Field Pea Response to Nitrogen Fertilizer

Bob Henson

A trial to assess the response of field pea to varying levels of nitrogen (N) fertilizer was conducted at the NDSU Carrington Research Extension Center in 2004 and 2005 (Table 1). Plots measuring 10' x 25' were arranged in a randomized complete block design with four replicates. The center 5' of each plot was used for data collection. Individual plot N levels were brought up to 50, 75, 100, 125, 150, or 200 lbs total N / acre with a broadcast application of urea, which was incorporated prior to planting. The unfertilized check and treatments of 50 and 75 lbs total N / acre were sown both with and without inoculation with CellTech-C liquid inoculant. In addition, plots of 100 lbs total N were also sown with either 15 or 30 lbs (2004) or 30 lbs (2005) P₂O₅ broadcast as triple superphosphate and incorporated before planting. In response to interest by NDDP&L members in 2005, 10 lbs S / acre (potassium thiosulfate) was applied as a foliar spray to two replicates of the trial at the beginning bloom stage.

Table 1. Soil test and planting data for the field pea response to N fertilizer trial, NDSU Carrington.

	2004	2005
NO ₃ -N (lbs/acre, 0-24")	15	20
P (ppm, Olson)	20	7
K (ppm)	219	158
рН	6.3	6.9
Organic Matter (%)	3.2	2.7
Salt	0.20/0.35	0.21 / 0.35
Cultivar	Integra	Integra
Planting Date	7 May	28 April

2004

Incremental increases in N level without inoculation and without additional P reduced nodulation and tended to delay maturity (Table 2). With the exception of the 150 lb N treatment, increasing N fertilizer numerically increased yield. Grain protein also increased with additional N. Seed inoculation at planting tended to increase yield at all three of the lowest N levels on a field with a history of field pea production (Tables 2 and 3). Although more data is needed to draw firm conclusions, these results suggest that there may be a benefit to applying starter fertilizer (bringing the soil N up to 50 lbs N / acre). The effects of added P fertilizer on yield were inconsistent (Table 2), but the soil test for P was in the "very high" range and a yield response would be surprising.

Table 2. Field	oea respon	se to soil n	itrogen	level, NDSU C	arringto	n, 2004.				
	Visual	Beginning	End	Physiological				Test	Seed	Seed
Treatment	Nodulation	Bloom	Bloom	Maturity	Lodging	Yield	Yield	Weight	Weight	Protein
(lbs total N/ac)	(1-9) ¹	(DAP) ²	(DAP)	(DAP)	$(1-9)^3$	(lbs/ac)	(bu/ac)	(lbs/bu)	(g/250)	(%)
15 lbs N	3.8	56.0	77.5	88.5	2.8	2831	47.2	64.6	69.9	18.4
15 N + Inoc	4.8	56.0	78.8	90.5	2.5	3265	54.4	64.9	70.4	18.6
50 N	5.5	56.3	78.0	91.3	2.3	3052	50.9	63.7	69.2	18.3
50 N + Inoc	4.3	56.3	79.3	91.3	2.0	3378	56.3	64.6	70.7	18.5
75 N	5.5	56.3	78.3	89.8	2.0	3113	51.9	64.8	70.5	18.8
75 N + Inoc	5.5	56.3	79.5	92.0	2.3	3221	53.7	64.2	73.3	19.1
100 N	6.0	56.0	79.3	91.5	2.3	3334	55.6	64.1	69.4	19.4
100 N + 15 P	6.8	56.3	79.0	91.0	1.8	3099	51.7	63.9	71.6	19.9
100 N + 30 P	6.3	56.3	79.5	91.3	1.8	3581	59.7	64.3	73.2	19.4
125 N	7.0	56.8	78.8	90.3	2.5	3393	56.6	64.1	70.0	20.0
150 N	7.0	56.8	79.5	91.5	2.8	3128	52.1	64.1	71.2	21.1
200 N	8.0	56.5	80.0	91.8	3.0	3525	58.7	64.1	70.3	21.6
Mean	5.9	56.3	78.9	90.9	2.3	3236	53.9	64.3	70.8	19.4
C.V. (%)	22.5	0.6	0.7	1.6	24.4	11.2	11.2	8.0	3.0	3.7
LSD (0.05)	1.9	0.5	8.0	NS	NS	NS	NS	NS	NS	1.1
LSD (0.01)	2.6	NS	1.0	NS	NS	NS	NS	NS	NS	1.4
¹ 1 - profuse 0	¹ 1 = profuse, 9 = none									
r = profuse, 9	= HOHE		Days a	nei pianting		1 = 6160	$\mu_{i}, \theta = \mu_{i}$	usirale		

