Development of Minimum Cost, Incentive Based Plan for the Implementation of a Technology Standard for Coffee Processing in Honduras

Presented at the
Departamento de Economia, Administração e Sociologia
ESALQ/USP
March 2006

Robert Hearne, North Dakota State University
Bruno Barbier, CIRAD
Jose Manuel Gonzalez, Turrialba, Costa Rica
Coffee Production In Honduras

- Honduras’ Most Important Export Crop

- 250,000 hectares cultivated
- 85,000 separate plots
- 92% small-scale producers < 7 ha.
- Hillside terrain between 700 and 1500 masl.
- 85% with shade trees
Coffee Production In Honduras

- Shade Grown Coffee
 - considered to be environmentally
 - less chemical inputs
 - soil erosion
 - bird habitat
 - fruits, firewood, and lumber
 - carbon sequestration
 - can capture premium price
 (Kotchen et al. 2000)
Coffee Processing In Honduras

- de-pulping and drying by farmer
 - water intensive
 - highly polluting
- decentralized processing reduces
 - quality
 - quality control, and
 - prices
Coffee Processing and Water Quality

- Consumes 40 liters of water/kilo of processed coffee
 - during dry season
 - during harvest with migrant workers

- Waste Products
 - over 272,000 metric tons of pulp
 - over 136,000 metric tons of mucilage
 - dumped into upper waterways
 - without control or treatment
Coffee Processing and Water Quality

Causes

- eutrophication
- strong odors
- loss of plant and fish life
- increased mosquitoes and flies
Coffee Processing and Water Quality

Table 1: Quality of Water from Different Sources

- **Source**: SERNA 1995

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Potable Water</th>
<th>Untreated Wastewater</th>
<th>Coffee Processing Discharges</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7</td>
<td>6.5</td>
<td>3.7</td>
</tr>
<tr>
<td>ChOD mg/l</td>
<td>2</td>
<td>500</td>
<td>15000</td>
</tr>
<tr>
<td>BOD mg/l</td>
<td>2</td>
<td>250</td>
<td>9000</td>
</tr>
<tr>
<td>Soluble Solids mg/l</td>
<td>0</td>
<td>500</td>
<td>3600</td>
</tr>
<tr>
<td>Total Solids mg/l</td>
<td>500</td>
<td>800</td>
<td>12000</td>
</tr>
</tbody>
</table>
Coffee Processing and Product Quality

- Wet processing consists of separating pulp and mucilage from the bean, with water.
- Wet processing produces a mild-tasting *arabica* coffee.
- In Honduras, small-scale processing implies inadequate fermentation and washing. This implies poor quality, non-existent quality control, and reduced prices.
- Because of quality and quality control, Honduran coffee receives a $12.00 discount/penalty in international prices.
Objective of Research

In this research a minimum-cost system of centralized coffee processing plants is proposed in order to:

1. Reduce water use and improve water quality;
2. Improve quality of processed coffee; and
3. Improve export prices.

Furthermore the price premium required to make centralized coffee processing pareto superior to status quo will be estimated.
Linear Programming Model

Min
\[
\sum_{i,f,p,r} (c_{fi} + c_{vi} + \sum_{p,f} c_{tw} \text{dis}_{f,p,r} + \sum_{p,e} c_{td} \text{dis}_{p,e,r}) X_{i,p,r}
\]

With
- \(c_{fi}\): Fixed cost for each plant of type \(i\);
- \(c_{tw}\): Transport cost per km per quintal of wet bean;
- \(c_{td}\): Transport cost per quintal per kilometer of dry bean;
- \(c_{vi}\): Variable cost for each type of plant;
- \(\text{dist}_{f,p,r}\): Distance from the field to the plant in kilometers;
- \(\text{dist}_{p,e,r}\): Distance from the plant to the buyer in kilometers.
Subject to the following restrictions:

\[\sum_{f} prod_{f,r} \leq \sum_{i,p} pros_{i} X_{i,p,r} \]

in each river section the sum of coffee produced during the peak period is less than the processing capacity of the river segment.

\[\sum_{f, p} dist_{f, p} X_{i, p, r} \leq 25 \]

The distance between each coffee field and its corresponding plant is less than 25 kilometers.

\[\sum_{i, p} wat_{i} X_{i, p, r} < WATER_{r} \]

Total water consumed by the processing plants in each river segment is less than water available in each segment.

\[\sum_{i, p, r} inv_{i} X_{i, p, r} \leq Inv \]

Total investment is less than a predetermined maximum (in some simulations).

\[\sum_{i, p} cont_{i} X_{i, p, r} \leq Contm \times WATER_{r} \]

The sum of effluents rejected by all plants is less than a predetermined maximum per cubic meter of water (in some simulations).
Data and Estimation Parameters

IHCAFE has excellent data for this study.
Producer census, with location and output
Analyses of coffee processing
Crop Budget and Expected Returns

