Managing Surface Acidity

Chris Augustin Extension Specialist/Soil Health North Central Research Extension Center 701-857-7682 Chris.Augustin@ndsu.edu

Main Points

- Salinity = salt = you can see it
- Sodicity = Sodium = you can see it (structure)
- Acid = pH < 7
- Alkaline = pH > 7 = you can see it (chalk, not salt)
- Alkali = Old term for sodicity

Salinity, E.C.>2 mmohs/cm

odicity, SAR>13 or ESP

Courtesy of Dr. Dave Hopkins and Mike Ulmer

SF-1321

- Reclaim sodic soils
 - Need to know CEC (not summation)
 - SAR
 - Ca content of gypsum
 - Bulk Density
- Not an effective liming product
- Does not improve iron chlorosis
- Can add S, but has low solubility

Franzen et al., 2006

music 🔒 76°	►		(±) * 🗢	2:42			
	Gyp	sum Requ	iiremer	it			
A	bout	Calculator	Formul	а			
		red parameten requirement					
fields are							
Soil I	Depth (n	n)					
	• •	positive value		X			
Soil I	Soil Bulk Density (Mg m ⁻³)						
	positive value ×						
CEC	CEC (mmol _c kg ⁻¹)						
	positive value X						
Gypsum Purity (%)							
	value	between 0 and	100	×			
◯ use ESP) ● use SAR							
	valu	Initial SAR (%	•	×			
	valu						
Target SAR (%)							

- pH is the concentration of the negative log of Hydrogen in a solution.
- pH 3 = 0.001 M H⁺
- pH 5 = 0.00001 M H⁺
- pH 7 = 0.0000001 M H⁺
- pH 9 = 0.00000001 M H⁺
- A change 1 unit pH is a factor of 10. So change of pH from 4 to 6 is a factor of 100

Causes of soil pH

- Parent materials
 - Granite and volcanic ash are acidic
 - Limestone and ocean sediments are alkaline
- Nitrogen fertilizer
 - $-CO(NH_2)_2 + 2H_2O + H^+ > NH_3 + H_2O + H^+ > NO_2^- > NO_3^-$
- Over time the soil acidifies and frees up aluminum. Clays are made up of aluminum and silicates.

NDSU EXTENSION SERVICE

Acidic Soil Issues

- pH less than 5.5 reduces microbial activity.
- Occurs when pH < 5.5 and AI^{+3} is freed up.
- Al⁺³ is 25 ppm or >
- As Al⁺³ frees up, it splits H₂O and attached to OH⁻. This frees up H⁺ and acidifies even more.
- Al⁺³ ties up P. Early on it can look like a P deficiency.
- As it worsens, roots are abnormally shaped or amount is reduced.
- Manganese toxicity.
 NDSU EXTENSION
 SERVICE

Buffer pH Soil Test

- 3 types of acidity
 - Active, Exchangeable, Reserve
- Buffer test measures H⁺ held by CEC
 (Exchangeable & Reserve)
- Needed to determine proper lime application
 Tons of pure lime = (Desire pH- Buffer pH) X 4
 - The problem is many Buffer pH tests are near 7.
 This prevents the equation from working.
 - However, liming may be a 1 every 20 year thing!

- There are other tables and equations that are

Factors Affecting Lime Effectiveness

- Time/Temperature
- Pureness of lime (Calcium Carbonate Eqivalence or CCE)
- Particle size
 - The finer the lime, the faster it dissolves
- Rainfall
 - Need moisture to dissolve
- Incorporation

 Since acidity tends to be near the surface, incorporation isn't needed.

Liming Products

Gypsum is not an effective liming product.

Type of Lime	Formula	CCE Range
Calcitic Limestone	CaCO ₃	80-100
Marl (shells)	CaCO ₃	70-90
Dolomitic Limestone	$CaMg(CO_3)_2$	110
Quick Lime	CaO	150-180
Hydrated Lime	Ca(OH) ₂	124-140
Wood ash	MgO and other oxides	30-70

Neutralizing an acid (H⁺) is a combination of CCE and particle size.

Adapted from Thompson and Coyne. 2006. Math for Soil Scientists.

Calcium doesn't neutralize acid!

Treatment	Rate	Final pH
Check		5.1
Hydrated Lime	2 t/ac ECCE	6.2
Pell lime	100 lbs/ac	4.4
Pro Cal	3 gal/ac	4.4
Advanced Cal	3 gal/ac	4.3
Equiv Ca/HL		4.4

Adapted from No-Till Farmer January 2020. Research conducted by Brian Arnall Oklahoma State University.

Beet Lime Effects on Soil									
Year	N (lb	s/ton)	P (lbs/	ton)	K (lk	os/ton)	CCE	(%)	Moist. (%)
3 yr Avg.	4.4		10.	2	1.4		62	.7	27.1
		Treat	ment	p	H	Al (p	pm)		
		0 t/ac		4.	5	5	51		
		2 t/ac		5.	8	22	2		
		4 t/ac		5.	9	18			
		8 t/ac		6.	0	1	.5		
			Par merer		3.80				

4 t/ac

52 Prais

8 t/ac

~\$50/ton hauled from Sidney and applied in Minot.

Beet Lime Soil pH Impacts on 0-6 inch Depth (2017 Growing Season)

Beet Lime Impacts on Wheat

Treatment	Variety	Yield (bu/ac)
4 t/ac	Soren	21.8a
3 t/ac	Soren	18.8ab
Check	Soren	18.7ab
0.25 t/ac	Soren	18.6ab
1 t /ac	Soren	18.1ab
0.25 t/ac	Lanning	17.8abc
4 t/ac	Lanning	16.9bc
2 t/ac	Soren	16.3bc
3 t/ac	Lanning	16.3bc
2 t/ac	Lanning	15.3bc
Check	Lanning	15.2bc
0.5 t/ac	Lanning	14.2c
1 t /ac	Lanning	13.8c
0.5 t/ac	Soren	13.8c

NDSU EXTENSION P-value, 0.001; Variance 18.8; Treatments did not influence protein.

Beet Lime vs. HRSW Yield Trends

Soil Acidity Impacts on HRSW Cultivar

Variety	Yield	Test Weight	Aluminum	Manganese	
	bu/ac	lbs/bu	Early Flag Leaf Tissue Sample (ppm)		
Soren	40c	59.3a	92	284	
Alum	49b	56.3b	72	210	
Glenn	51b	57.0a	54	265	
Bolles	51b	57.8ab	115	278	
Lanning	59a	55.5b	89	256	
LSD (0.05)	5	2.3	NS	NS	

Soil pH of 5.7 (0-2in), 4.5 (2-6in), & 4.2 (6-12in). Adopted from R. Buetow, 2019.

pH of Side Slopes

Franzen, 1999

pH of Depressional Areas

Franzen, 1999

How do I find these areas?

- Zone sampling will work better than grid sampling (topography related).
- Many have reported average soil pH is OK (i.e. pH 6.5), but a composite soil sample doesn't find the acidic hotspot.
- Sample 0-3in, 3-6in for pH, and 0-6in for nutrients
- Do some digging and look for carbonates.

Summary

- pH is the concentration of hydrogen.
- Lime is for acidic soils.
- Gypsum is for sodic soils.
- Many areas may not need lime BE SITE SPECIFIC!
- We are evaluating various Buffer pH soil tests and lime determination equations.
- We've seen similar pH improvement with surface applied 2 and 4 ton beet lime/ac.
- \$50/ton hauled from Sidney and applied in Minot.

Questions?

