Nutritional Strategies to Reduce Nutrient Excretion and Odor in Beef, Dairy, and Swine Operations

Dr. Greg Lardy
or

Precision Nutrition for Livestock Feeding Operations
Outline

• Introduction
• What nutrients should we be concerned with?
 • Phosphorus
 • Nitrogen
• Dietary strategies to minimize excretion
Nutritional Strategies in Beef Cattle Operations
P Metabolism in Beef Cattle

P Requirements

- Cannot determine P requirements, too low
 - Bones, blood, performance

- Does the requirement matter?

- NRC recommendations for feedlot cattle are too high

- Industry has markedly overfed (relative to requirement)
 - Progress has been made

- Implications: $ & environment
P Mass Balance For a 10,000 Head Feedlot

.35 to .40% P
234,000 lb/yr

15,690 acres

Assume:
50% of surrounding land used
30 lb/ac P applied (agronomic)
10,000 hd feedlot, 90 acres

.22 to .30% P
128,000 lb/yr

8,624 acres

Assume: (same)
Protein Requirements

Crude Protein (CP) System

• Assumes all proteins are equal
• Important point: protein is nitrogen
• %N * 6.25, protein is ~16% N
• Does not account for bacterial needs in ruminants
• Is simple, but incorrect
Protein Requirements

Metabolizable Protein (MP) System

Feed protein
urea, corn protein

RUMEN

NH$_3$ + Carbon = Microbial Protein (BCP)

DIP

UIP

DIP

BCP

BCP

MP \rightarrow SMALL INTESTINE

NDSU Animal and Range Sciences
Protein Requirements

Predicted requirement over feeding period

Body Weight, lb

MP reqt.
DIP reqt.
UIP reqt.
Protein Requirements

Requirement compared to industry average diets

Body Weight, lb

g/d

- MP reqt.
- DIP reqt.
- UIP reqt.
Protein Requirements

Change the diet to match these requirements, i.e. PHASE FEED

Body Weight, lb

MP reqt.
DIP reqt.
UIP reqt.

MP reqt.
DIP reqt.
UIP reqt.
N Mass Balance Phase-Fed Yearlings (Summer)

Intake: 59.4 lb

- Animal: 7.9 lb
- Manure: 1.5 lb (3%)
- Runoff: 31.3 lb (61%)
- Volatilized: 32.5 lb (61%)

Excreted: 51.5 lb

- Manure: 18.7 lb (36%)
- Runoff: 1.5 lb (3%)

Reduction:
- Feedlot pen: 19% Reduced
- Manure: 32.5% Reduced

Source: Erickson and Klopfenstein, 2001
N Mass Balance Phase-Fed Calves in the Winter-Spring

Feedlot pen

PHASE fed

REDUCED 15 %

2.2 lb (3%) runoff

REDUCED 12.5 %

35.0 lb (56.5%) manure

62.2 lb excreted

24.9 lb (40%) volatilized

10.0 lb animal

72.2 lb intake

Source: Erickson and Klopfenstein, 2001
N Balance Summary

- Overfeeding protein increases N losses
- Nutrition:
 - may decrease N inputs by 10 to 20%
 - reduces N excretion by 12 to 21%
 - reduces N volatilization by 15 to 33%
N balance Summary (continued)

• Volatilization is dependent on time of year
• Summer – 60% to 70% of N excreted
• Winter/spring – 40% of N excreted
• Based on annual occupancy, lose 50% of N excreted
The Challenge for Dairy Producers

- Properly formulate rations to
 - Optimize milk yield
 - Minimize N, P, and K excretion in urine/manure
Effect of P Intake on P Excretion

- Increasing P content from 0.40% to 0.60% of diet dry matter increases P output from 40 to 69 lbs/cow/year!
- Lactating cows require ~0.40%
Protein Degradability and N Excretion

- RDP: rumen degradable protein
- Diets with high RDP result in greater excretion of N in manure
- Diets need adequate RUP (rumen undegradable protein), or "escape" protein

N excretion (lb)

<table>
<thead>
<tr>
<th></th>
<th>Low RDP</th>
<th>High RDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NDSU Animal and Range Sciences
The Bottom Line

- The amount of N, P, and K in the diet has a HUGE effect on the yearly excretion of these nutrients.
Milk Production and Land Needed

• As milk yield increases, so do nutrient requirements and nutrient excretion

• For herds producing 70 to 100 lbs of milk, a 100-cow group will require 140-170 acres to manage N
 • ~1.5 acres per cow

• Need at least 2.25 acres per cow for P
Dietary N and P: Effect on Land Needed

• 19.5% CP diet (alfalfa, no supplemental RUP) vs. 17.0% CP (using RUP) results in 20% more N in manure and 20% more land needed
 • For 100-cow group, you would need up to 25 acres more land

• Dietary P ranging from 0.43% to 0.52% results in 30% more land needed
 • 100-cow group needs 50 more acres of land
Use Sources of Phosphorus With High Availability

- High availability
 - Monocalcium phosphate
 - Dicalcium phosphate
 - Monosodium or ammonium phosphate
- Medium availability
 - Steamed bone meal
 - Sodium tripolyphosphate
- Low availability
 - Low-fluorine rock phosphate
 - Soft rock phosphate
Phytate Phosphorus

- Phytate-P is not readily available to nonruminants such as swine
 - Generally found in plant forms of P
- Rumen microbes produce phytase
 - Releases P from phytate
- Phytate-P is available to ruminants
RUP and RDP Requirements

