

ABSTRACT

- □ It is well documented that, (1) Adequate sulfur (S) is vital to maximize corn yield, (2) Yield response to S is more likely on sandy soils with low SOM
- □ Steinke et al. (2015) reported that, when N is adequate, corn yield may not increase significantly from S applied on fine texture soil if SOM \geq 2.8%, and soil S is \geq 8 ppm
- Low grain market prices raised farmers' interest in understanding the efficiency of their S and N fertilizer rates on yields
- □ In order to investigate the effect of S on yields and the agronomic efficiency (AE) of S and N, two main objectives were set

OBJECTIVES

- □ To assess the magnitude of yield impact of S on corn in loam soils with high SOM
- □ To verify if agronomic efficiency (AE) of N and S is improved by S fertilization

MATERIALS AND METHODS

□ Trial sites were Forman (2016, 2017) and Carrington (2017), North Dakota on loam soil

- □ Forman site treatments:
 - □ 2016 : N rates: 105, 210 lbs/ac. S rates: 0, 10, 20, 30, 40 lbs/ac at both N rates + a check of 0 lbs N with 0 lbs S
 - □ 2017: N rates: 0, 60, 120, 180, 240 lbs/ac S rates: 0, 10, 20 lbs/ac at all N rates
- □ Carrington (CREC) site treatments:
 - □ N rates: 0, 73, 128, 155 lbs (were 0, 50, 100, and 125% of recommended N rates, respectively) S Rates: 0, 10, 20 lbs/ac at all N rates
- Previous crop was soybeans
- □ Strip-till at Forman, conventional at CREC
- □ RCBD with 5 reps at Forman, and 4 reps at CREC
- Data was analyzed using the mixed model Means were compared using Tukey's method at 95% probability level
- Yield response curve was used to estimate N rate to maximize yield
- Statistical effects were analyzed at Forman in 2016 only under adequate N (210 lb N/ac)

Table 1. Pre-	plant s	soil	ana	lys	sis by	y site	and	yea	r	
Site	Depth	Ν	Ρ	S	Κ	Ca	Mg	Zn	рΗ	SON
	in				ppi	m				%
Forman 2016	0-6	5.5	13	14	156	5038	532	1	7.9	3.9
	6-24	3.5		50						
Forman 2017	0-6	3.0	16	10	292	5011	576	2	7.3	4.5
	6-24	1.5		5					8.0	
CREC 2017	0-6	4.0	9	16	236	2978	346	1	7.1	3.1
	6-24	6.0		8					8.0	0.5

(bu/ac) Yield

(bu/ac)

EFFECT OF SULFUR ON CORN YIELD AND AGRONOMIC NITROGEN USE EFFICIENCY

Jasper M Teboh, Szilvia Yuja, Blaine G Schatz, Kelly Cooper North Dakota State University – Carrington Research Extension Center Jasper.Teboh@ndsu.edu

RESULTS

120	ZIZa	0.00	1.19	3.0200	
180	217a	55.4	8.21	3.100ab	
240	222a	55.4	8.39	3.333a	
S (lb/a)					
0	196b	55.1	8.05	2.950	
10	208a	55.5	7.86	3.095	
20	208a	55.6	7.84	3.055	
Effects				Pr > F	
Ν	<.0001	0.1121	0.0063	<.0001	
S	0.003	0.0501	0.5484	0.1425	

□ Forman, 2017

- without S at all N rates (Fig 4)

- 10 lbs S.

- 40 lbs previous crop credit).
- At 120 lbs N, yield estimates from the

CONCLUSIONS

- yielding environments.
- does not statistically improve yields

REFERENCES

Steinke, K, J. Rutan, and L. Thurgood. Corn response to nitrogen and multiple sulfur rates. Agron. J. 107:1347-1354.

240

180

120

N rates (lbs/ac)

□ N * S interaction was not significant. S and N improved yields significantly (Table 2) □ S improved yields by 6% (12 bu/ac) □ Yields were greater with S application than □ AE of N was greatest at 10 lbs S (Fig 5) □ N rate estimated to maximize yield was 191 lbs N to produce 217 bu at 0 lbs S and 198 lbs N to produce 228 bu with 10 lbs S There was no maximum point at 20 lbs S \Box To maximize yield at N = 191 lbs (0 lb S) and 198 lbs (10 lbs S), AE for N was estimated at 0.32 at 0 lbs S, and 0.274 at

DISCUSSIONS

Large variability in response explained why S effects were statistically marginal in 2016

With adequate rainfall, yield potential and crop nutrient demand were high, which is probably why S effect was not significant for the under-fertilized crop at 105 lbs N/ac

In 2017, yields were maximized when S was applied at 120 lbs N (+15 lbs residual N and

Yields improved with increasing N rate. AE declined. AE of N at 10 lbs S was > at 0 lbs S until just past 120 lbs N, the most likely agronomic recommended for this study.

regression curves with 10 lbs S and without suggest 10 bu yield advantage at 10 lbs S

Corn yields can be significantly impacted by S even in high SOM soils (Table 1, 2). These results highlight the magnitude of influence S can have on yields of corn in high

Agronomic efficiency of N is likely improved with applied S only to a point where added N

ACKNOWLEDGEMENTS

COR

