Basics of successful soybean management in western ND

Hans Kandel Extension Agronomist NDSU EXTENSION

A843-19

NDSU

EXTENSION

North Dakota Soybean

Variety Trial Results for 2019 and Selection Guide

Main Factors in Variety Maturity

- Yield
- Disease
- Iron Chlorosis
- SCN resistance
- Herbicide
 tolerance
- Specialty markets
- Protein and Oil

ND Soybean Growing Regions and observations 2014-2017

NDSU

EXTENSION

Cartographer: J. Stanley

Soybean Yield by Growing Region 2014-2017

NDSU EXTENSION

Cartographer: J. Stanley

Soybean Yield by Growing Region and Maturity Group 2014-2017

	Maturity			
Variety	Group	Height	Hilum Color	Remarks ¹
ND18008GT	00.8	Med.	Black	1,2,7,9
ND17009GT	00.9	Med.	Black	7
ND Rolette	00.9	Med.	Buff	1,2,8
ND Henson	0.0	Med.	Black	1,2
ND Benson	0.4	Med.	Buff	1,2,6,8
ND Stutsman	0.7	Med.	Yellow	1,3,8
Prosoy	0.8	Tall	Yellow	4,5

1 Remarks: 1 = Good iron chlorosis resistance; 2 = Resistant to races 1-4 of Phytophthora root rot; 3 = Resistant to races 1 - 3 of Phytophthora root rot; 4 = Susceptible to Phytophthora root rot; 5 = Tofu bean; 6 = resistant to Soybean Cyst Nematode (SCN); 7 = Glyphosate resistant; 8 = Tolerant to metribuzin herbicide; 9 = tolerance to soybean aphid.

DSU

EXTENSION

	Maturity			
Variety	Group	Height	Hilum Color	Remarks ¹
ND18008GT	00.8	Med.	Black	1,2,7,9
ND17009GT	00.9	Med.	Black	7
ND Rolette	00.9	Med.	Buff	1,2,8
ND Henson	0.0	Med.	Black	1,2
ND Benson	0.4	Med.	Buff	1,2,6,8
ND Stutsman	0.7	Med.	Yellow	1,3,8
Prosoy	0.8	Tall	Yellow	4,5

1 Remarks: 1 = Good iron chlorosis resistance; 2 = Resistant to races 1-4 of Phytophthora root rot; 3 = Resistant to races 1 - 3 of Phytophthora root rot; 4 = Susceptible to Phytophthora root rot; 5 = Tofu bean; 6 = resistant to Soybean Cyst Nematode (SCN); 7 = Glyphosate resistant; 8 = Tolerant to metribuzin herbicide; 9 = tolerance to soybean aphid.

)SU | E

EXTENSION

	Maturity			
Variety	Group	Height	Hilum Color	Remarks ¹
ND18008GT	00.8	Med.	Black	1,2,7,9
ND17009GT	00.9	Med.	Black	7
ND Rolette	00.9	Med.	Buff	1,2,8
ND Henson	0.0	Med.	Black	1,2
ND Benson	0.4	Med.	Buff	1,2,6,8
ND Stutsman	0.7	Med.	Yellow	1,3,8
Prosoy	0.8	Tall	Yellow	4,5

1 Remarks: 1 = Good iron chlorosis resistance; 2 = Resistant to races 1-4 of Phytophthora root rot; 3 = Resistant to races 1 - 3 of Phytophthora root rot; 4 = Susceptible to Phytophthora root rot; 5 = Tofu bean; 6 = resistant to Soybean Cyst Nematode (SCN); 7 = Glyphosate resistant; 8 = Tolerant to metribuzin herbicide; 9 = tolerance to soybean aphid.

J EXTENSION

	Maturity			
Variety	Group	Height	Hilum Color	Remarks ¹
ND18008GT	00.8	Med.	Black	1,2,7,9
ND17009GT	00.9	Med.	Black	7
ND Rolette	00.9	Med.	Buff	1,2,8
ND Henson	0.0	Med.	Black	1,2
ND Benson	0.4	Med.	Buff	1,2,6,8
ND Stutsman	0.7	Med.	Yellow	1,3,8
Prosoy	0.8	Tall	Yellow	4,5

1 Remarks: 1 = Good iron chlorosis resistance; 2 = Resistant to races 1-4 of Phytophthora root rot; 3 = Resistant to races 1 - 3 of Phytophthora root rot; 4 = Susceptible to Phytophthora root rot; 5 = Tofu bean; 6 = resistant to Soybean Cyst Nematode (SCN); 7 = Glyphosate resistant; 8 = Tolerant to metribuzin herbicide; 9 = tolerance to soybean aphid.