• Lactating cows require proper balance of RUP and RDP to meet requirements for metabolizable protein (MP)

• MP is the protein that the cow actually absorbs and uses for production

• Requirement for RUP = 35% to 38% of CP

• Requirement for RDP = 62% to 65% of CP
The Bottom Line

- Are high milk yield and minimal nutrient excretion mutually exclusive?
- No, you can do both!
- Focus on
 - Testing all forages/feeds
 - Properly formulating rations
 - Soil testing
 - Proper soil fertilization
 - Maximizing feed intake
 - Cow comfort and proper grouping
Nutritional Strategies in Swine Operations
Nutrition: The Simple Way to Reduce Nutrient Excretion

• Under field conditions, animals use nutrients with mediocre efficiency:
 – Phosphorus: 30%
 – Nitrogen: 30% to 35%

• Under lab conditions:
 – Phosphorus: almost 100%
 – Nitrogen: 70%

• There is a lot of potential for reducing waste
Feed Waste: An Expensive Waste of Nutrients

- Feed waste:
 - Adherence: pigs take 1.5 g feed away from feeder 60 times per day (~ 4% of “intake”)
 - Spillage: pigs push 3.4% of feed out of feeder (practical range 1.5% to 20%)
Not All Nutrients in the Diet Are Digested

- For a typical diet, 8% of protein and 70% of phosphorus is not digested
 - Indigestible proteins are fermented in large intestines
 - Contribute to odor
 - Remains are excreted
 - Contribute to waste
Select Highly Digestible Ingredients

<table>
<thead>
<tr>
<th>Feed Ingredient</th>
<th>Protein Digestibility, %</th>
<th>Protein Content, %</th>
<th>Phosphorus Digestibility, %</th>
<th>Phosphorus Content, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>85</td>
<td>8.5</td>
<td>14</td>
<td>0.28</td>
</tr>
<tr>
<td>Soybean meal 48</td>
<td>87</td>
<td>49.0</td>
<td>23</td>
<td>0.69</td>
</tr>
<tr>
<td>Soybean meal 44</td>
<td>84</td>
<td>45.6</td>
<td>31</td>
<td>0.65</td>
</tr>
<tr>
<td>Wheat</td>
<td>89</td>
<td>13.3</td>
<td>50</td>
<td>0.37</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>75</td>
<td>15.7</td>
<td>29</td>
<td>1.20</td>
</tr>
<tr>
<td>Barley</td>
<td>85</td>
<td>10.6</td>
<td>30</td>
<td>0.36</td>
</tr>
<tr>
<td>Sorghum</td>
<td>83</td>
<td>9.2</td>
<td>20</td>
<td>0.29</td>
</tr>
<tr>
<td>Meat & bone meal</td>
<td>84</td>
<td>49.1</td>
<td>95</td>
<td>4.98</td>
</tr>
<tr>
<td>Poultry byproducts</td>
<td>77</td>
<td>57.7</td>
<td>95</td>
<td>2.41</td>
</tr>
<tr>
<td>Fish meal</td>
<td>88</td>
<td>62.9</td>
<td>95</td>
<td>2.20</td>
</tr>
<tr>
<td>Dicalcium phosph</td>
<td>100</td>
<td>18.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Opportunities to Improve Digestibility

- Processing feed properly
 - Grinding
 - Pelleting
- Addition of exogenous enzymes to improve digestibility
 - Phytase
 - Xylanase or beta-glucanase
 - Wheat or barley based diets
Maintenance Results in Waste

- Feed provided
- Feed consumed
- Intestinal secretions (enzymes, cells)
- Nutrients absorbed

Waste
- Feed waste
- Inefficiencies
- Undigested feed and secretions
- Maintenance

• Maintenance is obligatory
 • Basic function of life
• Nutrients used for “maintenance” are ultimately catabolized (broken down)
 • Maintenance requirement depends on size of animal
Reduce Relative Maintenance Costs by Increasing Gain

• By improving daily lean gain, maintenance waste becomes relatively less important
 • Optimize production
 • Optimize management
 • Optimize animal health
 • Optimize nutrition, etc.
Base Formulations on Available Nutrients

Availability of nutrients is not uniform

- N > P, and Lys > Cys in typical feed
- Presuming all nutrients are equally available increases waste

Diets formulated on total or digestible amino acids
Match Diet to Animal’s Requirement

- Nutritional requirements change with:
 - Maintenance requirement (affected by sex, age, and weight)
 - Gain and composition of gain
 - Health status, environmental conditions, and activity
Match Diet to Animal’s Requirement

- Examples
 - Split-sex feeding
 - Barrows require more energy for maintenance than gilts
 - Increase energy to protein ratio of the feed for barrows
Where Does All of the Waste End Up?

- Feces contain the remnants of the digestive process
 - Undigested feed
 - Endogenous losses
 - Odor
 - Excess zinc and copper
 - Excreted through bile and excreted as feces
 - Uptake of calcium and phosphorus is regulated
 - Excess is excreted in feces
Where Does All of the Waste End Up?

- Urine contains the remnants of metabolism
 - Urea from protein breakdown
 - Some diverted to feces
 - Excess potassium, sodium, and chlorine
Summary

- Nitrogen and phosphorus are key nutrients to focus on
- Nutrient excretion can be reduced by proper nutrition
 - Feed to animal’s requirements
 - Test feedstuffs
 - Reduce feed waste
Questions??
Acknowledgements

This presentation was adapted from the LPES curriculum which is available at:
http://www.lpes.org/