Economic Development Implications of a Biomaterials Industry in North Dakota

Nancy M. Hodur
F. Larry Leistritz
Department of Agribusiness and Applied Economics
North Dakota State University

Northern Plains Biomass Economy: What Makes Sense?
September 29, 2008
Fargo, North Dakota
Rationale

• Forces that have stimulated interest in biobased fuels and materials previously stated
 • Crude oil prices
 • Reliance on foreign oil
 • Environmental considerations
 • Mandates

• Considerable discussion and research into process technologies, pretreatment, feedstock availability and cost

But what about the economic development potential?
Methods: Corn Ethanol

• Based on recently completed studies, able to do a comparison.
 • Corn ethanol facilities provided estimates of payroll and construction costs (Hodur et al. 2006)
 • Corn requirements and transportation costs from Iowa study (Swenson and Eathington 2006)
 • Other expenditures were assumed to be in the same proportion to payroll as other agricultural processing facilities (Coon and Leistritz 2003, 2001, 1997)
Methods: Cellulosic Ethanol

- Part of a study examining the economic feasibility of a biorefinery using wheat straw as feedstock (Leistritz et al 2006)

- Estimates based on an economic-engineering model developed by NREL

- Leistritz et al 2006 estimated total annual operating expenditures and the percentage that represented in-state expenditures
Methods: Corn and cellulosic ethanol secondary impacts

- North Dakota Input-Output Model was used to estimate total economic impacts (direct and secondary).
Economic Impact of 50 Million Gallon Corn Ethanol Plant

- **Direct Economic Impacts**
 - Construction Costs (one time, in state) $12.5 million
 - Annual Expenditures (in state)* $16.8 million
 - Households $3.6 million
 - Coal** $8.25 million
 - Employment 40 workers
 - Total Direct Economic Impacts $16.8 million

- **Total Direct and Secondary** $45.8 million
 - Direct and Secondary
 - Secondary Employment 497 workers

*Purchase price of corn not included
**Coal represents in-state expenditure
Economic Impact of 50 Million Gallon Cellulosic Ethanol Plant—Wheat Straw

- **Direct Economic Impacts**
 - **Construction Costs** (one time, 15% in state) $26.4 million
 - **Annual Expenditures** (in state) $53.0 million
 - **feedstock** $36.3 million
 - Payments to farmers $16.4 million
 - Baling $11.0 million
 - Transportation $8.8 million
 - Payroll $2.7 million
 - Employment 77 workers
 - **Total Direct Economic Impacts** $53.7 million
 - **Direct and Secondary (statewide)** $185.2 million
 - **Secondary Employment** 2,400 workers
 (includes feedstock harvest and transportation)
Comparison: One 50 million gallon per year plant

- Total construction costs:
 - $83 million \(\sim vs \sim \) $176 million...........2x

- Annual operating expenditures:
 - $17 million* \(\sim vs \sim \) $53 million...........3x

- Direct Employment
 - 40 workers \(\sim vs \sim \) 77 workers...............2x

- Secondary Employment
 - 500 workers \(\sim vs \sim \) 2,400..................5x

*excludes corn, includes coal
Regional Economic Development Implications

- Goal of 36 billion gallons of ethanol by 2022
- 21 billion gallons of advanced biofuels, of which 16 billion gallons from cellulose
- Require 320 plants, 50 million gallons each
Regional Economic Development Implications (cont.)

- 60 percent of total biomass (75% of crop residue and 20% of wood) come from the Midwest and Northern Great Plains.

- 60 percent of 16 billion gallons is 9.6 billion gallons which would require 192 plants, 50 million gallons each.
Regional Economic Development Implications—12 state region*

- Construction Costs** $34 billion
- Annual Direct Expenditures***$10 billion
- Direct Employment**** 15,000 workers
- Secondary Employment
 - Many thousand additional jobs in feedstock harvest and transportation

*9.6 billion gallons, 192---50 million gallon plants
***$53 million each

**$176 .5 million each
****77 workers per plant
Benefits of a Biomaterial Industry in North Dakota

- 8.6 percent of NC Region’s potential biomass would come from North Dakota
- 16 plants, 50 million gallons each, could be located in North Dakota
- Initial investment*: 3.1 billion, $465 million in state

*176.5 million each

<table>
<thead>
<tr>
<th>State</th>
<th>Potential Biomass (million dry tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iowa</td>
<td>34.5</td>
</tr>
<tr>
<td>Illinois</td>
<td>27.0</td>
</tr>
<tr>
<td>Minnesota</td>
<td>25.0</td>
</tr>
<tr>
<td>North Dakota</td>
<td>17.2</td>
</tr>
<tr>
<td>Total N. Central Region</td>
<td>198.8</td>
</tr>
</tbody>
</table>
Benefits of a Biomaterial Industry in North Dakota

- Annual operations of 16 plants (in state expenditures only): **over $800 million***
- Annual direct economic contribution of lignite mining, conversion industry, and related activities in North Dakota:
 - $634 million in 2006
 - $734 million in 2007

 (Coon and Leistritz 2008)

*Does not include construction costs
Implications:

- ND and other “biomass belt” states are well placed to capture the economic impacts of an emerging industry, with plants being located near the feedstock source.

- Obviously, these estimates were calculated prior to recent increases in prices of petroleum, construction materials, ag inputs, and commodities.

- Crop residues are especially attractive considering record commodity prices. With current commodity prices, incentives to produce a dedicated energy crop would need to be significant.
Implications-

• This could be a very substantial economic development opportunity perhaps the largest in a generation

• This could substantially change the economic and demographic make-up of some Midwestern and Great Plain counties
References

Questions?

- Nancy Hodur can be reached at 701-231-7357 or nancy.hodur@ndsu.edu
- Larry Leistritz can be reached at 701-231-7441 or f.leistritz@ndsu.edu