# **2020 Agricultural Research Update**

NDSU Williston Research Extension Center

\*\*\*\*\*



# **MSU Eastern Agricultural Research Center**

# Serving the MonDak Region



Regional Report No. 26—December 2020

# Williston Research Extension Center Staff



Dr. Jerry Bergman Director



Kelly Stehr Administrative Assistant



Violeta Hobbs Part-Time Administrative Assistant



Christy Sperling Pipeline Reclamation Technician





Dr. Gautam Pradhan Dryland Research Agronomist





Cameron Wahlstrom Dryland Research Specialist







Kyle Dragseth Farm and Seedstocks Manager



Dr. Clair Keene Extension Specialist/ Cropping Systems

David Weltikol Mechanic/Ag Technician



Dr. Audrey Kalil Plant Pathologist



Kaleb Cornell Part-Time Ag Technician



Taheni Gargouri-Jbir Plant Pathology Research Specialist



Dr. Jim Staricka Soil Scientist



Rojee Pradhan Horticulture Technician



Tyler Tjelde







Lynn Staricka Part-Time Seed Processing Technician

Irrigation Scientist



Karla Quintana-Martinez, Part-Time Seed Processing Technician Justin Jacobs Irrigation Research Specialist



Nick Birkhimer Graduate Research Assistant

Andrina Turnquist, Irrigation Research Specialist

> Employees Not Pictured: Andrew Wherley, Graduate Research Assistant

Current Vacant Positions:

Irrigation Technician-Mechanic

Horticulture Research Specialist

# **Table of Contents**

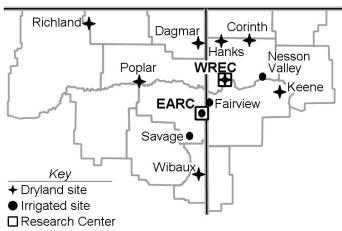
| Off Station Cooperators                                                                                                       | 2   |
|-------------------------------------------------------------------------------------------------------------------------------|-----|
| Weather Information                                                                                                           | 3   |
| Spring Wheat                                                                                                                  | 4   |
| Wheat Variety Comparisons                                                                                                     | 12  |
| Durum                                                                                                                         | 13  |
| Winter Wheat                                                                                                                  | 20  |
| Barley                                                                                                                        | 25  |
| Oats                                                                                                                          | 32  |
| Safflower                                                                                                                     | 35  |
| Sunflower                                                                                                                     | 39  |
| Canola                                                                                                                        | 41  |
| Soybean                                                                                                                       | 43  |
| Beans                                                                                                                         | 44  |
| Corn                                                                                                                          | 45  |
| Lentil                                                                                                                        | 47  |
| Flax                                                                                                                          | 49  |
| Field Pea                                                                                                                     | 51  |
| Chickpea                                                                                                                      | 56  |
| Dryland Crop Performance Comparisons                                                                                          | 57  |
| Use of Lime Banded in Seed Row to Remediate Soil Surface Acidification                                                        | 58  |
|                                                                                                                               | 60  |
| Sustainable Agroecosystem for Soil Health in the Northern Great Plains<br>Spring Canola Variety Evaluation in Eastern Montana |     |
|                                                                                                                               | 64  |
| Spring Canola Yield & Quality by Plant Date, Variety & Seed Rate under Dryland                                                | 66  |
| NDSU & MSU Spring Canola Variety Evaluation in Eastern MT on Dryland & Irrigated                                              | 67  |
| Determining Soybean Planting Date & Soil Temperature for No-Till Semi-Arid ConditionND                                        | 69  |
| Flax Seeding Date Has Minimal Effect on Water Use Patterns                                                                    | 72  |
| Quantifying Flax Phenology & Crop Health Using Unmanned Aircraft System                                                       | 74  |
| Flax Seeding Date & Rate for No-Till Semi-Arid Western North Dakota                                                           | 78  |
| Intercropping Chickpea & Flax                                                                                                 | 81  |
| 2020 Chickpea-Flax Intercropping under Dryland (Sidney) & Irrigated (Huntley) Environments                                    | 83  |
| Effects of Cropping Sequence, Ripping & Manure on Pipeline Reclamation in Western ND                                          | 86  |
| Irrigated Canola Production: Population & Fertilizer                                                                          | 92  |
| DON Accumulation in Durum Varieties                                                                                           | 94  |
| Resistance of Durum Varieties to Fusarium Head Blight                                                                         | 95  |
| Cropping System Effects of Planting Scabby Seed                                                                               | 97  |
| Comparing Chickpea Varieties for Resistance to Ascochyta Blight                                                               | 100 |
| Fungicide Programs for Ascochyta Blight Management in Chickpea                                                                | 102 |
| Resistance of Chickpea Varieties to Rhizoctonia Root Rot                                                                      | 104 |
| Effect of Starter Fertilizer & Inoculation on Chickpea Nodulation & Yield                                                     | 105 |
| Resistance of Lentil Varieties to Rhizoctonia Root Rot                                                                        | 106 |
| Resistance of Pea Varieties to Rhizoctonia Root Rot                                                                           | 107 |
| Resistance of Spring Wheat Varieties to Fusarium Head Blight                                                                  | 109 |
| Industrial Hemp – Planting Date Study of Two Selected Varieties                                                               | 111 |
| Industrial Hemp – Performance of Experimental Lines & Varieties for Eastern MT                                                | 112 |
| Kernza® Variety Trials                                                                                                        | 113 |
| Herbicide Safety in Kernza®                                                                                                   | 115 |
| Effect of Nitrogen Rate on Kernza® in the MonDak                                                                              | 116 |
| Saline Seep Formation & Background of the Seep at WREC                                                                        | 117 |
| Saline Seep Reclamation with Salt-Tolerant Perennial Forages Update                                                           | 119 |
| Irrigation Research at Nesson Valley 2020                                                                                     | 121 |
| Improving Efficiency Using Intercropping: 2020 Intercropping under Irrigation                                                 | 122 |
| Fall & Spring Nitrogen ApplicationSugarbeetConventional Tilled & No-Till Managements                                          | 124 |
| Horticulture Program                                                                                                          | 125 |
| WREC Foundation Seed Increase Update                                                                                          | 129 |
| WREC Capital Campaign                                                                                                         | 130 |

# **Off-Station Cooperators – Producers – CES Agents**

#### **MONTANA**

# SMALL GRAIN--PULSES:

Dagmar - Brian Kaae - Agent Colleen Buck Poplar - Mark Swank - Agent Jeff Chilson Richland - Richard Fulton - Agent Shelley Mills Wibaux - Rick Miske - Agent Danielle Harper


#### SUGARBEET:

East Fairview - Philip &/or Laurie Hurley East Fairview - Texas-Red Enterprises, Inc. Savage - Conradsen Land & Livestock, Inc.

# NORTH DAKOTA

SMALL GRAIN--PULSES--OIL SEEDS: Keene - Beau Wisness - Agent Devon Leo Corinth - Don Schilke - Agent Travis Binde Grenora - Lavern Johnson - Agent Travis Binde

# Location of Test Sites



We would like to take this opportunity to thank the County Agents, the County Ag Improvement Associations and especially the farm operators who permit the location of off-station plots on their land. *All are to be commended for their cooperative efforts in helping determine crops and variety performance in the MonDak region.* 

Results from tillage, chemical fallow, and field scale no-till trials, as well as other management trials on dryland and irrigated crops can be obtained by visiting with Center personnel.

**Disclaimer:** The information given herein is for educational purposes only. Any reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement is implied by the Williston Research Extension Center or the Eastern Agricultural Research Center. NDSU and MSU do not endorse commercial products or companies even though reference may be made to tradenames, trademarks or service names.

NDSU and MSU are equal opportunity institutions. This publication will be made available in alternative formats for people with disabilities upon request, 701-774-4315 and 406-433-2208.

North Dakota State University does not discriminate on the basis of age, color, disability, gender expression/identity, genetic information, marital status, national origin, public assistance status, race, religion, sex, sexual orientation, or status as a U.S. veteran. Direct inquiries to: Vice Provost for Faculty and Equity, Old Main 201, 701-231-7708 of Title IX/ADA Coordinator, Old Main 102, 701-231-6409.

