## 

Mike Ostlie, Blaine G. Schatz, and Greg Endres

Many surrounding states have recently conducted research to update recommendations for corn plant populations using modern hybrids. Much of that research has come to the similar conclusion that recommendations haven't changed much from the 1980s-1990s. Yet with ever increasing input costs, including seed, managing to the optimum economic advantage needs to be considered rather than yield alone. Purdue University did a nice job of examining plant populations economically (https://www.agry.purdue.edu/ext/corn/news/timeless/CornPopulations.pdf). Using this as a template, a similar table can be generated for North Dakota with local data.

From 2012-2014 a plant population study was conducted at the Carrington Research Extension Center. Each year of the study was conducted under dryland management. The study was arranged as a splitplot randomized complete block design with four replicates. Hybrid maturity and plant population were the two factors being evaluated. The four relative maturities (RM) in the trial were 83, 85, 87, and 90 day. Hybrids were chosen based on the best performing hybrid within each maturity from the previous season hybrid trial. Each hybrid was tested from 20K to 44kK established plants per acre, with 4 K plant increments (seven populations total). Plots were hand thinned to ensure optimum spacing of plants.

For simplicity, the first comparison will be about yield alone. Table 1 shows the plant population that resulted in the maximum yield within each maturity group. Importantly, the trend is that with longer maturities, maximum yield is reached at a lower population than shorter maturities. In fact if population were plotted from maturities of 85-90, it would show that for each day increase in maturity, roughly 1000 less plants were needed to maximize yield. Table 2 is a complimentary dataset that emphasizes the effect of plant maturity on needed population. In this case, average yield is considered rather than maximum. It took only 19 K plants/ac to reach the average yield at RM 90 ( 16 K plants/ac less than max), while it took 31kK plants to reach average yields at RM 83 ( 5 K plants/ac less than max). This indicates strong diminishing returns of increases in plant density at longer maturities. Statistically, the maturities separated into two groups. The RM 83 and 85 hybrids performed similarly and will be herein termed short maturity while the RM 87 and 90 hybrids formed a second group herein called long maturity.

Table 1. The plant population that resulted in maximum yield for each maturity.

| RM |  |
| :---: | :---: |
| pop |  |
| 83 | 36000 |
| 85 | 39040 |
| 87 | 33650 |
| 90 | 35100 |
| average | 35640 |

Table 2. The plant population that resulted in an average yield for each maturity.

| RM | pop |
| :---: | :---: |
|  |  |
| 83 | 31000 |
| 85 | 33100 |
| 87 | 25200 |
| 90 | 19250 |
| average | 26450 |

Marginal return was calculated for short (Table 3) and long (Table 4) maturity hybrids. Each table describes the economically optimum plant population, based on the price of corn grain and the cost of seed corn. Generally, the short maturity hybrids required 2 to 4 K more plants/ac compared to the long maturity hybrids. As the seed cost goes down and the grain price goes up, we approach the plant population that provided the highest yield for both groups. However, in most 'typical' scenarios the optimum plant population is much lower and deviated by as much as 10 K plants per acre within the tables. The staple recommendation of 28 K established plants per acre appears to still be fairly accurate
with long maturity hybrids. For shorter maturing hybrids, those numbers may need to be adjusted up somewhat, depending on prices.

Table 3. The plant population that gives maximum economic return based on seed cost / unit ( 80,000 seeds) and grain price for corn varieties ranging from RM 83-RM 85. 95\% stand establishment is assumed.

| Cost of seed | Price/bushel of grain |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$ / unit | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
| 150 | 32,230 | 33,070 | 33,660 | 34,100 | 34,440 | 34,710 | 34,930 | 35,120 |
| 175 | 31,390 | 32,370 | 33,070 | 33,580 | 33,980 | 34,300 | 34,560 | 34,780 |
| 200 | 30,530 | 31,670 | 32,470 | 33,070 | 33,530 | 33,870 | 34,190 | 34,440 |
| 225 | 29,650 | 30,960 | 31,870 | 32,550 | 33,070 | 33,480 | 33,820 | 34,100 |
| 250 | 28,760 | 30,240 | 31,270 | 32,020 | 32,600 | 33,070 | 33,440 | 33,750 |
| 275 | 27,840 | 29,500 | 30,650 | 31,490 | 32,140 | 32,650 | 33,070 | 33,410 |
| 300 | 26,900 | 28,760 | 30,030 | 30,960 | 31,670 | 32,230 | 32,700 | 33,070 |
| 325 | 25,920 | 28,000 | 29,400 | 30,420 | 31,200 | 31,810 | 32,310 | 32,730 |

Table 4. The plant population that gives maximum economic return based on seed cost / unit ( 80,000 seeds) and grain price for corn varieties ranging from RM 87-RM 90. 95\% stand establishment is assumed.

| Cost of seed \$ / unit | Price/bushel of grain |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
| 150 | 29,490 | 30,320 | 30,910 | 31,340 | 31,680 | 31,950 | 32,170 | 32,360 |
| 175 | 28,640 | 29,630 | 30,320 | 30,830 | 31,230 | 31,550 | 31,800 | 32,020 |
| 200 | 27,810 | 28,940 | 29,730 | 30,320 | 30,780 | 31,140 | 31,430 | 31,680 |
| 225 | 26,950 | 28,230 | 29,140 | 29,800 | 30,320 | 30,730 | 31,060 | 31,340 |
| 250 | 26,070 | 27,520 | 28,530 | 29,280 | 29,860 | 30,320 | 30,690 | 31,000 |
| 275 | 25,170 | 26,800 | 27,930 | 28,760 | 29,400 | 29,910 | 30,320 | 30,660 |
| 300 | 24,250 | 26,070 | 27,320 | 28,230 | 28,940 | 29,490 | 29,940 | 30,320 |
| 325 | 23,300 | 25,320 | 26,700 | 27,700 | 28,470 | 29,080 | 29,570 | 29,980 |