2004.	<u> </u>									
		Beginning	End	Physiological				Test	Seed	Seed
Treatment	Nodulation	Bloom	Bloom	Maturity	Lodging	Yield	Yield	Weight	Weight	Protei
	(1-9) ¹	(DAP) ²	(DAP)	(DAP)	$(1-9)^3$	(lbs/ac)	(bu/ac)	(lbs/bu)	(g/250)	(%)
N Level (II	os total N/a	icre)	,	,	, ,	,	, ,	,	,,	
15	4.3	56.0	78.1	89.5	2.6	3048	50.8	64.7	70.1	18.5
50	4.9	56.3	78.6	91.3	2.1	3215	53.6	64.1	70.0	18.4
75	5.5	56.3	78.9	90.9	2.1	3167	52.8	64.5	71.9	19.0
LSD (0.05)	NS	NS	0.6	1.4	NS	NS	NS	NS	NS	NS
LSD (0.01)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Inoculatio	n									
- Inoculant	4.9	56.2	77.9	89.8	2.3	2999	50.0	64.4	69.9	18.5
+ Inoculant	4.8	56.2	79.2	91.3	2.3	3288	54.8	64.5	71.5	18.7
t-test (5%)	NS	NS	**	*	NS	NS	NS	NS	*	NS
1 = profuse,	9 = none		² Days af	ter planting		³ 1 = ere	ct, 9 = pr	ostrate		

2005

A statistically significant response to sulfur was observed for days to end bloom, days to physiological maturity, and plant height, but the differences were so small as to be inconsequential (Tables 4 and 5). All levels of N fertilizer reduced nodulation and lodging compared to the unfertilized, uninoculated check. When no N fertilizer was applied, the addition of sulfur improved nodulation without inoculation

and also improved the response to inoculation (Table 6). Seed treatment with QuikRoots significantly improved nodulation with no S fertilizer, but had no effect when S was applied. Although no other root data was collected, this may indicate that QuikRoots stimulated S absorption by increasing root mass or activity. Yield tended to increase as N rate increased, but no N fertilizer treatment yields were statistically (P<0.05) superior to the inoculated, unfertilized check (Tables 4 and 5). Grain protein also tended to increase with total N levels of 100 lbs / acre and greater.

Table 4. Au Carrington	•	f variance	in the ev	aluation of fiel	ld pea respo	nse to fe	ertilizer aı	nd seed	treatmer	nts, NDSI	J
Source of		Beginning	End	Physiological	Visual	Plant			Test	Seed	Grain
Variation	Stand	Bloom	Bloom	Maturity	Nodulation	Height	Lodging	Yield	Weight	Weight	Protein
Rep	0.3517	0.5000	<0.0001	0.0335	0.0903	0.0903	0.9723	0.5518	0.4531	0.3031	0.1414
S	0.1891	0.5000	< 0.0001	0.0374	0.2952	0.0424	0.2697	0.8067	0.1516	0.4678	0.0432
Rep x S	0.4446	0.3282	1.0000	0.8809	0.5443	0.9748	<0.0001	0.3787	0.2657	0.0111	0.9331
N	0.9698	0.2370	0.4581	0.2516	<0.0001	0.5485	0.0008	0.0223	0.7278	0.2833	0.0337
NxS	0.8342	0.0872	0.4581	0.5351	0.0355	0.3022	0.0596	0.2998	0.6521	0.0147	0.6680

