Active-Optical Reflectance Sensor Algorithm Using Soil and Weather Information

G.M. Bean,* N.R. Kitchen, J.J. Camberato, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A.M. Laboski, E.D. Nafziger, J.E. Sawyer, P.C. Scharf, J. Schepers, and J.S. Shanahan

"We found that adjusting AORS algorithm recommendations with **site-specific weather and soil information** usually resulted in improved N fertilizer recommendations compared to the unadjusted ALG_{MU}."

Bean et al., 2018

$$NRec_{MU} = \left(280 \text{ kg N ha}^{-1} \times \frac{ISR_{target}}{ISR_{reference}}\right) - 224 \text{ kg N ha}^{-1}$$
$$ISR = R/NIR$$

Soil Information

Plant available water content

The difference between the soil moisture at field capacity and permanent wilting point.

SOM

Clay Content

Bean et al., 2018

Weather Information

Growing Degree Days

$$GDD = \frac{T_{Max} + T_{Min}}{2} - T_{Base}$$

Precipitation Evenness

Shannon diversity index
$$SDI = \left[-\sum p_i \frac{\ln(p_i)}{\ln(n)}\right]$$

Where pi = daily rainfall/total precipitation, *n* = number of days in the specified time period being used.

SDI = 1 implies complete evenness (i.e., equal amounts of rainfall in each day of the period);

SDI = 0 implies complete unevenness (i.e., all rain in 1 d)

Abundant and well-distributed rainfall (AWDR)

AWDR = SDI x total precipitation

Table 3. University of Missouri (ALG_{MU}) performance for both at-planting target corn N rates (0 and 45 kg N ha⁻¹) with and without soil and weather adjustments made to the ALG_{MU} nitrogen fertilizer recommendation (Nrec). The root mean square error (RMSE), median of the differences between economic optimal nitrogen (EONR) rate and ALG_{MU}, and the percentage of sites within 34 kg N ha⁻¹ of EONR were all used to compare algorithm performances.

Target corn							Sites within
N rate	Adjustment	Model equation	r ²	þ value	RMSE	Median	34 kg N ha ⁻¹ of EONR
kg N ha ^{−1}					—— kg N	l ha ⁻¹ ——	%
0	None	y = Nrec	0.14	0.004	81	-10	20
	W	y = Nrec- 231 + 444 × SDI	0.33	<0.001	58	-11	41
	S _{SRGO}	y = Nrec + 97– 2 × Clay ₃₀	0.25	0.001	62	2	39
	SMEAS	$y = Nrec + 94 - 1.7 \times Clay_{60}$	0.26	0.001	62	3	43
	W + S _{SRGO}	$y = Nrec - 219 + 492 \times SDI - 0.009 \times (PPT \times Clay_{30})$	0.43	<0.001	55	-1	45
	W + S _{MEAS}	$y = Nrec - 167 + 400 \times SDI - 1.5 \times (Clay_{60})$	0.40	<0.001	57	-1	43
45	None	y = Nrec	0.12	0.009	73	-43	29
	\mathbf{w}	y = Nrec- 211 + 395 × SDI	0.29	<0.001	55	-2	43
	S _{SRGO}	y = Nrec + 85– 2 × Clay ₃₀	0.23	0.003	57	8	53
	SMEAS	$y = Nrec + 82 - 1.7 \times Clay_{60}$	0.23	0.003	57	-2	55
	W + S _{SRGO}	$y = Nrec - 200 + 435 \times SDI - 0.008 \times (PPT \times Clay_{30})$	0.39	<0.001	50	-3	47
	W + S _{MEAS}	$y = Nrec - 201 + 430 \times SDI - 0.006 \times (PPT \times Clay_{60})$	0.38	<0.001	51	-2	51

† W, weather; S_{SRGO} , SSURGO soil; S_{MEAS} , measured soil; W + S_{SRGO} , weather + SSURGO; W + S_{MEAS} , weather + measured soil; SDI, Shannon diversity index; PPT, total precipitation from time of planting to time of sensing (mm); Clay₃₀, % clay in the upper 30 cm of soil; Clay₆₀, % clay in the upper 60 cm of soil.

Bean et al., 2018

Evaluation of mid-season sensor based nitrogen fertilizer recommendations for winter wheat using different estimates of yield potential

Jacob T. Bushong¹ \cdot Jeremiah L. Mullock¹ \cdot Eric C. Miller¹ \cdot William R. Raun¹ \cdot D. Brian Arnall¹

Current nitrogen fertilization optimization algorithm (CNFOA)

Proposed nitrogen fertilization optimization algorithm (PNFOA)

Days of potential growth (DPG)

Adequate temperature along with adequate soil water

Fractional water index (FWI), which is a unitless value that ranges from 0.00 for dry soils to 1.00 for wet/saturated soils

Stress index (SI)

Dividing the amount of PAW by the amount of water needed to maintain yield from the date of sensing to an assumed harvest date of June 10.

