ABSTRACT

ormant (frost) seeding is the practice of planting a crop in the fall, close enough to freeze-up to prevent germination before winter. The principle advantage to this practice is time management, reducing planting time in spring and spreading out the spraying and harvesting operations in summer. However, dormant seeding involves considerable risk of premature germination and poor stand establishment. Planting immediately before fall freeze-up is ideal, but difficult to predict, and large acreages reduce flexibility. Also, periods of warm weather in winter may result in germination. Polymer seed coatings have been developed to reduce the risk of premature germination and permit planting up to three weeks before freeze-up. Field experiments were conducted at North Dakota State University research extension centers and research sites to evaluate the effects of polymer coating and planting date on performance of canola (Brassica napus L.). Although dormant seeding resulted in advancing harvest-year field operations up to 2.5 weeks, reduced stands and significant yield reductions compared to spring seeding were observed in almost all siteyears.

Spring planted canola in bloom.

INTRODUCTION

Anola (Brassica napus L.) production in North Dakota has expanded tremendously in recent years. From 1990 to 12002, statewide acreage increased from 8,005 to 1,291,804 acres (North Dakota Farm Service Agency, 1990 and 2002). As disease problems with scab in small grains and sclerotinia in broadleaf crops (especially sunflower and dry bean) continue to plague growers, the outlook for canola remains bright.

Previous NDSU research has shown the importance of early planting to maximize canola yield (Berglund and McKay, 1998). However, timely planting of cool-season crops, like canola, is often complicated by late spring warmups, wet springs, time-consuming spring tillage operations, planting other cool-season crops, and large acreages. Fall (dormant) seeding of canola insures that the crop is in the ground in early spring and spreads out the spring workload. Due to earlier emergence, the crop may avoid some insect and disease pests, flowering and podfilling periods may coincide with more favorable moisture and temperature regimes, the crop matures earlier, spreading out the harvest workload, and market prices at harvest may be higher (Endres and Berglund, 1999). Weed control can be accomplished by planting herbicide-tolerant cultivars. However, fall germination must be avoided or severe stand failures will occur. One method to avoid fall germination is seeding immediately before soil freeze-up, but timing is critical and often difficult to achieve. Polymer seed coatings (e.g. 'Extender,' from Grow Tech, Inc., Alberta, Canada) may protect the seed from fall germination and allow more flexibility (up to 21 days before freeze-up) in timing the seeding operation.

Research in Saskatchewan has shown that, compared to spring planting, dormant seeding of canola advanced flowering date up to 35 days, swathing date up to 21 days, and combining date up to 25 days (Kirkland and Johnson, 1998). Early-emerging canola exhibited good frost tolerance (down to - 9°C), but wide temperature fluctuations result in higher susceptibility to frost. Data from Manitoba also indicate that early planting results in plants with increased cold-hardiness, resisting temperatures down to -5-6 °C (D. Berglund, personal communication).

Stand establishment from fall planting is frequently poore than from spring planting and a 10-15% increase in seeding rate is recommended for dormant seeding (Endres and Berglund, 1999). Stands in Saskatchewan were better in stubble than in tilled fallow in 1996 and 1997 (Kirkland and Johnson, 1998). The risk of premature germination is higher in tilled fields than in stubble, due to increased temperature fluctuations. In addition to moderating temperature fluctuations from crop residue coverage and increased snow catch, stubble also reduces the potential for crusting and sandblasting of seedlings. From 1996 to 1998, yields from fall planting into stubble and into tilled soil averaged 58% and 16% higher, respectively, than May planting. The relatively lower yield with tillage was attributed to reduced stands. Averaged across tillage treatments, dormant seeding resulted in a 25% yield increase over May planting. Over six

experiments, fall planting also resulted in a more than 1% increase in oil content, due to cooler temperatures during the reproductive phase. Also, fall planting consistently resulted in shorter plants and less susceptibility to lodging.

Previous research at the NDSU North Central Research Extension Center in Minot showed yields of Crusher and Hyola 401 planted in fall to be lower, but statistically similar, to those from spring planting (M. Zarnstorff, unpublished data). However, dormant seeding at the NDSU North Central, Carrington, and Langdon Research Extension Centers in the fall of 1998 all resulted in unacceptable stands in the spring of 1999.