Table 5. Field p	ea response t	to fertilizer a	and seed	treatments, N	DSU Carring	gton, 200)5.				
		Beginning	End	Physiological	Visual	Plant			Test	Seed	Grain
Treatment	Stand	Bloom	Bloom	Maturity	Nodulation	Height	Lodging	Yield	Weight	Weight	Protein
	(plants/acre)	(DAP) ¹	(DAP)	(DAP)	$(1-9)^2$	(cm)	$(1-9)^3$	(bu/ac)	(lb/bu)	(g/250)	(%)
Sulfur (lbs/acre)											
0	253,000	57.8	70.4	86.1	7.3	74.1	4.0	48.5	63.0	61.1	23.7
10	276,000	57.6	70.0	85.4	7.0	73.5	6.1	48.1	62.3	59.5	24.1
t-test	NS	NS	**	*	NS	*	NS	NS	NS	NS	*
Total N (lbs/acre	e) / Seed Treat	ment									
20	267,000	57.3	69.5	85.3	5.8	71.8	6.5	39.0	62.3	60.9	23.6
20+Inoculant	244,000	57.3	70.3	85.3	5.0	69.8	5.8	47.8	62.7	59.7	23.7
20+QuikRoots	280,000	57.5	70.0	85.0	4.5	72.8	5.8	48.5	62.5	59.7	23.3
50	256,000	57.5	70.3	86.0	5.8	77.3	4.8	48.5	62.8	61.4	22.7
50+Inoculant	262,000	57.5	70.3	85.5	7.0	74.5	4.8	47.0	62.9	60.4	22.5
75	270,000	57.8	70.3	86.5	8.5	75.8	4.8	44.4	63.0	60.9	23.5
75+Inoculant	265,000	57.8	70.3	85.5	8.0	74.3	5.0	47.2	62.5	61.0	23.6
100	266,000	57.5	70.0	85.8	8.0	71.5	4.8	48.2	62.4	57.5	24.0
100+P	269,000	57.8	70.3	85.3	8.3	73.3	4.8	53.5	62.6	59.7	24.6
125	257,000	57.8	70.5	86.5	8.3	73.8	4.3	50.8	62.9	61.7	24.2
150	268,000	58.0	70.5	86.3	8.5	75.0	4.5	54.8	62.7	60.1	25.1
200	269,000	58.5	70.5	86.5	8.5	76.3	4.8	50.4	62.9	60.5	25.8
LSD (0.05)	NS	NS	NS	NS	4	NS	0.9	7.3		NS	1.8
LSD (0.01)	NS	NS	NS	NS		NS	1.2	NS		NS	NS
Overall Mean	265,000	57.7	70.2	85.8	7.2	73.8	5.0	48.3	62.7	60.3	23.9
C.V. (%)	12.0	1.0	0.8	1.1	13.1	6.1	11.6	10.3	0.9	3.2	5.0
¹ Days after plant	ting	² 1 = profuse	e, 9 = nor	ne	³ 1 = erect, 9	= prostra	ate	⁴ denotes	significan	N x S inte	eraction
* and ** denote s											
and denote s	signilicant dine	rences betw	een S ne	aiments at P<0	.05 and P<0	.or, resp	ectively				

Table 6. Statistically NDSU Carrington, 20		in the field pea response	to fertilizer and seed tre	eatments trial,			
ND30 Carrington, 20	, , , , , , , , , , , , , , , , , , , 						
	Visual No	odulation	Test Weight				
N Treatment	0 lbs S/acre	10 lbs S/acre	0 lbs S/acre	10 lbs S/acre			
20N	6.5	5.0	62.4	62.1			
50N	6.0	5.5	63.3	62.3			
75N	8.5	8.5	63.4	62.7			
100N	8.0	8.0	63.2	61.5			
125N	8.0	8.5	63.0	62.7			
150N	8.0	9.0	63.4	62.1			
200N	8.5	8.5	63.2	62.5			
20N+QRoots	3.5	5.5	62.9	62.0			
20N+Inoc	7.0	3.0	63.0	62.3			
50N+Inoc	7.5	6.5	62.9	62.8			
75N+Inoc	8.0	8.0	63.0	62.0			
100N+P	8.5	8.0	62.7	62.6			
LSD (0.05)	2.	.0	1.3	2			

2-year Combined Analysis

A combined analysis was performed on the parameters measured in both years of the project. All parameters except yield varied significantly with year (Tables 7 and 8). Increasing the N fertilizer rate increased the days to beginning bloom, end bloom, and physiological maturity, but the differences were not great. Lodging was reduced by N fertilization, possibly due to increased stem strength. Across years, nodulation was reduced with increasing levels of N, but inoculation had no effect on fields with a previous history of field pea production. All treatments with N fertilizer and / or inoculation increased yield over the unfertilized / uninoculated check. However, the data indicate no yield advantage of high N fertilization over only inoculation. On the other hand, although not statistically significant (P<0.05), all N rates above 100 lbs / acre resulted in numerically higher yields (2.6-3.5 bushels / acre) than with only inoculation. This may or may not be a real difference and the lack of statistical significance suggests that it is not. If it is, the attractiveness of this potential yield increase will obviously depend upon the value of the grain, the price of N, and application costs.