A recent study in Rio Frío watershed presents
Stream flow
Water Quality

Digitalized maps were available for distances

Primary data consisted mainly of validating distances and updating prices
Environmental Regulation Through Technology and Environment Standards

- The Honduran Coffee Institute, (IHCAFE) has proposed five alternative technologies for coffee processing
- Technology standards are a common form of environmental regulation
- In the USA technology based emissions standards are often employed, i.e. catalytic converters
- Environment standards regulate total effluent in each river section
Figure 1: Process of Clean Coffee Processing
Table 2: Description of Processing Plants Proposed by IHCAFE

<table>
<thead>
<tr>
<th>Plant Model</th>
<th>Fixed Cost $/sack</th>
<th>Effluents kg/sack/year</th>
<th>Variable Cost $/46Kg sack</th>
<th>Capacity in 46 Kilo sacks</th>
<th>Water use, lt/sack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.88</td>
<td>171</td>
<td>3.18</td>
<td>25</td>
<td>507</td>
</tr>
<tr>
<td>2</td>
<td>12.31</td>
<td>171</td>
<td>3.18</td>
<td>100</td>
<td>501</td>
</tr>
<tr>
<td>3</td>
<td>10.94</td>
<td>171</td>
<td>2.34</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>12.31</td>
<td>151</td>
<td>0.99</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>14.23</td>
<td>151</td>
<td>0.62</td>
<td>5000</td>
<td>300</td>
</tr>
</tbody>
</table>
Table 3: Production, Processing, and Transport Costs

<table>
<thead>
<tr>
<th>Activity \ model</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvest</td>
<td>11.49</td>
<td>11.49</td>
<td>11.49</td>
<td>11.49</td>
<td>11.49</td>
</tr>
<tr>
<td>Within Farm Transport/ km</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>Transport to Plant/km</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Transport to Exporter/Km</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>De-pulping</td>
<td>0.20</td>
<td>0.23</td>
<td>0.13</td>
<td>0.23</td>
<td>0.15</td>
</tr>
<tr>
<td>Washing</td>
<td>0.79</td>
<td>0.79</td>
<td>0.58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Recycling</td>
<td>0</td>
<td>0</td>
<td>0.84</td>
<td>0.17</td>
<td>0.03</td>
</tr>
<tr>
<td>Drying</td>
<td>0.90</td>
<td>0.82</td>
<td>0.78</td>
<td>0.58</td>
<td>0.43</td>
</tr>
<tr>
<td>Sub total for Processing</td>
<td>3.18</td>
<td>3.18</td>
<td>2.34</td>
<td>0.99</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Study Area

The Río Frio watershed in mountainous western Honduras covers an area of 86 Km² between 550 and 1600 masl. Annual rainfall between 2300 a 2700 mm. An average of 120 a 160 days of rainfall. Topography is mountainous with slopes of 40 to 50%. These are good conditions for coffee production.

Coffee represents the main activity of the watershed. Around 1137 families produce coffee. 569 families reside all year round. Coffee area is 2527 hectares.
Figure 2: A digitalized map of the watershed
Estimation of Capacity Requirements

Coffee processing needs to begin within five hours of harvest.

For this reason there is a 25 kilometer maximum distance between field and plant.

Also processing capacity needs to meet the harvest of the peak harvest day.

Currently in this zone 70% of harvest occurs within a 30 day period.

During this period migrant labor is available.

All harvest inputs are fully employed during this period.
Figure 3: Analysis do Water Flows
Figure 4: Daily water availability in the Río Frío from October 1997 to May 1998.
Data Analysis with GAMS

$Title A Transportation Problem
$Offupper

$Ontext

This problem finds a least cost shipping schedule that meets
este problema trata de minimizar el costo de transporte de cafe
a fin de suplir a los beneficios de cafe la demanda de cafe cereza
para procesarlo
requirements at markets and supplies at factories

References:
Dantzig, G B., Linear Programming and Extensions
Princeton University Press, Princeton, New Jersey, 1963,
Chapter 3-3.

This formulation is described in detail in Chapter 2
(A Brooke, D Kendrick and A Meeraus, The Scientific Press,
Redwood City, California, 1988.)

The line numbers will not match those in the book because of
these comments.