	All sites		Loamy site	28	Coarse sites	
Parameter	Est.	$\Pr > t $	Est.	$\Pr > t $	Est.	$\Pr > t $
Intercept	8.32	_	9.62	_	4.68	_
DPG	-0.09	< 0.0001	-0.08	0.0320	-0.06	0.1261
SI	-10.66	< 0.0001	-13.82	< 0.0001	-5.03	0.2157
NDVI	-15.68	< 0.0001	-17.17	0.0005	-13.19	0.0356
DPG*SI	0.11	< 0.0001	0.11	0.0029	0.05	0.2408
DPG*NDVI	0.22	< 0.0001	0.18	0.0051	0.23	0.0014
NDVI*SI	25.80	< 0.0001	31.44	< 0.0001	16.51	0.0250
NDVI*DPG*SI	-0.28	< 0.0001	-0.27	< 0.0001	-0.22	0.0064

 Table 6
 Model parameter estimates for estimating winter wheat grain yield

DPG days of potential growth, SI stress index, NDVI normalized difference vegetative index

Current Model

Feekes 5–10

Fig. 4 Linear relationships between predicted winter wheat in-season estimations of yield based upon soil moisture parameters (A) or the current model (B) used to predict actual grain yield. Data presented is from all validation sites across all growth stages. Dashed line represents one standard deviation above the actual yield

Bushong et al., 2016

Fig. 1 Validation sites with a loamy surface soil texture coefficient of determination (R^2) values for the current model of determining winter wheat in-season estimation of yield (INSEY), and proposed new models that incorporate soil moisture data into yield prediction. Two proposed new models are displayed, one that predicts yield regardless of soil type and one that predicts yield for soils with a loamy textured surface. Predictions are grouped together by Feekes (FK) growth stage across the 2012 and 2013 growing seasons

The fact that soil physical properties were incorporated into the SI model parameter for the proposed INSEY model would negate the need for different grain yield prediction models based on soil type

Bushong et al., 2016

Table 5 Coefficient of determination (\mathbb{R}^2), root mean square error (RMSE), and percent of sites that predicted N fertilizer recommendations under, over, and within 20 kg N ha⁻¹ of agronomic optimum N rate (AONR)

Method	\mathbb{R}^2	RMSE	Percent under AONR	Percent above AONR	Percent within 20 kg N ha^{-1}
CNFOA	0.33	37.1	74	26	44
PNFOA	0.32	37.0	76	24	50
GA	0.34	36.8	53	47	41
MGA	0.33	37.1	50	50	41
PPNT	0.11	39.8	50	50	22

CNFOA current N fertilizer optimization algorithm, *PNFOA* proposed N fertilizer optimization algorithm, *GA* generalized algorithm, *MGA* modified generalized algorithm, *PPNT* pre-plant NO₃ soil test

Bushong et al., 2016

On-the-Go Sensing and Variable Rate N Application

UAV Remote Sensing

PROCEED WITH CERTAINTY

Daily revisit time ~3 m resolution Four spectral bands (R, G, B, NIR)

Development and validation of fuzzy logic inference to determine optimum rates of N for corn on the basis of field and crop features

N. Tremblay · M. Y. Bouroubi · B. Panneton · S. Guillaume · P. Vigneault · C. Bélec

- **IF** (EC_a is high **OR** ELE is low **OR** SLP is high) **AND** (NSI is low) **THEN** (EONR is high).
- IF (EC_a is high OR ELE is low OR SLP is high) AND (NSI is high) THEN (EONR is med).
- IF (EC_a is low OR ELE is high OR SLP is low) THEN (EONR is low).
- IF (EC_a is med OR ELE is med OR SLP is med) AND (NSI is low) THEN (EONR is med).
- IF (EC_a is med OR ELE is med OR SLP is med) AND (NSI is high) THEN (EONR is low).

These rules can be updated to include local knowledge or new experimental results.

Fig. 8 Simulation of EONR using the FIS developed for different situations of input values under conditions of: a favourable topography and b unfavourable topography

Fig. 9 Actual EONR in 2008 (EONR_{val}) from a linear-plateau model according to four combinations of EC_a and NSI levels (low or high)

Table 2 Nitrogen rates recommended for the validation (2008) field by the FIS model (FIS = EONR_{FIS}), the provincial guidelines (CRAAQ) and the grower's agronomist (Grower), together with actual EONR for each of the four EC_a -NSI combinations (Val = EONR_{val})

EC _a –NSI combination	N rate (kg N ha^{-1})				Grain yield (t ha ⁻¹)			
	FIS	CRAAQ	Grower	Val	FIS	CRAAQ	Grower	Val
Low EC _a -low NSI	160	170	135	155	13.9	14.0	13.1	14.0
Low EC _a –high NSI	99	170	135	91	14.1	14.2	14.2	14.2
High EC _a –low NSI	190	170	135	200	13.6	13.0	11.3	14.1
High EC _a –high NSI	112	170	135	100	14.4	14.4	14.4	14.4
Global (all cases)	129	170	135	-	14.0	14.0	13.2	-

Remote Sensing-based In-season N Recommendation Technology

An Integrated Precision Nitrogen Management Strategy

Discussion Time

Management Zone Delineation Methods

SOFTWARE

Management Zone Analyst (MZA): Software for Subfield Management Zone Delineation

Jon J. Fridgen, Newell R. Kitchen,* Kenneth A. Sudduth, Scott T. Drummond, William J. Wiebold, and Clyde W. Fraisse **Fuzzy K-means Clustering Algorithm**

Fuzziness Performance Index (FPI)

A measure of the degree of separation (i.e., fuzziness) between fuzzy c-partitions of **Y**

FPI = 0 - 1

Normalized Classification Entropy(NCE)

Models the amount of disorganization of a fuzzy *c*-partition of **Y**

How to Determine the Optimum Number of MZs?

The optimal number of clusters for each computed index is when the index is at the minimum, representing the least membership sharing (FPI) or greatest amount of organization (NCE) as a result of the clustering process.

Fridgen et al., 2004. Agronomy Journal

Establishing Management Classes for Broadacre Agricultural Production

J. A. Taylor,* A. B. McBratney, and B. M. Whelan

Agron. J. 99:1366–1376 (2007).

PROTOCOL

- 1. Clean-Up, Trim, and Transform the Data
- **2. Spatial Prediction of the Data**

VESPER

3. Generating Management Classes

FuzME

- 4. Determining the Optimum Number of Management Classes
- **5. Validating the Management Classes**