# Weather Information

| Weather Summar       | y C    |          | Willis | ton, I  | ١D  |
|----------------------|--------|----------|--------|---------|-----|
|                      | Precip | oitation | Tem    | peratu  | ire |
| Month                | 2020   | Avg      | 2020   | Avg     | *   |
|                      | - inc  | hes -    | - deg  | grees l | = - |
| Oct-Dec. 2019        | 1.68   | 1.76     |        |         |     |
| January-March        | 0.80   | 1.17     |        |         |     |
| April                | 0.11   | 1.15     | 36.3   | 46.0    | 0   |
| May                  | 0.75   | 2.22     | 54.9   | 57.0    | 0   |
| June                 | 1.41   | 2.66     | 65.7   | 65.0    | 3   |
| July                 | 1.99   | 2.23     | 70.8   | 72.0    | 7   |
| August               | 0.41   | 1.54     | 76.3   | 71.0    | 10  |
| September            | 0.09   | 1.36     | 59.2   | 60.0    | 0   |
| April-July           | 4.26   | 8.26     |        |         |     |
| April-Sept           | 4.76   | 11.16    |        |         |     |
| Total-Oct 19-Sept 20 | 7.24   | 14.09    |        |         |     |
| *Number of Days over | 89º F  |          |        |         |     |

Last Spring Frost – May 11, 2020 (24.9°F) First Fall Frost – October 14, 2020 (28°F)

| Off-Station Precipitation*<br>North Dakota |       |      |      |      |      |       |  |  |  |  |
|--------------------------------------------|-------|------|------|------|------|-------|--|--|--|--|
| Site                                       | April | Мау  | June | July | Aug  | Total |  |  |  |  |
| Beach                                      | 0.60  | 1.13 | 1.58 | 1.26 | 0.90 | 5.47  |  |  |  |  |
| Crosby                                     | 0.02  | 1.08 | 3.37 | 2.34 | 0.65 | 7.46  |  |  |  |  |
| Nesson<br>Valley                           | 0.13  | 0.45 | 2.22 | 1.73 | 0.76 | 5.29  |  |  |  |  |
| Watford<br>City                            | 0.29  | 0.97 | 2.42 | 2.22 | 0.86 | 6.76  |  |  |  |  |

\*Actual rainfall received at plot location may have been more or less.

North Dakota State University Williston Research Extension Center 14120 Hwy 2 Williston, ND 58801

Tel. (701) 774-4315 Fax. (701) 774-4307 E-mail: NDSU.Williston.REC@ndsu.edu http://www.ag.ndsu.edu/WillistonREC/





|                            | A      |          | -l    | N AT    |    |  |  |  |  |
|----------------------------|--------|----------|-------|---------|----|--|--|--|--|
| Weather Summary            |        | SI SI    | dney, | IVI I   |    |  |  |  |  |
|                            | Precip | oitation | Tem   | peratu  | re |  |  |  |  |
| Month                      | 2020   | Avg      | 2020  | Avg     | *  |  |  |  |  |
|                            | - inc  | hes -    | - deg | jrees F |    |  |  |  |  |
| Oct-Dec. 2019              | 1.22   | 1.84     |       |         |    |  |  |  |  |
| January-March              | 1.29   | 1.30     |       |         |    |  |  |  |  |
| April                      | 0.03   | 1.13     | 39.3  | 44.4    | 0  |  |  |  |  |
| May                        | 1.48   | 2.15     | 54.9  | 56.0    | 0  |  |  |  |  |
| June                       | 1.10   | 2.71     | 64.9  | 64.6    | 3  |  |  |  |  |
| July                       | 1.62   | 2.08     | 69.3  | 70.1    | 8  |  |  |  |  |
| August                     | 0.89   | 1.46     | 70.4  | 68.7    | 11 |  |  |  |  |
| September                  | 0.30   | 1.38     | 57.9  | 58.0    | 1  |  |  |  |  |
| April-July                 | 4.23   | 8.07     |       |         |    |  |  |  |  |
| April-Sept                 | 5.42   | 10.91    |       |         |    |  |  |  |  |
| Total- Oct 19-Sept 20      | 7.93   | 14.05    |       |         |    |  |  |  |  |
| *Number of Days over 89° F |        |          |       |         |    |  |  |  |  |

Last Spring Frost – May 11, 2020 (20.5° F) First Fall Frost – September 8, 2020 (28.0° F)

| Off-Station Precipitation*<br>Montana |       |      |      |      |      |       |  |  |  |  |
|---------------------------------------|-------|------|------|------|------|-------|--|--|--|--|
| Site                                  | April | May  | June | July | Aug  | Total |  |  |  |  |
| Dagmar                                | .01   | 1.55 | 1.70 | 2.14 | 0.28 | 5.68  |  |  |  |  |
| E Fairview                            | 0.14  | 1.63 | 1.25 | 1.96 | 1.02 | 6.00  |  |  |  |  |
| Poplar                                | 0.24  | 1.59 | 3.21 | 2.34 | 0.34 | 7.72  |  |  |  |  |
| Richland                              | 0.11  | 1.55 | 3.52 | 1.92 | 0.10 | 7.20  |  |  |  |  |
| Savage                                | 0.33  | 1.19 | 2.60 | 2.70 | NR   | 6.82  |  |  |  |  |
| Wibaux                                | 1.28  | 2.91 | 2.01 | 2.86 | 0.94 | 10.00 |  |  |  |  |

\*Actual rainfall received at plot location may have been more or less. NR: No Report

Montana State University Eastern Agricultural Research Center 1501 North Central Avenue Sidney, MT 59270

Tel. (406) 433-2208 Fax. (406) 433-7336 E-mail: cchen@montana.edu http://agresearch.montana.edu/earc/index.html





