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Challenges of World Agriculture
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What is Precision Agriculture?

Precision Agriculture Is a management
strategy that gathers, processes and analyzes
temporal, spatial and individual data and
combines it with other information to support
management decisions according to
estimated variability for improved resource
use efficiency, productivity, quality, profitability
and sustainability of agricultural production

WISPA




Precision Agriculture
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http://www.sciencemag.org/content/327/5967/828/F2.large.jpg

Steps of Precision Agriculture

v known;

v’ of sufficient magnitude;

v’ spatially structured (not random);
v manageable.

Assessing
Variability

Evaluation B I\/Iar.lag.ing
Variability

(Pierce and Nowak, 1999. Advances in Agronomy)



Precision Nitrogen Management

Matching N supply with crop N requirement in:

Total Rate:

Fertilizer N Supply

Crop N _
Requirement Soil N Supply

Space:

Time:

1989 1991 1993 1995 1997 1999 2001 2003
Year



How are you managing N?




An Integrated Precision Nitrogen
Management Strategy
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What is Management Zone?

Management zones: subregions of a field with unigue
yet relatively homogeneous soil or landscape
conditions and similar yield limiting factors that can
be managed uniformly with a single rate of crop input

or single set of management practices (Mulla et al.,
1993; Doerge, 1999).

A way of classifying the spatial variability
within a field



Zone-based Precision N Management
is Profitable

Studies in Colorado (Delgado et al., 2005; Koch et al., 2004).
Reduced 25% nitrate-N leaching losses;
Reduced 6-46% N fertilizers;
ncreased 18-30 $ ha! profits
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Management Zone Delineation
To be successful, the delineation
strategy must be based on:

True cause and effect relationships
between site characteristics and
crop yield.

Doerge, 1999.



What are the Practical Considerations
for Defining Management Zones?

Relationship with crop yield:

Direct effect on crop yield

Cost of the data:

Free or low cost data:

Grower’s local knowledge
Soil survey maps
DEM data and terrain attributes

Remote sensing images

Yield maps
LIDAR data Doerge, 1999.



What are the Practical Considerations for
Defining Management Zones

Data that are quantitative and repeatable:

Topography (DEM)
EC

Soil color C(or brightness)

Some soil physical properties
Density of the data:

Yield maps
DEM

EC and other proximal sensor-based data

Remote sensing data

Doerge, 1999.



What variables are you
using in your management
zone delineation
approaches?




Three Basic Approaches to Management
Zone Delineation

Soil and/or landscape variables

Soil survey maps;

Soil sampling data;

Solil electrical conductivity (EC);

Soil organic matter estimated using proximal or remote sensing;
Bare soil images or soil brightness;

Cation exchange capacity;

Solil texture;

Landscape properties or terrain attributes;

Yield maps and remote sensing images

Integrated approaches combing soll-landscape factors and
yield/remote sensing images



1. Soil and/or Landscape Factors

1). Traditional Soil Survey

Soil Survey in Texas - 1899
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Roberts, et al., 2010. Agronomy Journal



Limitation of Soil Survey Maps

Based on soil genesis;
Not necessarily result in yield differences;

Not necessarily require different input rates,

Ilgnore internal variability;

Coarse resolution;



1. Soil and/or Landscape Factors
2). 6rid soil sampling

Fertilizing Prescription (Dry) (Micro Essentials Phos)SB Higher Fertilizer 24.8 ac

N Year : 2013 “Total Amount : 4813.3 Ib Target Rate(Mass)
Year : 2013 Total Amount : 1226.2 b Target Rate(Mass) (Ib/ac)
Ib/ac, Operation : Fertilizing Prescription (Dry) Average Rate : 194.0 Ib/ac ¥ 300.0( 0.4 ac)
Operation : Fertilizing Prescription (Dry) Average Rate : 49.4 lbfac Il 155.0( 2.3 ac) o ot Pt ; e 350 ggggglég ac;
90.0 ( 9.6 ac) rop / Product : inimum Rate : 125.0 Ibfac 3 .6 ac
Crop / Product : Micro Essentials Phos Minimum Rate : 0.0 Ib/ac Wo0.0 (12.9 ac) Op. Instance s SB Higher Fertizer 1 W 125.0( 3.6 ac)
: : a +300.0 Ib/ax ) %
Op. Instance : SB Higher Fertiizer Maximum Rate : 155.0 Ibjac ™ . Sl YieldPoint
YieldPoint gy
Area: 24.8 ac Count : 211 [ —
\ 11/14/2014 4:59:00 PM g Leader Technology SMS Advanced Page 202
Data Atered)/Created through Anlysis
11/14/2014 4:59:00 PM Ag Leader Technalogy SMS Advanced Page 1 0f 2
‘Akered]Created through Analysis