)SU | E

EXTENSION

SOYBEAN HILUM COLOR

- A. white, yellow, clear*
- B. buff
- C. brown
- D. imperfect black
- E. black

*These descriptors are used interchangeably and represent the only hilum color considered a "white hilum" soybean.

	Maturity	
Variety	Group	Remarks ¹
ND18008GT	00.8	Farmers cannot save their own seed
ND17009GT	00.9	Farmers can save their own seed

NDSU

EXTENSION

	Maturity	
Variety	Group	Remarks ¹
ND18008 <mark>GT</mark>	00.8	Farmers cannot save their own seed
ND17009 <mark>GT</mark>	00.9	Farmers can save their own seed

NDSU

EXTENSION

	Maturity
Variety	Group
ND18008GT	00.8
ND17009GT	00.9
M06R-614008GT in trials	00.8

Estimated Seed Cost per unit

- Conventional ~\$24 / unit (140k)
 Glyphosate tolerant ~\$28 / unit
 RR2 ~\$45/unit
- . Liberty ~\$42 / unit
- . Xtend ~ \$50 /unit

2019 Soybean - Enlist, GT, RR and Xtend - Minot (North Central REC) - Authors, E. Eriksmoen, J. Effertz and A. Kraklau.

Soil samples with high risk of soybean iron deficiency chlorosis (IDC) in 2019

Percent of samples (0-6 inch)

Field risk of IDC based on carbonate and soluble salts soil test levels

Soluble Salt	Carbonates (%)		
(mmhos/cm)	0 to 2.5	2.6 to 5	>5
0 to 0.25	Low	Low	Moderate
0.26 to 0.50	Low	Moderate	High
0.51 to 1.0	Moderate	High	Very High
> 1.0	High	Very High	Extreme

//)

http://www.ag.ndsu.edu/bioeconomics/Library/ tools/salinity-economics-tool

http://www.ag.ndsu.edu/bioeconomics/Library/ tools/salinity-economics-tool

		2-site			2-site
		Mean			Mean
Company	Variety	IDC ¹	Company	Variety	IDC^1
Channel	0218R2X	1.3	Hefty	H03X8	2.0
Pioneer	01A84X	1.3	P3 Genetics	2003E	2.0
Mustang	03X329	1.3	Peterson	20X05	2.0
Integra	40129E3	1.4	Dahlman	1004E3N	2.0
Pioneer	03A17X	1.4	Dahlman	6903XN	2.0
Dairyland	DSR-0577E	1.4	Mustang	05E449	2.0
NorthStar	90094E3	1.4	NorthStar	60092XR2	2.0
Asgrow	AG 0937	1.5	Allegiant	009X08	2.1
Integra	50309NR2X	1.5	Dairyland	DSR-0988/R2Y	2.1
Hefty	H04X8	1.6	NorthStar	60555NXR2	2.1
Proseed	XT80-20N	1.6	P3 Genetics	1906E	2.1
			Tria	al Mean	2.4
			LSI	D 0.05	0.4
NDSU	EXTENSION		I SI	D 0.10	0.3

2019 NDSU Soybean Iron-deficiency Chlorosis Trial - Erie, N.D.

Iron Chlorosis Score

Agricultural Statistics Districts ND

RM Variability Statewide

Maturity group map 2014-2017

ND Survey yield in bushel per acre by maturity group, 2014-17 (1098 fields)

Percent Soybean Acres Planted by Date, North Dakota 2019

Percent Soybean Acres Planted by Date, North Dakota 2019

Planting day of the year vs yield in bushel per acre 2014-2017 (1023 fields)

Langdon 2018 soybean trial

EXTENSION

NDSU

Row spacing x population study 7, 14 and 28 row spacing
7 inch

14 inch

28 inch

24 inch 12 inch 80,000 live 200,000 live seeds acre⁻¹ 80,000 live seeds acre⁻¹ seeds acre⁻¹

NDSU

EXTENSION

С a n \mathbf{O} р e

Williston 0.3 RR2Y May 30, 2018

NDSU EXTENSION

Drs. G. Pradhan, J, Bergman and J. Staricka

Plant Loss / not contributing to yield

NDSU EXTENSION

> 200 Field Visits 2017-2018

- Survey 3 locations within field
- Try and represent field

Plant loss between V and R stages by growing region

NDSU | EXTENSION

Row Spacing and Seeding Rate 2017-2018

- Row spacing (inch)
 - 12
 - 24

Seeding Rates (live seed acre)

- 80 000
- 120 000
- 140 000
- 160 000
- 180 600
- 200 000

EXTENSION

NDSU

Mean agronomic trait observations for two row spacings averaged across seven seeding rates and 15 environments.