#### HARD SPRING WHEAT VARIETY DESCRIPTIONS

|                        |                  |                  |                 |                |         |              | RESIST         | ANCE TO <sup>2</sup> |              |        | QUALIT         | Y FACTORS        |
|------------------------|------------------|------------------|-----------------|----------------|---------|--------------|----------------|----------------------|--------------|--------|----------------|------------------|
| VARIETY                |                  | YEAR<br>RELEASED | Неіднт          | MATURITY       | LODGING | Stem<br>Rust | LEAF<br>Rust   | Foliar<br>Disease    | Head<br>Scab | SAWFLY | TEST<br>WEIGHT | Grain<br>Protein |
|                        | CANADA           | 2014             | M TALL          | M EARLY        | М       | NA           | MR             | NA                   | М            | NA     | NA             | NA               |
|                        | CANADA           | 2018             | MTALL           | MEARLY         | M       | NA           | MR             | NA                   | NA           | NA     | NA             | NA               |
| AAC CONCORD            | CANADA<br>CANADA | 2019<br>2015     | MEDIUM          | MEDIUM         | M       | R            | R              | M                    | MR           | R      | MEDIUM         | HIGH             |
| AKF-ASTRO              | AKF-ASTRO        | 2015             | MEDIUM<br>SHORT | MEDIUM         | MR      | NA           | MR             | NA                   | NA<br>S      | NA     | NA<br>LOW      | NA<br>LOW        |
|                        |                  | 2016             |                 | MEDIUM         | NA      | MR           | MR<br>MR/MS    | NA                   |              | NA     |                |                  |
|                        | Dynagro<br>NDSU  |                  | MEDIUM          | MEARLY         | M       | R            | MR/MS<br>MR/MS | NA                   | M            | NA     | NA             | NA               |
| BARLOW                 |                  | 2009             | MEDIUM          | MEARLY         | M       | R            |                | MR                   | M            | S      | M HIGH         | M HIGH           |
| BOLLES                 | MN               | 2015             | SHORT           | MLATE          | MR      | NA           | MR             | MR                   | MR           | NA     | MEDIUM         | HIGH             |
| BOOST                  | SD               | 2016             | MEDIUM          | MEDIUM         | M       | R            | MR/MS          | NA                   | M            | NA     | MEDIUM         | HIGH             |
| BRENNAN                | AgriPro          | 2009             | SHORT           | M EARLY        | MR      | R            | MR             | M                    | MS           | S      | MEDIUM         | MEDIUM           |
|                        | DYNAGRO          | 2016             | SHORT           | MEDIUM         | R       | R            | MR             | NA                   | S            | NA     | NA             | NA               |
| CHOTEAU                | MT               | 2004             | M SHORT         | M LATE         | MS      | R            | MR/MS          | MR                   | S            | R      | MEDIUM         | MEDIUM           |
| DUCLAIR                | MT               | 2011             | MEDIUM          | MEDIUM         | MR      | R            | NA             | NA                   | NA           | R      | MEDIUM         | MEDIUM           |
| EGAN3                  | MT               | 2014             | MEDIUM          | M LATE         | MR      | NA           | NA             | NA                   | NA           | S      | HIGH           | M HIGH           |
| Elgin-ND               | NDSU             | 2012             | TALL            | MEDIUM         | Μ       | R            | MS             | NA                   | М            | S      | M LOW          | LOW              |
| Faller                 | NDSU             | 2007             | M TALL          | MEDIUM         | М       | R            | S              | MR                   | М            | S      | MEDIUM         | LOW              |
| Glenn                  | NDSU             | 2005             | M TALL          | M EARLY        | MR      | R            | MR/MS          | М                    | MR           | S      | HIGH           | M HIGH           |
| CP 3100                | CROPLAN          | 2016             | MEDIUM          | MEDIUM         | MR      | R            | MR/MS          | NA                   | MS           | NA     | NA             | NA               |
| CP 3419                | CROPLAN          | 2014             | M SHORT         | LATE           | MR      | NA           | MR             | MR                   | MR           | NA     | M HIGH         | MEDIUM           |
| CP 3504                | CROPLAN          | 2015             | M SHORT         | MEDIUM         | MR      | R            | R              | NA                   | MS           | NA     | NA             | NA               |
| CP 3530                | CROPLAN          | 2015             | TALL            | LATE           | MR      | NA           | NA             | NA                   | NA           | NA     | M HIGH         | HIGH             |
| CP 3616                | CROPLAN          | 2016             | MEDIUM          | MEDIUM         | MR      | NA           | NA             | NA                   | NA           | NA     | NA             | NA               |
| CP 3888                | CROPLAN          | 2017             | M TALL          | MEDIUM         | MR      | NA           | R              | NA                   | MR           | NA     | NA             | NA               |
| Lang-MN                | MN               | 2017             | M TALL          | MEDIUM         | MR      | R            | MR             | NA                   | MS           | NA     | M HIGH         | MEDIUM           |
| LANNING                | MT               | 2017             | MEDIUM          | MEDIUM         | MR      | NA           | NA             | NA                   | М            | NA     | NA             | NA               |
| CS ANCHOR              | LIMAGRAIN        | 2016             | M SHORT         | MEDIUM         | MR      | NA           | NA             | NA                   | NA           | NA     | NA             | NA               |
| CS BREAKAWAY           | LIMAGRAIN        | 2011             | M SHORT         | M EARLY        | М       | NA           | R              | MS                   | М            | S      | M HIGH         | MEDIUM           |
| LCS CANNON             | LIMAGRAIN        | 2018             | M SHORT         | EARLY          | MR      | NA           | MS             | NA                   | М            | NA     | NA             | NA               |
| LCS NITRO              | LIMAGRAIN        | 2015             | SHORT           | MEDIUM         | MR      | NA           | NA             | NA                   | NA           | NA     | M HIGH         | MEDIUM           |
| LCS PRIME              | LIMAGRAIN        | 2015             | MEDIUM          | M EARLY        | MR      | MR           | MR/MS          | NA                   | М            | NA     | M HIGH         | LOW              |
| LCS REBEL              | LIMAGRAIN        | 2017             | MEDIUM          | MEARLY         | M       | R            | MS             | NA                   | M            | NA     | NA             | NA               |
| LCS TRIGGER            | LIMAGRAIN        | 2016             | MEDIUM          | LATE           | M       | R            | R              | NA                   | M            | NA     | NA             | NA               |
|                        | MN               | 2013             | M SHORT         | MEARLY         | R       | R            | MR             | NA                   | M            | NA     | MEDIUM         | HIGH             |
| Mott                   | NDSU             | 2009             | TALL            | MLATE          | MR      | MR           | S              | MS                   | MS           | R      | MEDIUM         | MEDIUM           |
| MS BARRACUDA           | MERIDIAN         | 2000             | MEDIUM          | MEARLY         | MR      | NA           | MR             | NA                   | NA           | NA     | NA             | NA               |
| MS CAMARO              | MERIDIAN         | 2016             | M SHORT         | MEARLY         | M       | R            | R              | NA                   | MR           | NA     | HIGH           | HIGH             |
| MS CHEVELLE            | MERIDIAN         | 2010             | SHORT           | MEARLY         | M       | MR           | R              | NA                   | MR           | NA     | HIGH           | HIGH             |
| ND FROHBERG            | ND               | 2014             |                 |                |         |              |                |                      | MR           |        |                |                  |
| ND VITPRO              | ND               | 2020             | MTALL           | MEDIUM         | MR      | R            | MR             | NA                   |              | NA     | NA<br>HIGH     | NA               |
|                        | PULSE USA        |                  | MEDIUM          | MEARLY         | MR      | R            | MA             | NA                   | M            | NA     |                | HIGH             |
| PRESTIGE               |                  | 2015             | MEDIUM          | MEARLY         | MR      | NA           | NA             | NA                   | NA           | S      | MEDIUM         | MEDIUM           |
| PREVAIL                | SDSU             | 2014             | M SHORT         | EARLY          | M       | NA           | NA             | NA                   | M            | NA     | HIGH           | MHIGH            |
| PROSPER                | NDSU             | 2011             | MEDIUM          | MEDIUM         | MR      | R            | S              | М                    | М            | S      | MEDIUM         | M HIGH           |
|                        | PULSE USA        | 2015             | SHORT           | MLATE          | R       | NA           | R              | NA                   | MR           | MA     | MLOW           | MEDIUM           |
| REEDER                 | NDSU             | 1999             | MEDIUM          | MEDIUM         | MR      | R            | MS             | S                    | S            | S      | MEDIUM         | MEDIUM           |
| SHELLY                 | MN               | 2016             | MEDIUM          | MEDIUM         | MR      | NA           | MR/MS          | NA                   | Μ            | NA     | NA             | NA               |
| SURPASS                | SDSU             | 2016             | M SHORT         | EARLY          | MR      | NA           | MR/MS          | NA                   | MR           | NA     | NA             | NA               |
| SY INGMAR              | SYNGENTA         | 2014             | MEDIUM          | MEDIUM         | MR      | MR           | MR             | MS                   | MR           | S      | M HIGH         | M HIGH           |
| SY ROCKFORD            | SYNGENTA         | NA               | MEDIUM          | M LATE         | М       | MR           | М              | MR                   | MR           | NA     | M HIGH         | M HIGH           |
| SY ROWYN               | Syngenta         | 2013             | M SHORT         | M EARLY        | MR      | MR           | MR             | NA                   | MR           | S      | M HIGH         | M LOW            |
| SY SOREN               | Syngenta         | 2011             | M SHORT         | M EARLY        | MR      | R            | MR             | Μ                    | Μ            | S      | M HIGH         | MEDIUM           |
| SY VALDA               | Syngenta         | 2015             | MEDIUM          | M EARLY        | MR      | R            | MR             | MR                   | Μ            | NA     | MEDIUM         | M HIGH           |
| TCG-CLIMAX             | 21ST C GEN.      |                  | M SHORT         | LATE           | MR      | R            | S              | NA                   | MS           | NA     | HIGH           | HIGH             |
| <b>FCG-CORNERSTONE</b> |                  |                  | M SHORT         | MEDIUM         | MR      | R            | MR/MS          | NA                   | MA           | NA     | NA             | HIGH             |
| TCG-GLENVILLE          | 21ST C GEN.      | 2018             | M SHORT         | M EARLY        | MR      | NA           | R              | NA                   | М            | NA     | NA             | NA               |
| TCG-HEARTLAND          | 21ST C GEN.      | 2019             | M SHORT         | <b>M</b> EARLY | MR      | NA           | R              | NA                   | М            | NA     | NA             | HIGH             |
| TCG-SPITFIRE           | 21ST C GEN.      | 2015             | M SHORT         | MEDIUM         | MR      | R            | NA             | NA                   | MS           | NA     | NA             | NA               |
| VELVA                  | NDSU             | 2011             | M SHORT         | M LATE         | R       | R            | MR/MS          | М                    | MS           | S      | MEDIUM         | MEDIUM           |
| NB9879CLP*             | WB               | 2012             | MEDIUM          | MEDIUM         | R       | S            | S              | MR                   | MS           | R      | MEDIUM         | HIGH             |
| WB9479                 | WB               | 2017             | M SHORT         | MEARLY         | R       | R            | R              | NA                   | MS           | NA     | NA             | NA               |
| WB9590                 | WB               | 2017             | M SHORT         | MEARLY         | NA      | R            | MR             | NA                   | MS           | NA     | NA             | NA               |
| WB9653                 | WB               | 2017             | M SHORT         | MEARLY         | R       | NA           | MR             | NA                   | MS           | NA     | MEDIUM         | MEDIUM           |
| VVB9053                |                  |                  |                 |                |         |              |                |                      |              |        |                |                  |