OBJECTIVES

The general objective of this project is to determine the viability of fall (dormant) seeding of canola in North **D**akota. Specific objectives include evaluation of the importance of the following factors in dormant seeding:

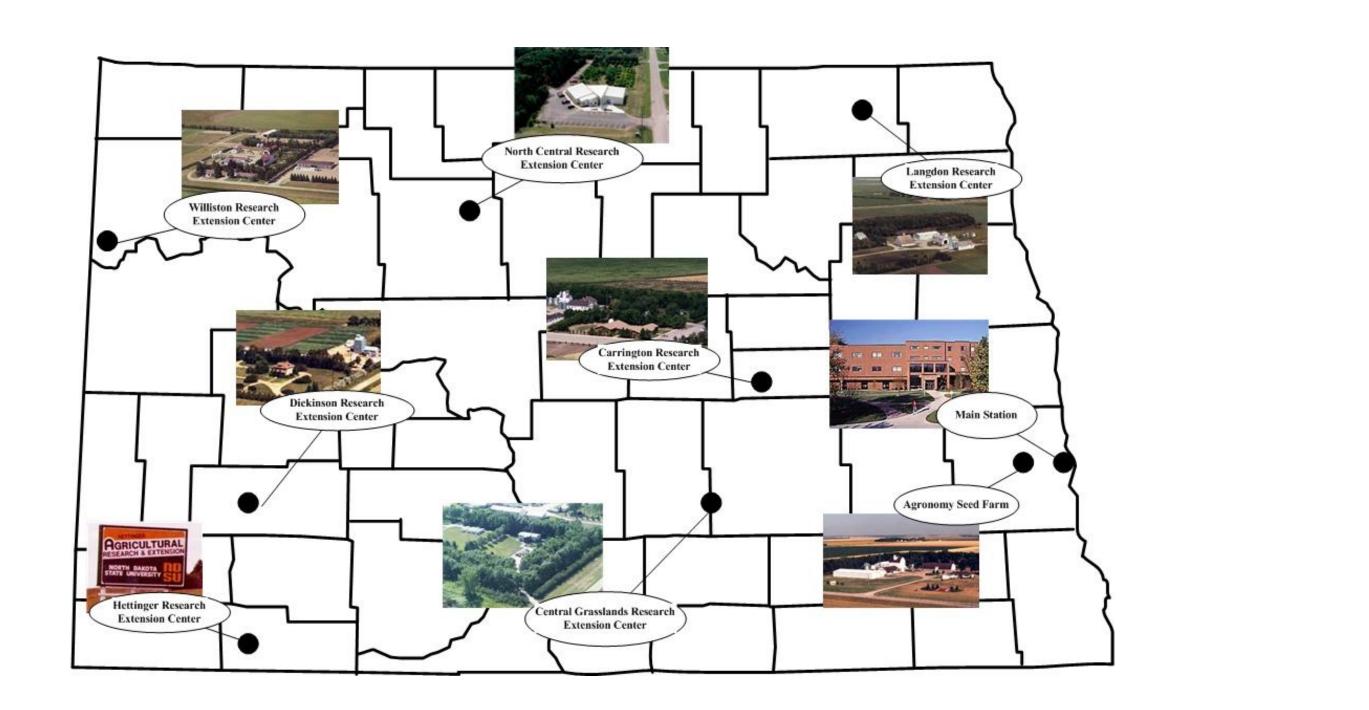
- Commercial polymer seed coating to reduce
- premature germination,
- Seed size (hybrid vs. open-pollinated), + Planting date (relative to fall freeze-up),
- + Seeding rate,
- Residue coverage (tillage effects), and
- **+** Geographic area within the state.

MATERIALS & METHODS

This research was conducted in the periods 1999-2000 and 2001-2002 at the North Dakota State University (NDSU) Carrington, Langdon, North Central (Minot) Williston, Dickinson, and Hettinger Research Extension Centers and the NDSU field site at Prosper. Plot size at the different sites varied around 1.5 m wide by 7.0 m long. Row spacing was 0.15-0.18 m. Fall-planting with polymer seed coating ('Extender' from Grow-Tec, Inc., Alberta, Canada) was compared to uncoated seed planted in fall and in spring. The effect of seed size was studied by comparing an open-pollinated cultivar ('Minot') to a hybrid ('Hyola 357'). Glyphosate-tolerant cultivars were planted to facilitate weed control. Fall planting dates included shortly before the date of normal freeze-up and 2-3 weeks earlier. The performance of a spring planting of each cultivar was compared to the fall plantings. A standard seeding rate of 1,482,000 live seeds ha⁻¹ was compared to 1,976,000 and, at some sites, 2,470,000.