1. Soil and/or Landscape Factors

3) Proximal Soil Sensing and Mapping
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(Adamchuk et al., 2018)



1. Soil-based Management Zones (Units)

4) Remote Sensing-based Soil Mapping

Soll reflectance gives indication of soll
texture, moisture, organic matter, etc.

S Legend

SOM sampling points M;,' X
= 26 A b‘.’
26-3.1 R 5 3

Soil Brightness

UAV RS-based SOM Mapping

(Gillingham, 2016) (Stoorvogel et al., 2015)



1. Soil and/or Landscape-based MZ
5). Topography and Terrain Attributes

+ Topography

— Relative elevation

> Slope

—> Aspect

— Curvature (plan, profile, tangential)
- » SCA or flow accumulation

— Wetness index (or CTI)



1. Soil and/or Landscape-based MZ

6). Soil-landscape properties

Topographic attributes + EC

pH + EC + Elevation

170720 (@)
1706204

1705204

Northing (m)

170420+

1703204

166880 166880 167080 167180
Easting (m)

(Vitharana et al., 2008)
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2. Crop-based MZ

1). Multi-year crop yield maps

Yield Classes
1999, Corn Bl Very High (>115%)
High (105 —115%)
Average (95 —103%)
Low (85— 93%)
Very Low (<83%)

1996, Soybean 1998, Soybean 2000, Soybean

=

b
Temporal Stability (CV%0)
Very Unstable (=30%)
Unstable (20 — 30%)

Stable (10— 20%)
Very Stable (0 - 10%)

Spatial Trend

Very High (>113%)
High (103 —115%)
Average (93 — 103%)
Low (83— 03%)
Very Low (<83%)




2. Crop-based MZ

1). Multi-year crop yield maps

Consistently

High yielding
and stable

" Lowyieling
| andstable

Unstable
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(Blackmore, S. 2000. Computers and Electronics in Agriculture)



2. Crop-based MZ

2). Multi-year remote sensing data

Yield classification
B Consistent High
@ Consistent Average
B Consistent Low
B Inconsistent

Wang et al., 2012.



3. Integrated Approaches (Soil-Landscape + Yield)
1). VYield + EC + Elevation

7 Chickpea and
Saffron (1999)

Wheat (2004)

Standard Deviation
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Fig. 7. The two management class map overlain with the stratified soil
sample locations in 2001 and 2004.

Fig. 5. Interpolated maps of all data layers available for analysis. Maps
are presented using a common legend based on SDs. Taler Et al .y 2007 .



3. Integrated Approaches (Soil Landscape + Yield)
2). Yield + Bare soil image + CEC+ OM+ Soil texture

4

* (b)

Fig. 1. (a) Soil-color-based management zone technique and (b) yield-
based management zone technique for Site Year I. Low pro-
ductivity = dark gray, medium productivity = light gray, high
productivity = white.

Hornung et al., 2006.



How to determine the factors
or variables for management
zone delineation?




Key Factors Identification

Multivariate statistical analysis and machine learning for key factors
Identlflcatlon Precision Agric (2006) 7: 117-135 1