$Offtext

option NLP = conopt;

Sets
f fincas de aldeas /f1 *f17/
b beneficio /b1 * b7 /
m modelo de beneficio /m1, m2, m3, m4, m5 /
r rios /r1*r7/
Parameters

invest(m) inversion total por modelo fkdsfjdk
/ m1 0.008
m2 0.016
m3 0.180
After consulting with local growers and IHCAFE extortionists, plant locations selected for consideration due to availability of water and transport.
Figure 6: Optimal Number, Size, and Location of Processing Plants

Type 2 Plants 7
Type 5 Plants 8

Total capacity 40,700 sacks
Total Investment $667,000
Effluent Reduction 70%
Figure 7: Optimal Number, Size, and Location of Processing Plants with Reduced Initial Investment

Type 2 Plants 26
Type 5 Plants 6
Total capacity 32,600 sacks
Total Investment $534,000
Effluent Reduction 50%
Figure 8: Optimal Number, Size, and Location of Processing Plants with Reduced Water

Type 4 Plants 4
Type 5 Plants 8
Total capacity 44,000 sacks
Effluent Reduction 70%
Financial Analysis of Costs and Necessary Incentives

\[-c v_i Q^\phi = P_f^\gamma Q^\gamma - P_f^\phi Q^\phi\]

In order to ensure the participation of the producer, the farm price of unprocessed beans should be greater than the farm price of processed beans less the variable processing costs.

With

\[Q^\phi = 46 \text{ Kg sacks of processed coffee;}\]
\[Q^\gamma = 46 \text{ Kg sacks of unprocessed coffee.}\]
Financial Analysis of Costs and Necessary Incentives

\[P_B^\phi \geq \frac{P_f^\gamma Q^\gamma + CT_f^\gamma + CT_B^\phi + cv_i Q_i^\phi + cf_i}{Q^\phi} \quad \forall B \forall i \]

The price that the exporter/processor receives should be greater or equal to the price paid at the plantation level plus the total transport cost, plus the total cost of processing by type of plant.

- With

\[CT_f^\gamma = \text{Transport cost of unprocessed beans from farm to plants;} \]

\[CT_B^\phi = \text{Transport cost of processed beans from plants to depot;} \]
<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Current Variable Processing Costs Plant Type 1</td>
<td></td>
<td>16.67</td>
</tr>
<tr>
<td>b Current Harvest Costs</td>
<td></td>
<td>12.11</td>
</tr>
<tr>
<td>c Current International Price</td>
<td></td>
<td>75.00</td>
</tr>
<tr>
<td>d Current Penalty to Honduran Exports</td>
<td></td>
<td>12.00</td>
</tr>
<tr>
<td>e Current Intermediary Cost</td>
<td>c-d-f</td>
<td>6.33</td>
</tr>
<tr>
<td>f Current Farm Price for Processed Beans</td>
<td></td>
<td>56.67</td>
</tr>
<tr>
<td>g Current Returns to Plant and Management</td>
<td>f-a-b</td>
<td>27.89</td>
</tr>
<tr>
<td>h Necessary Farm Price for Unprocessed Beans</td>
<td>g+b</td>
<td>40.00</td>
</tr>
<tr>
<td>i Transport Cost for Unprocessed Beans 25 km</td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>j Transport Cost for Processed Beans to Depot</td>
<td></td>
<td>2.80</td>
</tr>
<tr>
<td>k Fixed Cost of Processing Plant Type 2</td>
<td></td>
<td>12.31</td>
</tr>
<tr>
<td>l Variable Cost of Processing Plant Type 2</td>
<td></td>
<td>3.18</td>
</tr>
<tr>
<td>m Necessary Depot Price for Exporter-Processor</td>
<td>h+i+j+k+l</td>
<td>59.54</td>
</tr>
<tr>
<td>n Necessary Export Price</td>
<td>m+e</td>
<td>65.87</td>
</tr>
<tr>
<td>o Necessary Incentive if $12.00 Penalty Remains</td>
<td>-(c-d-n)</td>
<td>2.87</td>
</tr>
<tr>
<td>p Financial Gain to Sector if Penalty is Avoided</td>
<td>c-n</td>
<td>9.13</td>
</tr>
</tbody>
</table>
Results of Financial Analysis

A Pareto Superior solution was sought and is feasible if penalty is removed.

All farmers maintain their margin, and all processors cover their costs.

If the penalty is not removed a $2.87/sack incentive is required to improve river water quality, and maintain all current producers.

If penalty is removed, a $9.13 benefit to the coffee sector is provided through improved quality and quality control.
Conclusions

A new centralized coffee processing system, with environmental controls, is feasible and can be Pareto Superior to current system.

With improved quality control and reduced pollution new plants could achieve financial and environmental improvements.

To minimize the cost of transport and processing within the watershed it would require an investment of $667,000.

Only Plant Types 2, 4, and 5 are included in the three solutions presented.

Honduras can achieve these results without undermining the current small-farm production.
Observations and Recommendations

This research was conducted under request by IHCAFE.

IHCAFE is interested in establishing centralized processing plants throughout Honduras.

The way centralized processing should be organized has to be determined.

If plant locations are to be determined by a consensus between farmers’ organizations and the private sector this optimization tool would assist in making informed decisions.

Further participatory research is needed on the adoption of centralized processing.
Postscript

With greatly expanded production in Vietnam, world coffee prices have plummeted.

International coffee prices are below $50.00/sack.

In many areas coffee will not be harvested, and processing is not necessary.

IHCAFE has been privatized, and staff have been reduced.
Thank You