Row Spacing	Emerged	Final	Co- ver	Height	Yield	Loss
inch	plants ac ⁻	¹ x1000	%	inch	bu ac ⁻¹	%
12	134.4b	126.4a	68a	30a	46.8a	5.6b
24	138.2a	126.6a	62a	31a	44.1b	7.6a

NDSU | EXTENSION

Mean agronomic trait observations for two row spacings averaged across seven seeding rates and 15 environments.

Row Spacing	Emerged	Final	Co- ver	Height	Yield	Loss
inch	plants ac ⁻	¹ x1000	%	inch	bu ac ⁻¹	%
12	134.4b	126.4a	68a	30a	46.8a	5.6b
24	138.2a	126.6a	62a	31a	44.1b	7.6a

NDSU | EXTENSION

Estimated soybean net revenue per acre based on row spacing and seeding rate yields averaged across 15 environments

	Market Price (USD bu ⁻¹)					
Row spacing	8 9 10					
inch		USD acre	2 -1			
12	324a 371a 418a					
24	294b 338b 382b					

Estimated soybean net revenue per acre based on row spacing and seeding rate yields averaged across 15 environments

	Market Price (USD bu ⁻¹)					
Row spacing	8 9 10					
inch		USD acre	-1			
12	324a <mark>371a </mark> 418a					
24	294b <mark>338b</mark> 382b					

Soybean Yield and row spacing, Minot 2016

10 inch

FNSION

20 inch

Agronomic observations averaged across seeding rate across all 15 environments

Seeding Rate	СС	Yield	
live seed ac ⁻¹	%	bu ac ⁻¹	
80 000	56	43.2c	
100 000	60	44.1bc	
120 000	63	44.9bc	
140 000	66	45.8ab	
160 000	68	45.9ab	
180 000	69	47.0a	
200 000	72 🪽	47.2a 🕂	
Tukey's HSD (0.05)	ns	2.1	

NDSU EXTENSION

Yield for seeding rates and 12 and 30 inch Row Spacing, Casselton combined, 2019

Minot soybean yield and seeding rate, 2016

Seeding rate

- Established stand 140,000
- Germination rate 96%
- Loss from live seed to established plant 10% (90 % will make it into a plant)

(140,000/96) * 100 is live seed = 145,900 (145,900/90) * 100 is seeding rate = 162,000

A1174 (Revised)

Growth and Management QUICK GUIDE

Reviewed by

Greg Endres, Area Agronomist Hans Kandel, Agronomist NDSU Extension Service G rowth, development and yield of soybeans are a result of a variety's genetic potential interacting with environmental and farming practices. Correct production decisions using plant growth staging and timing are important for successful soybean production. Minimizing environmental stress will optimize seed yield.

Farmers who understand how a soybean plant grows and develops can establish their field practices to maximize the genetic potential of the varieties grown. Management practices that may influence crop growth include seedbed preparation, variety selection, planting rate, planting depth, row width, pest management (diseases, insects and weeds), fertilization and harvesting.

NDSU EXTENSION

North Dakota State University Fargo, North Dakota

MAY 2015

Internet search: NDSU A1174'

Understanding and being able to correctly identify the growth stages of soybean is important for making sound agronomic management decisions. This guide describes the growth stages starting with germination, progressing through the vegetative stages (V) and concluding with the reproductive stages (R). Coolbeans!

http://www.coolbean.info/library/documents/2017 _Soybean_GrowthDev_Guide_FINAL.pdf

Soybean Growth Stages

Vegetative

- VE (plant emergence)
- VC (cotyledon stage)
- V1 (first trifoliate)
- V2 (second trifoliate)
- V3 (third trifoliate)
- V(n) (nth trifoliate)

NDSI

Reproductive

- R1 (beginning bloom)
- R2 (full bloom)
- R3 (beginning pod)
- R4 (full pod)
- R5 (seed filling)
- R6 (full size seed)
- R7 (beginning maturity)
- R8 (full maturity)

R1: Beginning Bloom

💳 Trifoliate Node (

irifoliate Node 5 🛁

Terminal Bud

Trifoliate Node 4

Trifoliate Node 3 -

Trifoliate Node 2

Trifoliate Node 1 ->

Unifoliate Node

Cotyledon Node

NDSU EXTENSION

R3

R2

Days for soybean plant development, Carrington

RM*	VE (emergence)	V1 (1st trif leaf)	R1 (first flower)	R3 (first pod)	R5 (first seed)	R7 (initial PM)	R8 (full PM)
	Days from planting**						
0.0	18	31	52	68	78	112	118
0.4 to 0.5	18	30	54	70	81	119	124
Average	18	31	54	70	81	117	123

*0.0 = Walsh in 2004 and RG200RR in 2005-07; 0.4 = RG604RR, O.5 = RG405RR. **planting dates: 2004=May 10; 2005=May 17; 2006=May 16; 2007=May 17.