25
Table 3 Ranking of important factors influencing corn yield and quality variability
Artificial Neural Network Analysis Rask  Com Yiel Com Quality
1998 Ratia® 2000 Ratio Protein Ratio Test wt. Ratio
Input Layer Hidden Layer Output Layer Field 1 _ A _
l | 1 Aspect 2.05 Hybrid 2.15
2 CEC 1.68 R_elev. 1.19
S e w1 ASpect
4 S 1.37 Aspect 1.15
5 EC 1.35 Slope 1.07
| 6 Zn 1.27 EC 107
Input Variables - ’ A0+ Output Variable ; K 119 SH j Ht_j
* % Relative Elevati
; ¢ & Relative Elevation
10 Zn 103
11 CTI 1.02
t 12 Teurv. 1.00 ‘ E ‘
Individual Neuron R® 0.68 0.80
Pre-Processing Layer Post-Processing Layer Field 2
Ij'iu. 1 B;N;" structure of a feed-forward multilayered perceptron (MLP) artificial neural network (adapted 1 A spect 1.68 5 223 Z n
from'StatSolt; 2002) 2 R_elev. 142 R_elev. 2.00
3 EC 1.38 CEC 1.84
Precision Agric (2006) 7: 117-135 131 4 Slope 1.33 pH 170 S
5 pH 1.31 Zn 1.49
Fiedd 1, 33¥18, 2000 Field 2, 24K77,2000 6 (-Er J ET FJ(- J 4 1 TTTETTT T T -
. 11200 7 P 1.19 Hybrid 143 pH 4.35 Slope 1.91
— 10200 —
ki L 8 Zn 1.17 Aspect 142 EC 4.28 S 1.83
é 10000 5”00:. 9 S 1.10 Slope 1.31 pH 1.82
%’ % 10 Peurv.® 105 P 1.25 P 1.79
£ s 11 Teurv? 1.05 CTI 112 CTI 1.29
§ ww g 12 Teurv. 1.04 Teurv. 1.07
3 Peurv. 1.03 Pcurv. 1.05
B0 oo 100 160 200 o0 00 @0 400 o B0 100 160 200 250 200 0 400 R .68 .53 0.99 (.99
Aspect (=) Aspect (<)
Fig. 10 Relationship between com yield and aspect in Field 1 (33Y18, left) and 2 (34K77, right), 2000 “Sensitivity ratio

T —— & ; i .
Coefficient of determination for the whole dataset

b .
““Profile and tangential curvature

Miao et al., 2006, Precision Agriculture



An Integrated Approach to MZ Delineation
Relative elevation + OM + Slope + EC + Yield

» Relative Elevation

>Organic Matter

>Slope

>Electrical Conductivity
>Yield Spatial Trend Map
—Yield Temporal Stability Map

’M““g;‘;u MZ Analysis

Windows 95, 98, NT, 2000

ot Version 1.0.1
Jes £ e S
Front. Agr. Sci. Eng.
1 https://doi.org/10.15302/J-FASE-2018230 Available online at http://journal.hep.com.cn/fase
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What are the Criteria for Evaluating
Delineated Management Zones

* The ability to group areas with similar solil test results
Into the same zone (soll nutrient variability
minimization);

* The ability to group areas with similar yields into the
same zone(yield variability minimization); and

 The ability to improve fertilizer recommendations
(fertilizer recommendation error minimization).

* Increase profitability or resource use efficiency
(benefit optimization).
Chang et al., 2004; Hornung et al., 2006.



How to Evaluate a Management Zone Strategy?

Historical:
Yield and income

Yield or profitability
difference map

Doerge, 1999.



How to Evaluate a Management Zone Strategy?

Direct:
Side-by-side comparison

Quantitative, spatially
robust, and requires no
specialized equipment
beyond a yield
monitoring and
mapping system.

Limited risk

Low
Productivity
(Zone 3)

High

Productivity
(Zone 1)

Medium
Productivity
(Zone 2)

Doerge, 1999.



How to determine suitable N rates in
different MZs?

S Highyield zone?

_ Normal yield zone?
5 ~ Low yield zone?
Diagnosis of yield limiting factors

Unstable?

Need dynamic decision making



Nitrogen Strip Trials

3

N Rate (kg/ha)
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An Integrated Precision Nitrogen
Management Strategy
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Crop Growth Model-based Zone-Specific N

Management
Al

Management Zones
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Miao et al., 2006. Agronomy Journal



An Integrated Precision Nitrogen
Management Strategy

1/3 as preplant
MZ Crop Growth Model MZ-specific N rates application



What are the Proximal or
Remote Sensing Technologies
you are using?




Active Canopy Sensor: GreenSeeker

R: 650+10nm
NIR: 770+15nm

NDVI=(NIR-R)/(NIR+R)

RVI=NIR/R




Other Two Band Active Canopy Sensors
Crop Circle ACS 210

590+5.5, 880+10




Three Band Active Canopy Sensors

Crop Circle ACS-430

Crop Circle’ [T 670nm, 730nm and 780 nm

Model ACS-43(

Height independent spectral reflectance measurements.
(0.25mto 2.0 m)

RapidSCAN CS-45

670nm, 730nm and 780 nm

0.8 kg

Integrates a data logger, graphical display, GPS, crop sensor and
power source into one, small compact instrument.

