Broadleaf Weed Control in Onion

Paul E. Hendrickson, Harlene Hatterman-Valenti and Richard Greenland, Research Specialist, North Dakota State University, Carrington Research Extension Center, Carrington, ND 58421; Assistant Professor, North Dakota State University, Fargo, ND 58105; and Associate Agronomist, North Dakota State University, Oakes Irrigation Research Site, Oakes, ND 58474.

INTRODUCTION

Onion production is relatively new in North Dakota. Slow onion growth along with a lack of herbicide options prior to the 2-leaf stage makes broadleaf weed control difficult

MATERIALS AND METHODS

widespread harvesting by unidentified individuals.

Herbicide combinations were tested in onion for crop tolerance and broadleaf weed control at three locations in North Dakota. Trials were conducted on a loam soil with 3.1% organic matter and 7.9 pH at the Carrington Research Extension Center, a clay loam soil with 3.5% organic matter and 7.5 pH at a site near Prosper, and on a sandy loam soil with 2% organic matter and 7.5 pH at the Oakes Irrigation Site. Onion seed 'Teton' was planted at Carrington on April 28, 2001, Prosper on May 17, 2001, and Oakes on May 1, 2001 into 3-inch paired rows on 16-inch centers at 200,000 seeds/A. Treatments were replicated four times in a randomized complete block design. Herbicides were applied with a CO²backpack sprayer. In Carrington, bromoxynil + oxyfluorfen was applied through

XR 8005 nozzles delivering 50 gpa at 58 psi. All other treatments were applied with XR 8003 nozzles delivering 20 gpa at 20 psi. At Prosper, preemergence (PRE) treatments were applied through XR 8002 nozzles delivering 17 gpa at 40 psi. Postemergence (POST) herbicide treatments were applied with XR 8001 nozzles delivering 8.5 gpa at 40 psi. In Oakes, all herbicide treatments were applied through AI 11004 nozzles delivering 45 gpa at 55 psi. Application dates and timings are listed in Table 1. Herbicide rates are listed in Table 2. Rates for DCPA, ethofumesate, and flufenacet + metribuzin were adjusted for soil type at each location. DCPA was applied at 7.5 lb ai/A at Carrington and Prosper and at 6 lb/A at Oakes. The 1X and 2X rate of ethofumate was 1.5 and 3 lb/A at Carrington, 2 and 4 lb/A at Prosper, and 1 and 2 lb/A at Oakes. The 1X and 2X rate of flufenacet + metribuzin was 0.34 + 0.08 and 0.68 + 0.16 lb/A at Carrington, 0.46 + 0.12 and 0.92 + 0.02

0.24 lb/A at Prosper, and 0.23 ± 0.06 and 0.46 ± 0.12 lb/A at Oakes. At Carrington, individual plots were harvested on

October 4, 2001. Further treatment separation using onion harvest data was unavailable at Prosper and Oakes due to

Pendimethalin at POST1 and POST4 and

Table 1. Application Data.												
	(Prosper	Oakes								
		Onion		Onion		Onion						
Application	Date	growth stage	Date	growth stage	Date	growth stage						
PPI	4/28											
PRE1	4/30		5/18		5/9							
PRE2	5/13		5/25		5/14							
POST1	5/24	flag-leaf	6/19	1-leaf	5/29	flag-leaf						
POST2	6/8	1.5-leaf	6/19	1-leaf	6/4	1-leaf						
POST3	6/21	3.5-leaf	7/2	2-leaf	6/12	2-leaf						
POST4	6/26	4.5-leaf	7/2	2-leaf	6/19	3-leaf						
POST5	7/5	5-leaf	7/24	5-leaf	6/29	4- to 5-leaf						

Flufenacet + metribuzin at PRE1 followed by bromoxynil + oxyfluorfen at POST3.

respectively.

At Carrington, onion yield for the untreated check was 112 cwt/A with no bulbs greater than three inches in size (Table 3). Onion yield for pendimethalin at POST1 and POST4 and bromoxynil + oxyfluorfen at POST3 and POST5, and bromoxynil applied PRE2 followed by pendimethalin at POST1 and POST4 and bromoxynil + oxyfluorfen at POST3 and POST5 was 758 and 794 cwt/A,

Bromoxynil applied delayed PRE, pendimethalin applied PRE or POST1, and pendimethalin, metolachlor, and dimethenamid applied POST4 appear to be safe options in a season-long onion weed control program. Bromoxynil applied delayed PRE followed by pendimethalin at POST1 and POST4 and bromoxynil + oxyfluorfen at POST3 and POST5 provided the highest yield at Carrington, and excellent season long weed control at all three locations.