Table 7. Analy Carrington, 20		ince in the	evaluation of	field pea re	sponse to	N fertilizer	and inocula	ation, NDSU	l
Source of	Beginning	End	Physiological	Visual			Test	Seed	Grain
Variation	Bloom	Bloom	Maturity	Nodulation	Lodging	Yield	Weight	Weight	Protein
Rep	0.0235	0.3402	0.3806	0.3144	0.2754	0.4835	0.5933	0.7994	0.0367
Year	<0.0001	<0.0001	0.0127	0.0106	0.0196	0.3306	0.0110	0.0070	0.0014
Rep x Year	0.8076	0.2289	0.1812	0.3226	< 0.0001	<0.0001	0.0006	0.0001	0.6821
N	0.0055	<0.0001	0.0442	<0.0001	0.0003	0.0060	0.1421	0.3304	<0.0001
N x Year	0.7932	0.0092	0.1290	0.1432	0.0078	0.5634	0.1842	0.6415	0.6732

Table 8. Combin	ed 2-year fi	eld pea res	sponse to N fer	tilizer and in	oculation,	NDSU Carr	ington, 2004	1-2005.	
	Beginning	End	Physiological	Visual			Test	Seed	Grain
Treatment	Bloom	Bloom	Maturity	Nodulation	Lodging	Yield	Weight	Weight	Protein
	(DAP) ¹	(DAP)	(DAP)	$(1-9)^2$	(1-9) ³	(bu/ac)	(lb/bu)	(g/250)	(%)
Year									, ,
2004	53.3	75.9	87.8	5.7	2.4	53.7	64.3	70.5	22.3
2005	57.7	70.2	85.9	7.3	5.0	47.8	62.7	60.4	23.9
t-test	**	**	*	*	*	NS	*	**	**
Total N (lbs/acre)									
15/20	55.1	72.0	85.4	4.8	4.6	43.1	63.4	65.4	22.4
15/20+Inoculant	55.1	73.0	86.4	4.9	4.1	51.1	63.8	65.1	22.5
50	55.4	72.6	87.1	5.6	3.5	49.7	63.2	65.3	21.9
50+Inoculant	55.4	73.3	86.9	5.6	3.4	51.6	63.7	65.6	21.9
75	55.5	72.8	86.6	7.0	3.4	48.2	63.9	65.7	22.6
75+Inoculant	55.5	73.4	87.3	6.8	3.6	50.4	63.3	67.2	22.8
100	55.3	73.1	87.1	7.0	3.5	51.9	63.2	63.5	23.2
125	55.8	73.1	86.9	7.6	3.4	53.7	63.5	65.8	23.6
150	55.9	73.5	87.4	7.8	3.6	53.5	63.4	65.6	24.7
200	56.0	73.8	87.6	8.3	3.9	54.6	63.5	65.4	25.3
LSD (0.05)	0.5	0.6	1.3	1.2	0.6	5.5	NS	NS	0.9
LSD (0.01)	0.7	0.8	NS	1.6	0.8	7.3	NS	NS	1.2
Overall Mean	55.5	73.1	86.9	6.5	3.7	50.8	63.5	65.5	23.1
C.V. (%)	0.9	0.7	1.4	17.6	15.0	10.7	0.8	3.6	3.7
¹ Days after planti	$^{2}1 = profuse$	e, 9 = none		³ 1 = erect, 9 :	= prostrate	⁴ denotes si	gnificant N x	S interactio	n
* and ** denote si									

Significant interactions were observed between year and N treatment for days to end bloom and lodging (Table 9). This statistical significance indicates that the response of these parameters to N was different (either in magnitude or in direction) in the two years. In the cool growing season of 2004, days to end bloom increased by 2.5 days from the lowest to the highest N level, while the difference was only one day in 2005. Lodging in 2005 was reduced with all applications of N fertilizer, but that was not the case in 2004.

Table 9. Statistically si	gnificant interactio	ns in the fi	eld pea respons	se to N fertilizer and	l inoculation	, NDSU
Carrington, 2004-2005.						<u></u>
	Days	to End Bloo	m			
Total N (lbs/acre)	2004		2005	2004		2005
15/20	74.5		69.5	2.8		6.5
15/20 + Inoculant	75.8		70.3	2.5		5.8
50	75.0		70.3	2.3		4.8
50 + Inoculant	76.3		70.3	2.0		4.8
75	75.3		70.3	2.0		4.8
75 + Inoculant	76.5		70.3	2.3		5.0
100	76.3		70.0	2.3		4.8
125	75.8		70.5	2.5		4.3
150	76.5		70.5	2.8		4.5
200	77.0		70.5	3.0		4.8
LSD (0.05)		0.8			0.8	
LSD (0.01)		1.1			1.1	