Height independent spectral reflectance measurements.

(0.3 mto 3 m)



User Configurable Active Canopy Sensors

Active Canopy Sensor Crop Circle ACS 470

450 + 20nm, 550 + 20nm, 650 + 20nm,
670 + 11nm, 730 + 10nm, 760LWP (interference filters)

ACS 470 active canopy sensor, user configurable
Choice of 6 possible wave bands

and green bands more sensitive to plant N
status than red band



Active Canopy Sensor-based Precision N Management
Strategy (NFOA Algorithm)

Estimated Optimum N Rate

|

In-season Adjustment Sidedressing
N Rate

Yield

crain Bl ertrmrra
(1/3 as preplant application)  yield [ |- _I_ .............. Siltqi(:ﬁggssi?];ON

Early Season N Application

Yield Potential Yield Potential
with sufficient without sidedressing
N (YPy) N (YPy)



NDSU & NFOA

T Refarence yield

E Field yield estimate

Reterence
INSEY

INSEY in fiekd |
INSEY ———>

Corn yield difference in
pounds per acre

X 1.25% N in corn grain
divided by efficiency factor 0.6

= N rate
T Reference yield
|
3 Field yield estimate :
1
> i I Reference
: ! INSEY
INSEY in field | i
INSEY ———>»

Reference yield

Franzen et al., 2014



D |

Algorithm inputs for GreenSeeker and Holland Seientifie Crop Circle sensors in
North Dakota corn yield prediction and for directing N rates for side-dress N application.
West River No-till

Wavelength Growth Minimurm INSEY
Sensor for NDVI Stage Basic Yield Prediction Formula for N rate
GreenSeeker Red V6 Yield = (188094 X INSEY) + 29 0.0001
GreenSesker Red Edge V6 Yield = (325010 X INSEY) + 46 0.00003
Crop Circle Red V6 Yield = (229555 X INSEY) + 41 0.0001
Crop Circle Red Edge Ve Yield = (399336 X INSEY) + 60 0.00003
GreenSeeker Red Vi2 Yield = (71686 X INSEY) + 57 0.0002
GreenSeeker Red Edge V12 Yield = (139218 X INSEY) + 50 0.00015
Crop Circle Red V12 Yield = (120175 X INSEY) + 35 0.0002
Crop Circle Red Edge V12 Yield = (277715 X INSEY) + 11 0.00015
High-clay Soils Eastern North Dakota

Wavelength Growth Minimum INSEY
Sensor for NDVI Stage Basic Yield Prediction Formula for M rate
GreenSesker Red V6 Yield = (85506 X INSEY) + 110 0.0002
GreenSeseker Red Edge V6 Yield = (146652 X INSEY) + 93 0.00015
Crop Circle Red Ve Yield = (94286 X INSEY) + 120 0.0002
Crop Circle Red Edge V6 Yield = (161565 X INSEY) + 11 0.00015
GreenSeeker Red V12 Yield = (132082 X INSEY) + 62 0.0004
GreenSeeker Red Edge V12 Yield = (89991 X INSEY) + 91 0.0002
Crop Circle Red V12 Yield = (157411 X INSEY) + 48 0.0003
Crop Circle Red Edge V12 Yield = (274855 X INSEY) + 51 0.0002
Medium-texture Soils Eastern North Dakota

Wavelength Growth Minimum INSEY
Sensor for NDVI Stage Basic Yield Prediction Formula for N rate
GreenSeseker Red Vi Yield = (59103 X INSEY) + 128 0.0002
GreenSeeker Red Edge Ve Mot established
Crop Circle Red V6 Yield = (91892 X INSEY) + 133 0.0002
Crop Circle Red Edge V6 Yield = (55652 X INSEY) + 138 0.00006
GreenSeeker Red V12 Yield = (89116 X INSEY) + 99 0.0003
GreenSeeker Red Edge V12 Mot established
Crop Circle Red V12 Yield = (88306 X INSEY) + 109 0.0003
Crop Circle Red Edge V12 Yield = (196600 X INSEY) + 88 0.0002
Long-term No-till Eastern North Dakota

Wavelength Growth Minimum INSEY
Sensor for NDVI Stage Basic Yield Prediction Formula for M rate
GreenSeeker Red Ve Yield = (247906 X INSEY) + 67 0.00015
GreenSeeker Red Edge V6 Not established
Crop Circle Red V6 Yield = (212021 X INSEY) + 103  0.00015
Crop Circle Red Edge V6 Mot established
GreenSeeker Red V12 Mot established
GreenSeeker Red Edge V12 MNot established
Crop Circle Red V12 Not established
Crop Circle Red Edge V12 Yield = (363492 X INSEY) + 7 0.00015