<sup>1</sup>Refers to developer: CANADA represents developer from that country; MN = University of Minnesota; MT = Montana State University; NDSU = North Dakota State University; SD = South Dakota State University; TS = Tigren Seed; WB = WestBred.

<sup>2</sup>M = Intermediate; MR = Moderately resistant; MS = Moderately susceptible; NA = Not adequately tested; R = Resistant; S = susceptible; VS = Very susceptible.

<sup>3</sup>Resistant to orange wheat blossom midge. \*Clearfield wheat with imidazolinone tolerance.

WREC, Williston, ND 2020

| Hard Red Spring Wheat Dig |                  |            |         | Test              | Vicid                 |                |                |  |
|---------------------------|------------------|------------|---------|-------------------|-----------------------|----------------|----------------|--|
| Variety                   | Days to          | Plant      | Protein | Test              | 2020                  | Yield          | 0. 1/10. 4     |  |
|                           | heading<br>(DAP) | height     | (%)     | weight<br>(lb/bu) | <b>2020</b><br>(bu/a) |                | 3-Yr Avg       |  |
| TCG-SPITFIRE              | (DAF)<br>59      | (in)<br>20 | 17.8    | 59.4              | 33.1                  | (bu/a)<br>51.0 | (bu/a)<br>54.5 |  |
| LCS TRIGGER               | 59<br>63         | 20<br>21   | 18.3    | 59.4<br>59.6      | 34.3                  | 51.0           | 54.5<br>54.4   |  |
| ELGIN-ND                  | 56               | 21         | 18.1    | 59.0<br>58.6      | 34.3<br>30.2          |                | 54.4<br>53.6   |  |
|                           | 50               | 22         |         |                   | 30.2                  | 50.7           |                |  |
| SHELLY                    |                  |            | 17.9    | 60.2              |                       | 50.1           | 52.6           |  |
| SY ROCKFORD               | 57               | 28         | 17.3    | 58.7              | 31.4                  | 50.6           | 52.2           |  |
|                           | 55               | 20         | 18.6    | 59.1              | 30.6                  | 46.4           | 51.9           |  |
| FALLER                    | 60               | 23         | 18.5    | 58.4              | 36.5                  | 50.5           | 51.6           |  |
| AAC Brandon               | 56               | 22         | 17.7    | 59.0              | 34.5                  | 51.8           | 51.3           |  |
| SY VALDA                  | 55               | 20         | 19.1    | 59.8              | 31.0                  | 50.2           | 51.2           |  |
| LCS REBEL                 | 54               | 23         | 15.4    | 60.0              | 34.1                  | 51.2           | 50.6           |  |
| MS CHEVELLE               | 55               | 24         | 16.2    | 59.5              | 28.7                  | 50.2           | 49.7           |  |
| ND VITPRO                 | 54               | 28         | 16.6    | 60.4              | 28.2                  | 44.3           | 48.5           |  |
| GLENN                     | 53               | 28         | 18.0    | 60.9              | 29.2                  | 44.5           | 47.9           |  |
| SY SOREN                  | 56               | 21         | 18.2    | 60.1              | 28.5                  | 44.8           | 46.3           |  |
| MS Camaro                 | 55               | 19         | 16.1    | 59.6              | 24.5                  | 43.4           | 46.3           |  |
| LCS CANNON                | 52               | 21         | 18.3    | 61.3              | 26.7                  | 43.8           | 46.1           |  |
| LINKERT                   | 55               | 21         | 15.3    | 59.3              | 28.4                  | 42.1           | 46.1           |  |
| BARLOW                    | 54               | 23         | 17.5    | 60.0              | 25.9                  | 42.8           | 46.0           |  |
| MS BARRACUDA              | 53               | 20         | 17.3    | 59.4              | 27.9                  | 44.7           | 44.6           |  |
| BOLLES                    | 58               | 27         | 17.9    | 58.4              | 28.0                  | 44.8           | 44.2           |  |
| LANG-MN                   | 55               | 23         | 17.2    | 59.0              | 29.8                  | 46.3           | 44.1           |  |
| SYINGMAR                  | 56               | 27         | 17.6    | 60.6              | 29.9                  | 45.0           | 43.9           |  |
| BOOST                     | 59               | 23         | 18.2    | 58.2              | 28.5                  | 46.1           | 43.6           |  |
| SY LONGMIRE               | 55               | 22         | 17.2    | 60.0              | 32.9                  | 49.3           | -              |  |
| COMMANDER                 | 54               | 21         | 18.0    | 60.1              | 29.5                  | 48.5           | -              |  |
| AMBUSH                    | 53               | 22         | 20.1    | 59.8              | 28.7                  | 48.0           | -              |  |
| TCG-HEARTLAND             | 53               | 21         | 18.4    | 60.1              | 34.5                  | 47.9           | -              |  |
| CP3910                    | 53               | 26         | 18.3    | 60.4              | 27.5                  | 47.5           | -              |  |
| CP3915                    | 55               | 22         | 17.8    | 60.1              | 30.4                  | 47.2           | -              |  |
| SY MCCLOUD                | 55               | 20         | 18.2    | 61.3              | 26.5                  | 47.0           | -              |  |
| CP3530                    | 59               | 23         | 15.6    | 59.4              | 31.2                  | 46.0           | -              |  |
| MN-WASHBURN               | 58               | 20         | 17.4    | 59.2              | 29.0                  | 43.7           | -              |  |
| SY611CL2                  | 56               | 19         | 18.1    | 60.5              | 36.8                  | -              | -              |  |
| TCG-WILDCAT               | 58               | 21         | 15.6    | 60.0              | 32.8                  | -              | -              |  |
| LNR2076                   | 63               | 19         | 19.2    | 58.3              | 32.6                  | -              |                |  |
| MN-TORGY                  | 54               | 25         | 17.2    | 60.0              | 32.1                  | -              | _              |  |
| BALLISTIC                 | 56               | 22         | 18.7    | 58.9              | 31.8                  | -              | -              |  |
| MS RANCHERO               | 53               | 21         | 18.5    | 58.7              | 31.6                  | _              | _              |  |
| CP3903                    | 54               | 21         | 18.4    | 60.2              | 30.1                  | -              | -              |  |
|                           |                  | 22         | 17.3    | 59.7              |                       | -              | -              |  |
| VELOCITY<br>DRIVER        | 55               |            |         |                   | 28.7                  | -              | -              |  |
|                           | 57               | 23         | 17.4    | 60.6              | 28.7                  | -              | -              |  |
| ND FROHBERG               | 56               | 22         | 18.3    | 59.3              | 28.7                  | -              | -              |  |
| DAGMAR                    | 54               | 22         | 17.9    | 59.0              | 28.6                  | -              | -              |  |
| AP MURDOCK                | 52               | 25         | 18.4    | 59.3              | 28.0                  | -              | -              |  |
| AAC Concord               | 55               | 25         | 17.0    | 58.5              | 27.0                  | -              |                |  |
| Mean                      | 22               | 56         | 17.7    | 59.6              | 29.9                  | -              | -              |  |
| CV (%)                    | 21.8             | 1.4        | 2.3     | 0.6               | 9.7                   | -              | -              |  |
| LSD (5%)                  | 7.9              | 1.3        | 0.6     | 0.5               | 4.7                   | -              | -              |  |
| LSD (10%)                 | 6.6              | 1.1        | 0.5     | 0.5               | 3.9                   | -              | -              |  |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft Planted: 04-24-2020