Canola Dormant Seeding in North Dakota R. A. Henson, B. K. Hanson, B. L. Johnson, K. R. McKay, N. R. Ríveland, E. D. Eriksmoen, and P. M. Carr North Dakota State University

RESULTS & DISCUSSION


Talant Stand. Independent of cultivar, seed treatment, and seeding rate, spring planting resulted in higher plant stands Than fall seeding in all instances (Table 1). Increasing the fall seeding rate by 33% resulted in improved spring stands in three out of 15 cultivar x site-year combinations, but stands were still inferior to spring seeding. Stand was not

appreciably affected by s Carrington, but the effect				•		/		·			–			Table 3. Seed yield (kg ha ⁻¹) of d	lormant- v	vs. spring-seeded o	canola, N	orth Dal	kota Sta	ate Univ	ersity, 19	99-2000 :	and 2001	-02.		
under both tillage system freeze-up was more effec	is in Lan	gdon in 2000 n planting Ex	(L /'0) tender-	0), but treated	t in no d seed	other s 2-3 we	site-yea eeks ea	ars. De rlier (d	laying	fall pla	nting ur	ntil close	e to	Cultivar / Seed Treatment	Planted	Seeding Rate	C /'00	C /'00	C /'02		¹ / Year L /'00	L /'02	D /'00	W /'00	Mean	Mean
seeded in the fall of 1999	e resulted	l in stands so	low th	at the	trial w	vas aba	ndonec	1.								(live seeds ha ⁻¹)	(tilled)	(no-till)	(tilled)	(tilled)	(no-till)	(no-till)	(no-till)	(no-till)	(6 sites)	(8 sites)
														Minot / Fungicide	Fall	1,482,000	914	1498		1666	2030		1050	754	1319	
Table 1. Plant stand (plants m ⁻²		-4	dad aan	ala ND(CTT 1000		J 2001	n1						Minot / Fungicide+Extender	Fall	1,482,000	871	1357		3081	2378		1253	908	1641	
Table 1. Plant stand (plants m) 01 dorma	nt- vs. spring-see	eded can	ola, NDS	50, 1995	9-2000 al	$\frac{10\ 2001}{\text{Site}^1}$							Minot / Fungicide	Fall	1,976,000	867	1336		2381	2759		954	1006	1550	
Cultivar / Seed Treatment	Planting	Seeding Rate	C /'00	C /'00	C /'02	L /'00		L /'02	H /'00	Н /'02	W /'00	Mean	Mean	Minot / Fungicide	Spring	1,482,000	1314	1147		3090	3024		1692	992	1876	
Cultival / Seed Treatment	Thanting	(live seeds ha^{-1})							(no-till)	(no-till)	(no-till)	(6 sites)		Hyola357 / Fungicide	Fall	1,482,000	1281	1458	408	2308	2354	1799	1457	1140	1666	1526
Minot / Fungicide	Fall	1,482,000	27	43		6	11		2		11	(0 51(05))		Hyola357 / Fungicide+Extender	Fall	1,482,000	976	1236	574	2660	2617	1483	1336	1107	1655	1499
Minot / Fungicide+Extender	Fall	1,482,001	23	42		39	23		2		13	24		Hyola357 / Fungicide	Fall	1,976,000	986	1372	731	2988	3054	1737	1517	1116	1839	1688
Minot / Fungicide	Fall	1,976,000	22	38		47	37		2		20	28		Hyola357+Fungicide	Spring	1,482,000	1478	1390	750	3547	3786	2157	2274	1588	2344	2121
Minot / Fungicide	Spring	1,482,000	112	160		84	100		62		94	102		Mean ²			1085	1302	584	2565	2380	1534	1442	1064	1640	1495
Hyola357 / Fungicide	Fall	1,482,001	50	55	25	22	13	16	1	55	24	27	29	C.V. (%)			30.1	18.4	46.8	10.6	14.1	18.0		20.2		
Hyola357 / Fungicide+Extender	Fall	1,482,001	32	29	29	22	25	15	3	51	16	21	25	LSD (0.05)			474	NS	387	390	482	395		310		
Hyola357 / Fungicide	Fall	1,976,000	43	65	53	29	25	22	3	41	16	30	33	LSD (0.01)			NS	NS	515	522	647	530		418		
Hyola357 / Fungicide	Spring	1,482,001	115	124	69	93	99	147	58	109	88	96	100	^{1}C = Carrington, L = Langdon, D	= Dickinsc	on, $W = Williston$			² Includ	les treatm	nents not s	hown				
Mean ²			53	71	29	39	37	20	16	65	31	41	40													
C.V. (%)			36.7	24.8	35.3	20.2	25.1	36.4	35.6	30.7	43.1															
LDS (0.05)			28	26	23	11	13	11	9	29	19										via.					
LSD (0.01)			38	34	31	15	18	15	12	39	26			2	and the second	Marine and	Ĩ	1		S. M.		A.				
^{1}C = Carrington, L = Langdon, H	= Hettinger	r, W = Williston			² Includ	es treatm	ents not s	shown								A STATISTICS OF ALL			-		1.	(Internet	- Albert			

Normal Example 1 rowth and Development. Compared to spring planting, dormant seeding in Carrington resulted in earlier Temergence, beginning bloom, end bloom, and harvest in 2000. Dormant-seeded plants reached physiological The maturity up to 17 days before those that were spring-seeded (Table 2).