Franzen et al., 2014



University of Missouri/USDA-ARS
B Mizzou

University of Missouri

Nrec = 250 * (ISR, ze; / ISR
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Holland-Schepers
Nrec = (N opt - N cred) * SQRT((1 - SI)/ASI)
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Field Crops Research 218 (2018) 126-140

Contents lists available at ScienceDirect |

Field Crops Research

journal homepage: www.elsevier.com/locate/fcr

Review

Do crop sensors promote improved nitrogen management in grain crops? M)

A.F. Colaco’, R.G.V. Bramley

Most studies report N fertilizer savings of 5-45%
with little effect on grain yield, but a lack of
consistent evidence of economic benefits limits
adoption by farmers... Sensor-based N
applications which reduced environmental impacts

were often not profitable compared to current N
practices.



Agron. J. 110:2552-8 (2018)
Active-Optical Reflectance Sensing Corn Algorithms

Evaluated over the United States Midwest Corn Belt

G. M. Bean,* N. R. Kitchen, ). ]. Camberato, R. B. Ferguson, F. G. Fernandez, D. W. Franzen,
C. A. M. Laboski, E. D. Nafziger, |. E. Sawyer, P. C. Scharf, |. Schepers, and J. S. Shanahan

0. 85170 340% 510 680

- m—— s Kilometers

Bean et al., 2018
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Bean et al., 2018



“This research demonstrated that AORS algorithms
developed locally (i.e., within a US state) often will not
perform well when its use is scaled to reach a greater
region than the data used to develop the algorithm
originally included.”

“This outcome demonstrates that for an algorithm
to be utilized over a broad region, development
would be best if done employing datasets that give

context representing the range of soil and weather
conditions.”

Bean et al., 2018



How to Improve the Algorithms?

Id ==




Agron. |. 110:2541-2551 (2018)

Improving an Active-Optical Reflectance Sensor Algorithm
Using Soil and Weather Information

G.M. Bean,* N.R. Kitchen, |.J. Camberato, R.B. Ferguson, F.G. Fernandez,
D.W. Franzen, C.A.M. Laboski, E.D. Nafziger, ].E. Sawyer, P.C. Scharf, J. Schepers, and ).5. Shanahan

“We found that adjusting AORS algorithm
recommendations with site-specific weather and soil
information usually resulted in improved N fertilizer
recommendations compared to the unadjusted

ALG,,,.”

Bean et al., 2018



-1 ISR‘target -1
NRec,,, =| 280 kg N ha™ x R -224 kg N ha

reference

ISR =R/NIR

Soil Information

Plant available water content

The difference between the soil moisture at field capacity and permanent wilting
point.

SOM

Clay Content

Bean et al., 2018



Weather Information

Growing Degree Days GDD = Dy + Lo

~ 4 Base
2

Precipitation Evenness

ln(n)

Where pi = daily rainfall/total precipitation, n = number of days in the specified time
period being used.

_ ln(pi)
Shannon diversity index SDI= | -2 pi

SDI = 1 implies complete evenness (i.e., equal amounts of rainfall in each day of the
period);
SDI = 0 implies complete unevenness (i.e., all rain in 1 d)

Abundant and well-distributed rainfall (AWDR)

AWDR = SDI x total precipitation

Bean et al., 2018



Table 3. University of Missouri (ALGy, ;) performance for both at-planting target corn N rates (0 and 45 kg N ha~!) with and without sil
and weather adjustments made to the ALGy,, nitrogen fertilizer recommendation (Nrec). The root mean square error (RMSE), median
of the differences between economic optimal nitrogen (EONR) rate and ALG;, and the percentage of sites within 34 kg N ha~! of
EONR were all used to compare algorithm performances.