Soil test (0-6"): P=20 ppm; K=285 ppm; pH=6.4; OM=2.0%

Previous crop: Soybeans Harvested: 08-07-2020

Soil type: Williams-Bowbells loam

(0-24"): NO3-N=17 lb/a Applied fertilizers in lb/a: N=86; P<sub>2</sub>O<sub>5</sub>=20; K<sub>2</sub>O=0

Herbicide Application: Supremacy @ 6 oz/A; Tacoma @ 10 oz/A (06-09-2020)

| Variety     | Protein | Test weight | Yield  |
|-------------|---------|-------------|--------|
|             | (%)     | (lb/bu)     | (bu/a) |
| Lanning     | 14.1    | 56.9        | 52.9   |
| Elgin-ND    | 13.6    | 59.7        | 50.7   |
| Faller      | 13.6    | 58.5        | 49.1   |
| Barlow      | 14.5    | 61.7        | 47.1   |
| SY Valda    | 14.2    | 60.0        | 44.8   |
| Bolles      | 14.9    | 59.4        | 43.6   |
| Linkert     | 14.5    | 60.1        | 40.8   |
| SY Ingmar   | 14.9    | 60.5        | 40.6   |
| Glenn       | 14.3    | 62.6        | 39.8   |
| SY Soren    | 15.3    | 60.0        | 39.0   |
| ND VitPro   | 14.7    | 61.8        | 38.7   |
| ND Frohberg | 13.9    | 60.1        | 32.8   |
| Mean        | 14.4    | 60.1        | 43.3   |
| CV (%)      | 3.2     | 0.9         | 12.9   |
| LSD (5%)    | 0.8     | 1.0         | 9.4    |
| LSD (10%)   | 0.6     | 0.8         | 7.8    |

# Hard Red Spring Wheat Dryland Variety Trial - NDSU Keene, McKenzie County, ND 2020

Location: Keene ND; Latitude 47° 59' N; Longitude 102° 48' W; Elevation 2444 ft

Planted: 05/20/2020

Harvested: 09/03/2020

Previous crop: wheat

Soil type: Williams-Bowbells loam

Applied fertilizers in lb/a: N=98;  $P_2O_5=24$ ;  $K_2O=0$ 

Herbicide Application: Bison @ 1.5 pts/a ; Tacoma @ .66 pts/a

## Hard Red Spring Wheat Dryland Variety Trial - NDSU Corinth, Williams County, ND 2020

| Variety                           | Protein                   | Test weight        | Yield  |
|-----------------------------------|---------------------------|--------------------|--------|
|                                   | (%)                       | (lb/bu)            | (bu/a) |
| Faller                            | 13.0                      | 61.2               | 75.3   |
| Elgin-ND                          | 14.5                      | 62.1               | 73.8   |
| Linkert                           | 15.0                      | 61.6               | 71.9   |
| Lanning                           | 15.4                      | 60.7               | 71.1   |
| SY Valda                          | 13.1                      | 61.6               | 70.1   |
| SY Soren                          | 15.2                      | 62.1               | 68.8   |
| Barlow                            | 14.1                      | 63.0               | 66.6   |
| ND VitPro                         | 14.6                      | 63.8               | 66.4   |
| Glenn                             | 14.4                      | 64.4               | 66.2   |
| SY Ingmar                         | 14.3                      | 62.4               | 65.0   |
| Bolles                            | 14.9                      | 61.2               | 61.4   |
| ND Frohberg                       | 14.6                      | 61.6               | 49.5   |
| Mean                              | 14.4                      | 62.1               | 67.2   |
| CV (%)                            | 8.2                       | 0.6                | 10.5   |
| LSD (5%)                          | 2.0                       | 0.6                | 12.0   |
| LSD (10%)                         | 1.7                       | 0.5                | 9.9    |
| Location: Corinth ND; Latitude 48 | ° 36' N; Longitude 103° 1 | 9' W; Elevation 22 | 205 ft |

Location: Corinth ND; Latitude 48° 36' N; Longitude 103° 19' W; Elevation 2205 ft Planted: 05/21/2020 Harvested: 09/04/2020

Previous crop: wheat

Soil type: Williams-Bowbells loam

Applied fertilizers in lb/a: N=98; P<sub>2</sub>O<sub>5</sub>=24; K<sub>2</sub>O=0