Yield of soybean with and without fungicide seed treatment, ND 2014-2016 survey

Seed treatment	2014	2015	2016		
	Bushel per acre				
No seed treatment	39.6	40.4	39.7		

NDSU EXTENSION

Yield of soybean with and without fungicide seed treatment, ND 2014-2016 survey

Seed treatment	2014	2015	2016		
	Bushel per acre				
No seed treatment	39.6	40.4	39.7		
Seed treatment	41.1	40.6	40.9		

Yield of soybean with and without fungicide seed treatment, ND 2014-2016 survey

Seed treatment	2014	2015	2016			
	Bushel per acre					
No Seed Trt	39.6	40.4	39.7			
Seed treatment	41.1	40.6	40.9			
Increase with seed treatment	3.7%	0.5%	3.0%			

NDSU | EXTENSION

Growing Degree Model for Soybean

				OOybcall					
	RM		RM						
RM [†]	code	RM	code	Agricultural and Forest Meteorology 239 (2017) 134–140					
				Forest Meteorology					
00.4	4	0.5	15	Agricultural and Forest Meteorology					
00.5	5	0.6	16	ELSEVIER journal homepage: www.elsevier.com/locate/agrformet					
00.6	6	0.7	17	Developing a growing degree day model for North Dakota and OrossMark Northern Minnesota soybean					
00.7	7	0.8	18	Fikri Adnan Akyuz ^a ,*, Hans Kandel ^b , Dallas Morlock ^c ^a North Dakota State Climatologist, North Dakota State University, Fargo, ND, USA ^b Extension Agronomist, North Dakota State University, Fargo, ND, USA					
00.8	8	0.9	19	Computer Programmer, North Dakota State University, Fargo, ND, USA ARTICLE INFO ABSTRACT					
00.9	9	1.0	20	Article history: Farmers in North Dakota and Northern Minnesota did not have a model to predict when their soybean Received 4 November 2016 (Glycine max L. Merr.) crop will be mature. Soybean plants need to be mature before the first fall freeze. The objectives of this study were to estimate needed accumulated growing degree days (AGDD) for adapted					
0.0	10	1.1	21	soybean maturity groups (MG) to reach maturity (R8). Research was conducted during 2007–2012 at					
0.1	11	1.2	22						
0.2	12	1.3	23						
0.3	13	1.4	24						
0.4	14	1.5	25						

Average Accumulated Growing Degree Days for Langdon, Carrington, Central, and Southern sites, averaged across years (2007-2012)

NDSU | EXTENSION

https://ndawn.ndsu.nodak.edu/

NDSU EXTENSION

https://ndawn.ndsu.nodak.edu/

NDAWN

HELP

WEATHER DATA

APPLICATIONS

List of Ag Tools

Barley GDD

Canola GDD

Canola Sclerotinia 🗗

Corn GDD

Potato Late Blight, Early Blight, and P-Days

Soybean GDD

Soybean Growing Degree Days

Get information about soybean growing degree days

Station:

Relative maturity:

Planting date:

Minot 4S (1990)-)	•
0.1 🔻		
2019-05-15		
Submit		

J EXTENSION

Soybean Growing Degree Days

Get information about soybean growing degree days

Soybean Accumulated GDD for Minot, ND

Planting Date to End of Growing Season

North Dakota Agricultural Weather Network (NDAWN)

Interseeded Cereal Rye

September 29th 2017

EXTENSION

NDSU

October 31St 2017

United States Department of Agriculture National Institute of Food and Agriculture

Interseeded Camelina vs Cereal Rye

Camelina

October 31st 2017

NDSU EXTENSION

Rye October 31St 2017

United States Department of Agriculture National Institute of Food and Agriculture

Camelina spring 2017

Rye fall 2016 and spring 2017

2016

EXTENSION

NDSU

United States Department of Agriculture National Institute of Food and Agriculture

Spring 2017, Fargo ND

NDSU

EXTENSION

Cover crop	Spring cov		Biomass
	In per	rcent	Pounds per
			acre
Camelina (Joelle)	6	b	130
Rye (Rymin)	27	а	478
Check	0	С	0

National Institute of Food and Agriculture

NDSU Crop & Pest Report

- Free to subscribers with email but MUST SIGN-UP ON WEBSITE
- http://www.ag.ndsu.edu/cpr/