				InjuryYield by grade and total yield													Carrington					
		Application	Carr	ington	Pros	sper	Oa	ikes		2.25		4 to		# of	Single			Application	SI	NAR ^b	CH	EAL
Treatment ^a	Rate	timing	6/1	7/11	6/14	7/5	6/4	7/4	<2.25	' to 3"	3 to 4"	4.5"	Total	Bulbs	centers	Treatment ^a	Rate	timing	6/1	7/11	6/1	7/11
DCPA/ bromoxynil + oxyfluorfen / pendimethalin /	lb ai/A X 0.375 + 0.15 0.619	PRE1 POST3 & 5 POST4	0	23	% 11	1	3	5	57	395	- cwt/A - 222	0	674	1000s/A 186	% 40	DCPA/ bromoxynil + oxyfluorfen / pendimethalin /	lb ai/A X 0.375 + 0.15 0.619	PRE1 POST3 & 5 POST4	0	95	0	95
Flumioxazin	0.765	PPI/PRE1	48	0	6	1	15	0	43	50	9	0	101	60	63	Flumioxazin	0.765	PPI/PRE1	24	38	24	33
Flumioxazin	1.53	PPI/PRE1	58	48	9	8	13	0	24	54	156	5	239	57	43	Flumioxazin	1.53	PPI/PRE1	66	70	74	78
Flumioxazin / bromoxynil + oxyfluorfen	0.765 0.375 + 0.15	PPI/PRE1 POST3	60	0	14	6	10	0	20	117	331	6	473	98	28	Flumioxazin / bromoxynil + oxyfluorfen	0.765 0.375 ± 0.15	PPI/PRE1 POST3	88	93	94	85
Ethofumesate	1X	PRE1	0	0	18	5	3	0	70	20	0	0	90	105	60	Ethofumesate	1X	PRE1	0	0	48	0
Ethofumesate	2X	PRE1	0	0	9	3	0	10	70	26	0	0	96	79	50	Ethofumesate	2X	PRE1	8	0	65	0
Ethofumesate / bromoxynil + oxyfluorfen	1X 0.375 + 0.15	PRE1 POST3	0	0	16	8	5	8	97	413	103	0	613	192	50	Ethofumesate /	1X 0 275 ± 0 15	PRE1	0	35	50	70
Flufenacet + metribuzin	1X	PRE1	94	77	11	11	5	8	44	67	57	0	168	56	58	Flufenacet + metribuzin	1X	PRE1	95	98	95	96
Flufenacet + metribuzin	2X	PRE1	98	85	24	23	28	3	8	14	44	0	66	16	60	Flufenacet + metribuzin	2X	PRE1	100	100	100	100
Flufenacet + metribuzin / bromoxynil + oxyfluorfen	1X 0.375 + 0.15	PRE1 POST3	94	53	18	19	0	13	6	53	371	13	443	71	25	Flufenacet + metribuzin / bromoxynil + oxyfluorfen	1X 0.375 + 0.15	PRE1 POST3	100	99	100	98
Bromoxynil/ pendimethalin / bromoxynil + oxyfluorfen	$0.25 \\ 0.619 \\ 0.375 + 0.15$	PRE2 POST1 & 4 POST3 & 5	0	20	10	4	8	5	33	446	315	0	794	191	53	Bromoxynil/ pendimethalin / bromoxynil + oxyfluorfen	0.25 0.619 0.375 + 0.15	PRE2 POST1 & 4 POST3 & 5	100	100	100	100
Pendimethalin / bromoxynil + oxyfluorfen	0.619 0.375 + 0.15	POST1 & 4 POST3 & 5	0	20	9	4	0	8	41	549	168	0	758	196	43	Pendimethalin / bromoxynil + oxyfluorfen	0.619 0.375 + 0.15	POST1 & 4 POST3 & 5	0	100	0	100
Pendimethalin/ bromoxynil + oxyfluorfen	0.619 0.375 + 0.15	PRE1 & POST4 POST3 & 5	0	20	6	1	0	10	85	425	118	0	628	191	40	Pendimethalin/ bromoxynil + oxyfluorfen	0.619 0.375 + 0.15	PRE1 & POST4 POST3 & 5	0	100	0	99
Pendimethalin/ bromoxynil + oxyfluorfen / metolachlor	$0.619 \\ 0.375 + 0.15 \\ 0.595$	POST1 POST3 & 5 POST4	0	20	8	4	3	10	50	466	235	0	751	188	48	Pendimethalin/ bromoxynil + oxyfluorfen / metolachlor	$0.619 \\ 0.375 + 0.15 \\ 0.595$	POST1 POST3 & 5 POST4	0	100	0	100
Pendimethalin/ bromoxynil + oxyfluorfen / dimethenamid	$0.619 \\ 0.375 + 0.15 \\ 0.469$	POST1 POST3 & 5 POST4	0	23	8	4	5	8	67	501	162	0	730	200	45	Pendimethalin/ bromoxynil + oxyfluorfen / dimethenamid	$0.619 \\ 0.375 + 0.15 \\ 0.469$	POST1 POST3 & 5 POST4	0	100	0	100
Pendimethalin/ bromoxynil + oxyfluorfen / sulfentrazone	$0.619 \\ 0.375 + 0.15 \\ 0.1875$	POST1 POST3 & 5 POST4	0	23	6	0	0	58	63	395	268	0	726	191	55	Pendimethalin/ bromoxynil + oxyfluorfen / sulfentrazone	$0.619 \\ 0.375 + 0.15 \\ 0.1875$	POST1 POST3 & 5 POST4	0	100	0	100
Untreated			0	0	0	0			64	48	0	0	112	79	65	Untreated			0	0	0	0
USD (0.05)			12	12	12	10	12	14	49	118	131	ns	159	38	ns	LSD (0.05)			20	10	22	10