Herbicide Application: Bison @ 1.5 pts/a ; Tacoma @ .66 pts/a

| Spring Wheat Irrigated | variety i |          | <u> </u>              |       | Drotoin <sup>†</sup> |          |              | WREC, Nesson Valley, ND 202<br>Yield |              |              |  |
|------------------------|-----------|----------|-----------------------|-------|----------------------|----------|--------------|--------------------------------------|--------------|--------------|--|
|                        | Plant     | Days to  | -                     |       | Protein <sup>†</sup> |          | Test         |                                      | Tielu        |              |  |
| Variety                | Height    | Head     | Lodging               | 2020  | 2-Yr Avg             | 3-Yr Ava | Weight       | 2020                                 | 2-Yr Avg     | 3-Yr Avo     |  |
|                        | (in)      | (DAP*)   | (0 - 9 <sup>+</sup> ) | (%)   | (%)                  | (%)      | (lb/bu)      | (bu/a)                               | (bu/a)       | (bu/a)       |  |
| TCG Spitfire           | 26        | 59       | 0                     | 16.1  | 15.3                 | 15.1     | 61.8         | 76.9                                 | 86.6         | 92.2         |  |
| LCS Trigger            | 29        | 62       | 0                     | 14.1  | 13.7                 | 13.7     | 62.6         | 83.7                                 | 87.9         | 89.0         |  |
| Lanning                | 27        | 55       | 1                     | 17.4  | 16.5                 | 16.5     | 61.1         | 88.7                                 | 88.8         | 88.9         |  |
| SY Ingmar              | 27        | 57       | 0                     | 17.1  | 16.2                 | 16.1     | 62.5         | 76.4                                 | 90.7         | 88.7         |  |
| LCS Rebel              | 30        | 54       | 2                     | 17.1  | 16.1                 | 16.2     | 63.3         | 77.4                                 | 87.5         | 87.6         |  |
| MS Chevelle            | 26        | 53       | 2                     | 16.4  | 15.1                 | 15.2     | 61.9         | 79.0                                 | 86.6         | 87.1         |  |
| CP3419                 | 27        | 60       | 0                     | 16.2  | 15.2                 | 15.1     | 61.3         | 75.9                                 | 82.5         | 85.7         |  |
| CP3530                 | 29        | 59       | 0                     | 16.1  | 15.5                 | 15.7     | 61.4         | 83.6                                 | 84.9         | 85.3         |  |
| SY Rockford            | 29        | 58       | 0                     | 16.1  | 16.1                 | 15.9     | 60.0         | 86.3                                 | 82.9         | 85.1         |  |
| Faller                 | 28        | 58       | 1                     | 16.7  | 15.3                 | 15.2     | 60.9         | 79.6                                 | 85.2         | 84.8         |  |
| Prosper                | 20        | 59       | 0                     | 16.1  | 15.5                 | 15.6     | 61.6         | 79.1                                 | 87.0         | 84.7         |  |
| SY Soren               | 29        | 56       | 0                     | 17.2  | 16.1                 | 16.3     | 61.8         | 71.8                                 | 88.2         | 84.2         |  |
| LCS Cannon             | 28        | 56<br>52 | 2                     | 16.8  | 15.9                 | 16.3     | 63.3         | 71.0                                 | 00.2<br>89.6 | 84.2         |  |
| Redstone               | 20<br>26  | 52<br>52 | 2                     | 10.0  | 15.9                 | 15.5     | 63.3<br>61.3 | 76.6<br>68.6                         | 80.9         | 83.9         |  |
|                        | 30        | 52<br>59 | 2                     | 16.4  | 15.9                 | 16.2     | 61.6         | 75.0                                 | 80.9         | 83.9<br>83.1 |  |
| Mott                   | 30        | 59<br>54 | 1                     |       |                      | 16.2     |              |                                      | 82.4         |              |  |
| Glenn                  |           |          |                       | 17.3  | 16.5                 |          | 63.8         | 76.4                                 |              | 82.5         |  |
| Elgin-ND               | 30        | 56       | 1                     | 17.0  | 16.4                 | 16.4     | 61.6         | 76.4                                 | 80.8         | 81.2         |  |
| LCS Breakaway          | 27        | 53       | 0                     | 17.3  | 15.7                 | 16.1     | 62.7         | 71.6                                 | 84.8         | 80.4         |  |
| ND-VitPro              | 30        | 55       | 1                     | 17.7  | 16.6                 | 16.6     | 63.3         | 75.9                                 | 80.2         | 79.0         |  |
| Bolles                 | 29        | 59       | 0                     | 18.9  | 17.9                 | 18.0     | 60.5         | 63.0                                 | 78.3         | 78.0         |  |
| TCG Climax             | 27        | 61       | 0                     | 18.4  | 17.8                 | 17.7     | 63.4         | 64.6                                 | 76.0         | 77.8         |  |
| MS Camaro              | 27        | 54       | 0                     | 16.9  | 16.1                 | 16.6     | 61.1         | 70.2                                 | 81.1         | 76.6         |  |
| Dyna-Gro Commander     | 27        | 54       | 1                     | 16.6  | 15.7                 | -        | 62.3         | 75.7                                 | 91.3         | -            |  |
| SY McCloud             | 28        | 55       | 0                     | 17.4  | 16.4                 | -        | 62.4         | 75.5                                 | 90.8         | -            |  |
| Dyna-Gro Ambush        | 29        | 54       | 0                     | 17.0  | 16.0                 | -        | 62.7         | 79.3                                 | 90.7         | -            |  |
| CP3888                 | 26        | 57       | 0                     | 16.3  | 15.6                 | -        | 61.3         | 78.8                                 | 89.2         | -            |  |
| TCG Heartland          | 25        | 52       | 1                     | 17.2  | 16.4                 | -        | 63.2         | 79.1                                 | 89.1         | -            |  |
| MS Barracuda           | 27        | 52       | 1                     | 17.8  | 16.7                 | -        | 61.5         | 72.4                                 | 87.5         | -            |  |
| SY Longmire            | 27        | 55       | 1                     | 17.4  | 16.4                 | -        | 62.4         | 76.6                                 | 85.1         | -            |  |
| TCG Stalwart           | 25        | 56       | 0                     | 17.2  | 17.4                 | -        | 61.0         | 69.8                                 | 72.0         | -            |  |
| Dagmar                 | 30        | 54       | 2                     | 17.2  | -                    | -        | 62.3         | 84.1                                 | -            | -            |  |
| MN-Torgy               | 30        | 56       | 0                     | 17.2  | -                    | -        | 62.1         | 83.2                                 | -            | -            |  |
| CP3910                 | 27        | 52       | 1                     | 17.4  | -                    | -        | 63.0         | 80.4                                 | -            | -            |  |
| MS Ranchero            | 30        | 55       | 0                     | 16.2  | -                    | -        | 61.8         | 79.8                                 | -            | -            |  |
| ND-Frohberg            | 29        | 56       | 0                     | 16.7  | -                    | -        | 62.3         | 79.6                                 | -            | -            |  |
| MN-Washburn            | 27        | 58       | 0                     | 16.5  | -                    | -        | 61.4         | 77.8                                 | -            | -            |  |
| Ballistic              | 29        | 57       | 0                     | 16.7  | -                    | -        | 60.8         | 77.5                                 | -            | -            |  |
| 3432                   | 27        | 52       | 1                     | 17.4  | -                    | -        | 62.9         | 77.2                                 | _            | -            |  |
| Driver                 | 27        | 58       | 0                     | 16.7  | -                    | -        | 62.9         | 76.9                                 | -            | -            |  |
| CP3915                 | 26        | 56       | 1                     | 16.9  | -                    | -        | 62.8         | 76.4                                 | -            | -            |  |
| AP Murdock             | 25        | 57       | 0                     | 17.3  | -                    | -        | 61.5         | 70.4                                 | -            | -            |  |
| TCG Wildcat            | 25<br>27  | 57       | 0                     | 17.3  |                      |          | 62.3         | 70.9                                 |              | -            |  |
|                        |           |          | -                     |       | -                    | -        |              | 76.63                                | -            | -            |  |
|                        | 27.8      | 55.8     | 0.5                   | 16.93 | 16.06                | 16.00    | 62.04        |                                      | 84.98        | 84.09        |  |
| C.V. (%)               | 6.7       | 2.1      | 94.9                  | 3.67  | -                    | -        | 0.63         | 9.01                                 | -            | -            |  |
| LSD (5%)               | 2.6       | 1.6      | 0.6                   | 1.01  | -                    | -        | 0.63         | 9.66                                 | -            | -            |  |
| LSD (10%)              | 1.3       | 1.3      | 0.5                   | 0.85  | -                    | -        | 0.53         | 8.09                                 | -            | -            |  |

\* Days after planting + 0: no lodging - 9: plants lying flat on the ground + Protein content adjusted to 12% moisture

Location: Latitude 48 9.9222'N; Longitude 103 6.132'W

Soil test (0-6 in.): P=18 ppm; K=216 ppm; pH=7.7; OM=2.4 %

(0-24 in.): NO3-N=21 lb/a

Yield goal: 90 bu/a

Planting population: 1.5 million seeds/a

Fertilizer applied: 330 lb/a of Urea (46-0-0) [4/30]

Herbicides applied: Perfect Match (1pt/a), Class Act (2qt/100gal) [5/26]

Fungicide applied: Prosaro 421 (8oz/a) [6/29]

Elevation: 1902 ft Previous crop: Field Pea Planted: 4/27/2020 Harvested: 8/18/2020 Soil type: Lihen Loamy Fine Sand Plot size: 92ft<sup>2</sup> Rainfall: 4.7 inches [4/27 - 8/18] Irrigation: 11.85 inches [4/27 - 8/18]