In Langdon in 2000, fall-seeded plants reached maturity only a few days before those planted in early May. At both sites in 2002, fall seeding tended to delay physiological maturity compared to spring seeding. This was probably due to late frosts, which killed the first dormant-seeded plants to emerge. In Carrington, Langdon, and Williston, spring seeding tended to produce taller plants, but less lodging, than fall seeding (data not shown).

ng Seeding Rate (live seeds ha ⁻¹) 1,482,000 1,482,000 1,976,000 1,482,000 1,482,000	C/'00 (tilled) 200 201 204 215 198	C/'00 (no-till) 199 199 202 214	C/'02 (tilled) 	L/'00 (tilled) 222 217 218 224	220 219 219	L/'02 (no-till) 	Mean (4 sites) 210 209 210	Mean (6 sites
1,482,000 1,482,000 1,976,000 1,482,000	200 201 204 215	199 199 202 214		222 217 218	220 219 219		210 209	
1,482,000 1,976,000 1,482,000	201 204 215	199 202 214		217 218	219 219		209	
1,976,000 g 1,482,000	204 215	202 214		218	219			
g 1,482,000	215	214					210	
				224	224			
1,482,000	108				224		219	
	190	198	212	220	222	229	209	213
1,482,000	200	200	216	220	220	228	210	214
1,976,000	201	196	218	219	219	228	209	213
g 1,482,000	214	213	214	222	222	214	218	216
	205	203	211	223	224	228	214	216
	1.5	1.2	3.1	1.5	1.0	1.5		
	4	4	4	2	1	5		
	6	5	5	2	1	7		
	1,976,000 g 1,482,000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

Vield. Within seed treatments and planting times, Hyola 357 outyielded Minot at all sites (Table 3). With the exception of Carrington no-till in 2000, spring seeding generally resulted in significantly higher yields than dormant seeding. The use of Extender seed coating improved yield in only one instance (Langdon tilled plots in 2000), due to a dramatic improvement in plant stand (Table 1). In Langdon, yields of both cultivars planted on 22 November 1999 were similar to the spring planting (data not shown). Planting on 25 October generally resulted in lower yields than spring planting, although the use of Extender or increasing the seeding rate tended to reduce this difference (Table 3).

Dormant (mature) and spring seeded (green) canola.

SUMMARY

- + In general, fall-seeded canola produced significantly poorer stands and lower yields than spring-seeded. The data suggest that the minimum plant stand to equal spring planting varies with tillage, site, and year;
- Seed coating with Extender or increasing the seeding rate generally had a minimal effect on stand and yield, but the effects were inconsistent. Further improvements in seed coating technology and residue management which lead to improved stands should increase yields and the viability of dormant seeding;
- ✤ No-till generally provided a more favorable environment for dormant seeding due to the buffering effect on soil moisture and temperature. The residue improves soil surface characteristics, snow catch, and protects seedlings from wind. This result is especially meaningful for the typically drier western part of North Dakota where no-till is a common practice. Traditional crops in this region are normally harvested by early fall and farmers have more time available for seeding in the late fall;
- As a time management tool, dormant seeding effectively distributes labor and equipment demands at planting, however it did not significantly advance crop development and subsequent field operations in all site-years;
- + Dormant seeding involves considerable risk. Inadequate stands and reduced yields were common in these research plots. Growers interested in this practice need to be aware of the risks and avoid over-committing resources.

ACKNOWLEDGMENTS

The authors wish to thank the North Dakota State Board of Agricultural Research and Education, the Northern Canola Growers Association, and the North Dakota State University Agricultural Experiment Station for the funding to conduct this research. We are also grateful to Grow-Tec, Inc., for supplying the seed and seed coatings, and to Jane Forde, Todd Ingebretson, Laverne Scheen, and Caroline Wolf for capable technical assistance.

Canola plants during initial stage of flowering.

LITERATURE CITED

erglund, D.R., and K. McKay. 1998. Canola production. North Dakota Agricultural Extension Service Bulletin A 686 (revised).

- Endres, G., and D. Berglund. 1999. Fall dormant-seeding canola strategies. Canola Production Meeting: 1999 Season Review and Fall Dormant-seeding Strategies. NDSU Carrington Research Extension Center, 29 September.
- Kirkland, K.J., and E.N. Johnson. 1998. Summary of late fall and early spring seeding of herbicide tolerant canola 1994-98. Agriculture and Agri-Food Canada, Scott, Sk.
- North Dakota State Farm Service Agency. 1990. 1990 Reported Acreage.
- North Dakota State Farm Service Agency. 2002. North Dakota 2002 Reported Acreage, 23 September.

Canola seed.