RESULTS

At Carrington, flumioxazin applied PPI and flufenacet + metribuzin applied PRE caused significant early season (6/1) injury and a reduction in the number of harvested bulbs and vield (Table 2). While at Prosper and Oakes, injury from flumioxazin and flufenacet + metribuzin applied PRE was not as severe. Visual injury ratings for bromoxynil applied PRE2 and pendimethalin applied PRE1 or POST1 were <10% at all three locations. Pendimethalin, metolachlor, and dimethenamid applied POST4 did not injure the onion and provided residual late season weed control. Sulfentrazone applied POST4 also provided residual late season weed control but caused crop injury at Oakes (Tables 2 and 3). A POST2 application of 28% UAN at 20 gal/A did not increase broadleaf weed control (data not shown). Bromoxynil applied PRE2 followed by pendimethalin at POST1 and POST4 and bromoxynil + oxyfluorfen at POST3 and POST5 provided season long weed control at all three locations.

SUMMARY

Duran Oliv												
4.14	ADEd	CHE	Pros	per	DEd			akes				
6/1	7/11	6/14	8/2	6/14	8/2	6/4	7/4	AMARE* 6/4 7/4				
0/1	,, 11	- % C	ontrol		0/2	0/1	,, ,	0/1				
0	95	94	100	96	94	95	100	93	93			
24	45	93	65	95	73	88	65	100	83			
74	80	98	85	99	85	93	85	100	95			
85	96	90	85	96	100	85	93	98	93			
00	,0	,,,	00	10	100	00	,,,	20	,,,			
48	0	96	68	100	95	80	60	98	93			
65	0	86	36	85	53	90	68	98	90			
50	74	86	66	95	85	90	98	100	100			
96	100	88	45	91	60	85	68	100	85			
100	100	89	86	86	88	95	78	100	90			
100	98	91	88	96	100	85	80	95	88			
100	100	91	88	96	100	90	100	95	98			
0	100	06	05	00	100	80	00	00	05			
0	100	90	95	99	100	80	98	90	85			
0	100	85	90	91	100	100	100	83	88			
0	100	00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		100	100	100	05	00			
0	100	90	98	85	85	80	98	95	90			
0	100	85	98	90	86	78	95	100	90			
0	100	01	100	70	08	80	100	90	100			
0	100	71	100	1)	70	80	100	70	100			
0	0	0	0	0	0							
22	9	16	25	15	30	14	14	ns	10			
X rate of	of ethofi	imate w	vas 1.5	and 3 l	b/A at C	Carringto	n, 2 an	d 4 lb//	A at			
.08 and	0.68 +	0.16 lb	A at Ca	arringto	on, 0.46	+ 0.12 a	nd 0.92	2 + 0.24	1 lb/A			
ommo	n iamsq	uarters.	"AMA	KE=R	earoot p	ngweed.						