EARC, Sidney, MT 2020

|                    | oca opinig micat |                 |              |         | , clancy, int 202 |
|--------------------|------------------|-----------------|--------------|---------|-------------------|
| Variety            | Plant Height     | Days to Heading | Test Weight† | Protein | Grain Yield†      |
|                    | (inch)           | (Julian*)       | (lb/bu)      | (%)     | (bu/ac)           |
| AGRIPR 141         | 30.7             | 175             | 66.7         | 15.1    | 101.4             |
| AGRIPR 161         | 31.2             | 176             | 64.6         | 14.3    | 97.0              |
| BZ 92413R          | 30.2             | 174             | 65.6         | 14.1    | 90.5              |
| BZ 996434          | 31.5             | 171             | 65.7         | 14.9    | 93.6              |
| CI 13596           | 38.2             | 176             | 64.6         | 15.0    | 69.0              |
| CP3099A            | 34.6             | 179             | 63.4         | 12.0    | 101.3             |
| CP3530             | 36.6             | 176             | 66.0         | 14.6    | 104.8             |
| CP3903             | 33.4             | 172             | 67.5         | 14.7    | 92.1              |
| CP3910             | 30.4             | 171             | 67.0         | 14.4    | 108.6             |
| CP3915             | 32.2             | 174             | 67.5         | 13.9    | 100.5             |
| LIMAGR 171         | 34.6             | 172             | 66.9         | 15.4    | 100.7             |
| LIMAGR 181         | 31.0             | 170             | 67.5         | 15.2    | 101.0             |
| LIMAGR 201         | 34.0             | 179             | 64.0         | 12.4    | 107.9             |
| MS 201             | 33.6             | 171             | 65.3         | 14.0    | 106.6             |
| MS 202             | 30.7             | 170             | 65.9         | 15.2    | 101.1             |
| MS 203             | 31.9             | 172             | 66.0         | 14.0    | 111.3             |
| MT 1716            | 34.4             | 173             | 66.5         | 14.8    | 99.5              |
| MT 1743            | 33.5             | 176             | 63.7         | 14.7    | 93.0              |
| MT 1750            | 34.4             | 172             | 66.2         | 15.0    | 101.0             |
| MT 1775            | 33.0             | 176             | 63.9         | 15.0    | 94.2              |
| MT 1809            | 33.1             | 174             | 64.7         | 15.1    | 106.2             |
| MT 1815            | 32.3             | 177             | 64.8         | 15.0    | 92.1              |
| MT 1824            | 33.4             | 174             | 64.8         | 14.6    | 104.2             |
| MT 1853            | 31.5             | 175             | 65.1         | 15.4    | 86.4              |
| MT 1855            | 34.5             | 177             | 64.8         | 14.9    | 92.1              |
| MT 1857            | 34.4             | 175             | 65.7         | 15.0    | 85.3              |
| MT 1862            | 34.0             | 173             | 64.9         | 15.0    | 96.5              |
| MT 1866            | 32.7             | 174             | 65.2         | 15.2    | 97.9              |
| MT 1868            | 33.5             | 174             | 63.6         | 14.4    | 88.3              |
| MT 1871            | 33.5             | 175             | 64.6         | 14.7    | 89.8              |
| MT 1872            | 32.4             | 171             | 65.7         | 14.9    | 97.5              |
| MT 1902            | 31.8             | 170             | 66.1         | 14.7    | 98.5              |
| MT 1904            | 32.4             | 177             | 65.0         | 14.3    | 90.7              |
| MT 1905            | 32.7             | 175             | 64.4         | 14.4    | 102.3             |
| MT 1906            | 32.4             | 174             | 64.6         | 15.0    | 95.2              |
| MT 1909            | 31.0             | 170             | 66.2         | 14.4    | 92.0              |
| MT 1922            | 32.9             | 174             | 64.0         | 14.6    | 88.2              |
| MT 1927            | 33.8             | 176             | 64.2         | 14.4    | 96.6              |
| MT 1931            | 31.4             | 170             | 65.0         | 15.9    | 100.1             |
| MT 1932            | 32.7             | 171             | 63.6         | 15.6    | 96.4              |
| MT 1932<br>MT 1934 | 31.8             | 172             | 64.0         | 15.9    | 97.8              |
| MT 1935            | 34.0             | 172             | 64.2         | 14.9    | 99.1              |
| MT 1936            | 34.3             | 174             | 66.1         | 14.8    | 103.5             |
| MT 1938            | 33.6             | 174             | 64.7         | 15.4    | 97.8              |
|                    | 00.0             | 115             | 04.7         | 10.4    | 37.0              |

Continued on next page

#### Continued from previous page

Irrigated Advanced Spring Wheat Trial - MSU

EARC, Sidney, MT 2020

| Irrigated Advanc | ed Spring Wheat | Trial - MSU     |              | EARC    | C, Sidney, MT 202 |
|------------------|-----------------|-----------------|--------------|---------|-------------------|
| Variety          | Plant Height    | Days to Heading | Test Weight† | Protein | Grain Yield†      |
|                  | (inch)          | (Julian*)       | (lb/bu)      | (%)     | (bu/ac)           |
| MT 1939          | 32.6            | 173             | 65.3         | 14.8    | 98.9              |
| MT 1943          | 33.3            | 172             | 65.3         | 16.3    | 98.4              |
| MT 1951          | 36.5            | 174             | 62.6         | 16.1    | 99.4              |
| MT 1959          | 29.9            | 171             | 64.7         | 16.3    | 92.3              |
| MT 1961          | 32.0            | 172             | 64.6         | 16.4    | 91.6              |
| ND 695           | 34.2            | 174             | 65.4         | 15.1    | 94.6              |
| PI 574642        | 34.0            | 177             | 64.2         | 15.3    | 85.7              |
| PI 633974        | 32.4            | 175             | 64.2         | 15.6    | 88.0              |
| PI 642366        | 35.0            | 175             | 64.6         | 14.9    | 96.0              |
| PI 660981        | 33.5            | 171             | 64.4         | 15.0    | 89.1              |
| PI 671855        | 32.2            | 176             | 63.4         | 16.1    | 79.6              |
| PI 676978        | 31.4            | 171             | 64.7         | 16.1    | 100.1             |
| PI 679964        | 32.9            | 176             | 63.5         | 15.8    | 87.2              |
| PI 690450        | 34.0            | 171             | 65.2         | 16.1    | 97.1              |
| SYN 181          | 30.6            | 172             | 66.7         | 15.5    | 94.5              |
| SYN 182          | 32.7            | 175             | 66.1         | 14.7    | 100.8             |
| SYN 183          | 29.9            | 174             | 66.5         | 14.9    | 104.5             |
| SYN 201          | 32.2            | 174             | 65.7         | 14.5    | 101.0             |
| SYN 202          | 29.2            | 176             | 66.2         | 14.8    | 98.6              |
| SYN 203          | 31.5            | 174             | 66.0         | 15.3    | 101.8             |
| WB 171           | 28.8            | 172             | 65.5         | 15.3    | 94.7              |
| WB 173           | 28.5            | 175             | 67.7         | 14.6    | 93.9              |
| WB 201           | 28.2            | 170             | 65.5         | 16.1    | 86.4              |
| WB 9879 CLP      | 32.3            | 176             | 64.9         | 15.2    | 86.2              |
| WSCIA            | 34.6            | 175             | 65.2         | 14.7    | 88.7              |
| Mean             | 32.6            | 173.7           | 65.2         | 15.0    | 95.9              |
| P-Value          | <0.0001         | <0.0001         | <0.0001      | <0.0001 | <0.0001           |
| CV (%)           | 3.9             | 0.6             | 0.5          | 3.1     | 5.8               |
| LSD (0.05)       | 2.1             | 1.6             | 0.5          | 0.8     | 9                 |

Planted: 4/24/2020

Harvested: 8/20/2020

(Julian\*) is a continuous count of days since January 1 † Test weight and grain yield were adjusted to 12.0% moisture Soil Test N Avail (lb/ac): 22 N added (lb/ac): 94 Previous crop: Sugar Beet Soil Type: Savage Silty Clay Plot Width: 5 ft Crop Year Precipitation: 7.93" Irrigation (Sprinkler): 5.25" Soil Test P<sub>2</sub>O<sub>5</sub> (ppm): 17.5 P<sub>2</sub>O<sub>5</sub> added (lb/ac): 28

STOP FOCUSING ON HOW STRESSED YOU ARE AND REMEMBER HOW **BLESSED** YOU ARE.