Target corn Sites within

N rate Adjustment} Model equation rZ  pvalue RMSE Median 34kgNha! of EONR

kg N ha™! ——kgNha'— %

0 None ¥ = Nrec 0.14 0.004 8l -10 20

wW y = Nrec— 23| + 444 x SDI 0.33 <0.001 58 -1 4|

Serco y = Nrec + 97— 2 x Clays, 025 0001 62 2 39

SMEAS y = Nrec + 94— 1.7 x Clay,, 026  0.00l 62 3 43

W + Sepao ¥ = Nreo— 219 + 492  SDI- 0009 x (PPT x Clay,) 043 <0001 55 —I 45

W + Sueas y = Nrec— 167 + 400 x SDI- 1.5 x (Clay,) 040 <0.001 57 -l 43

45 None y = Nrec 0.12  0.009 73 —43 29

W y = Nrec— 211 + 395 x SDI 0.29 <0.001 55 -2 43

Serco y = Nrec + 85— 2 x Clays, 023 0003 57 -8 53

SMEAS y = Nrec + 82— 1.7 x Clay,, 023  0.003 57 -2 55

W + Sepeo ¥ = Nrreo— 200 + 435 x SDI= 0008 x (PPT x Clay,) 039 <0001 50 -3 47

W + Sypac ¥ = Nree— 201 + 430 x SDI-0.006 x (PPT x Clay,,) 038 <0.001 51 -2 51

T W, weather; Scp o SSURGO soil; Sypag, measured soil; W + Scp o, weather + SSURGO; W + Syp ¢, weather + measured soil; SDI, Shannon

diversity index; PPT, total precipitation from time of planting to time of sensing (mm); Clay;, % clay in the upper 30 ecm of soil; Clay,,, % clay in the
upper 60 cm of soil.

Bean et al., 2018
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Evaluation of mid-season sensor based nitrogen fertilizer
recommendations for winter wheat using different
estimates of yield potential

Jacob T. Bushong® - Jeremiah L. Mullock® - Eric C. Miller! -
William R. Raun' ¢ D. Brian Arnall’

Current nitrogen fertilization optimization algorithm (CNFOA)

Proposed nitrogen fertilization optimization algorithm (PNFOA)

Days of potential growth (DPG)

Adequate temperature along with adequate soil water

Fractional water index (FWI), which is a unitless value that ranges from 0.00 for dry
soils to 1.00 for wet/saturated soils

Stress index (SI)

Dividing the amount of PAW by the amount of water needed to maintain yield
from the date of sensing to an assumed harvest date of June 10.



Table 6 Model parameter estimates for estimating winter wheat grain yield

All sites Loamy sites Coarse sites

Parameter Est. Pr > Il Est. Pr > It Est. Pr > Il
Intercept 8.32 - 9.62 — 4.68 —

DPG —0.09 <0.0001 —0.08 0.0320 —0.06 0.1261
SI —10.66 <0.0001 —13.82 <0.0001 —5.03 0.2157
NDVI —15.68 <0.0001 —17.17 0.0005 —13.19 0.0356
DPG*SI 0.11 <0.0001 0.11 0.0029 0.05 0.2408
DPG*NDVI 0.22 <0.0001 0.18 0.0051 0.23 0.0014
NDVTI*SI 25.80 <0.0001 31.44 <0.0001 16.51 0.0250
NDVI*DPG*SI —0.28 <0.0001 —0.27 <0.0001 —0.22 0.0064

DPG days of potential growth, ST stress index, NDVI normalized difference vegetative index

Bushong et al., 2016



Improved Model

Current Model
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Fig. 4 Linear relationships between predicted winter wheat in-season estimations of
yield based upon soil moisture parameters (A) or the current model (B) used to predict
actual grain yield. Data presented is from all validation sites across all growth stages.
Dashed line represents one standard deviation above the actual

yield
Bushong et al., 2016
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Fig. 1 Validation sites with a loamy surface soil texture coefficient of determination (R?) values for the
current model of determining winter wheat in-season estimation of yield (INSEY). and proposed new models
that incorporate soil moisture data into yield prediction. Two proposed new models are displayed, one that
predicts yield regardless of soil type and one that predicts yield for soils with a loamy textured surface.
Predictions are grouped together by Feekes (FK) growth stage across the 2012 and 2013 growing seasons

The fact that soil physical properties were incorporated into the S| model parameter for the
proposed INSEY model would negate the need for different grain yield prediction models
based on soil type

Bushong et al., 2016



Table 5 Coefficient of determination (R%), root mean square error (RMSE), and percent of sites that

predicted N fertilizer recommendations under, over, and within 20 kg N ha™' of agronomic optimum N rate
(AONR)

Method R RMSE Percent under AONR  Percent above AONR  Percent within 20 kg N ha™'

CNFOA 0.33 37.1 74 26 44
PNFOA 0.32  37.0 76 24 50
GA 0.34 36.8 53 47 41
MGA 0.33 37.1 50 50 41
PPNT 0.11  39.8 50 50 22

CNFOA current N fertilizer optimization algorithm, PNFOA proposed N fertilizer optimization algorithm,
GA generalized algorithm, MGA modified generalized algorithm, PPNT pre-plant NO5 soil test

Bushong et al., 2016



On-the-Go Sensing and Variable
Rate N Application
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Development and validation of fuzzy logic inference
to determine optimum rates of N for corn on the basis
of field and crop features

N. Tremblay * M. Y. Bouroubi * B. Panneton * S. Guillaume *
P. Vigneault - C. Bélec

IF (EC, is high OR ELE is low OR SLP is high) AND (NSI is low) THEN (EONR is
high).

IF (EC, 1s high OR ELE is low OR SLP is high) AND (NSI is high) THEN (EONR is
med).

IF (EC, is low OR ELE is high OR SLP is low) THEN (EONR is low).

IF (EC, 1s med OR ELE is med OR SLP is med) AND (NSI is low) THEN (EONR 1is
med).

IF (EC,1smed OR ELE is med OR SLPis med) AND (NSIishigh) THEN (EONR islow).

These rules can be updated to include local knowledge or new experimental results.

Tremblay et al., 2010
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Fig. 8 Simulation of EONR using the FIS developed for different situations of input
values under conditions of: a favourable topography and b unfavourable topography

Tremblay et al., 2010
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Fig. 9 Actual EONR in 2008 (EONR,,) from a linear-plateau model according to four combinations of
EC, and NSI levels (low or high)

Tremblay et al., 2010



Table 2 Nitrogen rates recommended for the validation (2008) field by the FIS model (FIS = EONREs).
the provincial guidelines (CRAAQ) and the grower’s agronomist (Grower), together with actual EONR for

each of the four EC,—NSI combinations (Val = EONR,,)

EC,—NSI combination N rate (kg N hil_]}

Grain yield (t ha™ ")

FIS CRAAQ Grower Val FIS CRAAQ Grower Val
Low EC,-low NSI 160 170 135 155 13.9 14.0 13.1 14.0
Low EC,—high NSI 99 170 135 91 14.1 14.2 14.2 14.2
High EC,~low NSI 190 170 135 200 13.6 13.0 11.3 14.1
High EC,—high NSI 112 170 135 100 14.4 14.4 14.4 14.4
Global (all cases) 129 170 135 - 14.0 14.0 13.2 -

Tremblay et al., 2010
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An Integrated Precision Nitrogen
Management Strategy
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Management Zone Delineation Methods

By Fuzzy K-means Clustering Algorithm
— S
Management Zone Analyst Fuzziness Performance Index (FPI)
sg . Windows 95, 98, NT, 2000
Version 1.01
R wwws  Ameasure of the degree of

separation (i.e., fuzziness) between

SOFTWARE .
fuzzy c-partitions of Y

Management Zone Analyst (MZA): Software for Subfield
Management Zone Delineation

Jon J. Fridgen, Newell R. Kitchen,* Kenneth A. Sudduth, Scott T. Drummond, FPI — O - 1
William J. Wiebold, and Clyde W. Fraisse

Normalized Classification Entropy(NCE)

Models the amount of disorganization of a fuzzy c-partition of Y



How to Determine the Optimum Number of MZs?

The optimal number of clusters for each computed index is when the
Index Is at the minimum, representing the least membership sharing
(FP1) or greatest amount of organization (NCE) as a result of the
clustering process.

012
0.24 —a—FPI | 0.12
-0.1
08 O
0. 2
0.12 e - 0.06
1 --4--NCE
008- — 1 o -0.04 008- — — | — -0.04
2 3 45 6 7 8 2 3 4 56 7 8
Number of Zones Number of Zones

Fridgen et al., 2004. Agronomy Journal



Establishing Management Classes for Broadacre Agricultural Production

I. A. Taylor* A. B. McBratney, and B. M. Whelan

Agron. J. 99:1366-1376 (2007).
PROTOCOL

1. Clean-Up, Trim, and Transform the Data

2. Spatial Prediction of the Data

VESPER

3. Generating Management Classes

FuzME

4. Determining the Optimum Number of Management Classes

5. Validating the Management Classes