| Recrop Spring Wh | eat - MSU |              |           |              | EARC, S | idney, MT 2020 |
|------------------|-----------|--------------|-----------|--------------|---------|----------------|
|                  |           |              | Days to   |              |         |                |
| Variety          | Stand     | Plant Height | Heading   | Test Weight† | Protein | Grain Yield†   |
|                  | (%)       | (inch)       | (Julian*) | (lb/bu)      | (%)     | (bu/ac)        |
| Brennan          | 85.0      | 23.1         | 170       | 65.0         | 16.4    | 46.2           |
| Choteau          | 85.0      | 21.9         | 175       | 64.3         | 16.4    | 44.4           |
| CP3099A          | 76.7      | 26.4         | 179       | 62.1         | 13.6    | 45.6           |
| CP3530           | 85.0      | 26.5         | 176       | 63.6         | 16.2    | 46.3           |
| CP3903           | 88.3      | 24.7         | 173       | 65.9         | 16.1    | 46.9           |
| CP3910           | 86.7      | 23.5         | 170       | 66.0         | 15.5    | 51.9           |
| CP3915           | 83.3      | 23.3         | 175       | 65.4         | 17.0    | 43.1           |
| Dagmar           | 86.7      | 26.0         | 171       | 65.0         | 16.3    | 50.5           |
| Duclair          | 86.7      | 23.2         | 170       | 63.1         | 15.7    | 45.5           |
| Egan             | 90.0      | 23.1         | 175       | 61.8         | 17.3    | 43.8           |
| Lanning          | 83.3      | 22.5         | 169       | 64.0         | 16.6    | 46.6           |
| Longmire         | 85.0      | 24.3         | 174       | 65.0         | 16.5    | 43.5           |
| MT 1716          | 88.3      | 24.1         | 170       | 65.2         | 15.1    | 50.6           |
| MT 1855          | 83.3      | 27.4         | 175       | 64.5         | 16.1    | 48.8           |
| MT 1866          | 86.7      | 25.6         | 174       | 64.3         | 15.1    | 54.1           |
| NS Presser CLP   | 86.7      | 23.4         | 175       | 62.6         | 17.1    | 42.7           |
| Reeder           | 88.3      | 24.3         | 174       | 64.6         | 16.2    | 45.0           |
| SY Ingmar        | 81.7      | 21.9         | 173       | 65.4         | 16.0    | 48.4           |
| SY Soren         | 88.3      | 21.8         | 172       | 64.7         | 16.8    | 40.3           |
| Vida             | 85.0      | 24.8         | 175       | 64.2         | 15.3    | 50.8           |
| XY McCloud       | 90.0      | 23.7         | 172       | 65.3         | 16.2    | 47.8           |
| XY Rockford      | 88.3      | 24.0         | 176       | 63.5         | 16.2    | 48.0           |
| Mean             | 85.8      | 24.1         | 173.4     | 64.3         | 16.1    | 46.9           |
| P-Value          | 0.75      | <0.0001      | <0.0001   | <0.0001      | <0.0001 | 0.10           |
| CV (%)           | 7.0       | 4.9          | 0.8       |              | 3.0     | 9.9            |
| LSD (0.05)       | 9.9       | 1.9          | 2.2       |              | 0.8     | 7.7            |

#### **Recrop Spring Wheat - MSU**

EARC, Sidney, MT 2020

Planted: 4/22/2020

Harvested: 8/13/2020

(Julian\*) is a continuous count of days since January 1

† Test weight and grain yield were adjusted to 12.0% moisture

Soil Test N Avail (lb/ac): 21

N added (lb/ac): 63

Previous crop: Pea Soil Type: Williams Clay Loam Plot Width: 5 ft Crop Year Precipitation: 8.16" Soil Test  $P_2O_5$  (ppm): 21.3  $P_2O_5$  added (lb/ac): 19

"Integrity is choosing your thoughts and actions based on values rather than personal gain." -----

| Roosevelt County Dry |              |              | Drotoin | Poplar, MT 20    |
|----------------------|--------------|--------------|---------|------------------|
| Variety              | Plant Height | Test Weight† | Protein | Grain Yield†     |
|                      | (inch)       | (lb/bu)      | (%)     | (bu/ac)          |
| Brennan              | 26.7         | 66.2         | 16.1    | 57.8             |
| Choteau              | 30.5         | 64.8         | 15.6    | 65.1             |
| CP3099A              | 34.4         | 61.0         | 12.5    | 58.4             |
| CP3530               | 32.8         | 65.0         | 15.4    | 68.0             |
| CP3903               | 30.4         | 66.4         | 15.4    | 60.3             |
| CP3910               | 29.6         | 66.3         | 15.6    | 70.3             |
| CP3915               | 29.1         | 66.3         | 15.4    | 64.2             |
| Dagmar               | 29.9         | 65.3         | 16.4    | 66.7             |
| Duclair              | 29.3         | 64.5         | 14.9    | 65.6             |
| Egan                 | 30.3         | 63.6         | 16.5    | 62.6             |
| Lanning              | 29.6         | 65.0         | 16.9    | 70.4             |
| Longmire             | 29.6         | 65.7         | 15.7    | 66.0             |
| MT 1716              | 31.5         | 66.0         | 15.3    | 70.1             |
| MT 1855              | 33.5         | 64.7         | 15.5    | 64.3             |
| MT 1866              | 31.9         | 65.3         | 15.3    | 71.5             |
| NS Presser CLP       | 33.2         | 63.4         | 16.4    | 62.8             |
| Reeder               | 31.8         | 65.7         | 15.8    | 69.2             |
| SY Ingmar            | 29.0         | 65.9         | 16.1    | 61.2             |
| SY Soren             | 28.5         | 65.9         | 16.2    | 63.3             |
| Vida                 | 31.7         | 64.4         | 15.5    | 72.0             |
| XY McCloud           | 30.2         | 66.5         | 15.9    | 60.5             |
| XY Rockford          | 31.2         | 64.0         | 15.8    | 65.2             |
| Mean                 | 30.7         | 65.1         | 15.6    | 65.2             |
| P-Value              | <0.0001      | <0.0001      | <0.0001 | <0.0001          |
| CV (%)               | 5.1          | 0.7          | 1.5     | 5.2              |
| LSD (0.05)           | 2.6          | 0.7          | 0.4     | 5.6              |
| Planted: 4/29/2020   |              |              |         | Previous crop: P |
|                      |              |              |         |                  |

Harvested: 8/25/2020

Plot Width: 5 ft

(Julian\*) is a continuous count of days since January 1

† Test weight and grain yield were adjusted to 12.0% moisture 10-40-0-10 sulfur-1Zn

N added (lb/ac): 63

Crop Year Precipitation: 7.72" P<sub>2</sub>O<sub>5</sub> added (lb/ac): 19

Additional Fertilizer: MESZ @ 80 lbs/ac

| Sheridan County Dryl |              |              |         | Dagmar, MT 2020 |
|----------------------|--------------|--------------|---------|-----------------|
| Variety              | Plant Height | Test Weight† | Protein | Grain Yield†    |
|                      | (inch)       | (lb/bu)      | (%)     | (bu/ac)         |
| Brennan              | 24.8         | 66.2         | 16.9    | 53.3            |
| Choteau              | 28.7         | 65.2         | 15.8    | 62.9            |
| CP3099A              | 31.1         | 61.5         | 12.3    | 53.9            |
| CP3530               | 31.0         | 65.4         | 16.0    | 62.9            |
| CP3903               | 28.6         | 66.7         | 15.9    | 62.2            |
| CP3910               | 25.3         | 67.5         | 15.7    | 64.2            |
| CP3915               | 27.6         | 67.0         | 16.0    | 66.3            |
| Dagmar               | 27.7         | 66.0         | 16.6    | 63.4            |
| Duclair              | 27.5         | 65.0         | 15.1    | 64.1            |
| Egan                 | 28.2         | 63.7         | 16.4    | 57.6            |
| Lanning              | 28.3         | 65.0         | 17.3    | 65.3            |
| Longmire             | 28.5         | 66.8         | 15.9    | 65.6            |
| MT 1716              | 28.0         | 66.8         | 15.0    | 67.2            |
| MT 1855              | 31.5         | 65.7         | 15.2    | 63.2            |
| MT 1866              | 28.5         | 66.1         | 15.3    | 70.4            |
| NS Presser CLP       | 27.6         | 63.8         | 16.2    | 59.0            |
| Reeder               | 30.2         | 66.1         | 15.9    | 68.0            |
| SY Ingmar            | 27.0         | 67.3         | 16.1    | 62.9            |
| SY Soren             | 25.7         | 66.5         | 17.2    | 58.2            |
| VIDA                 | 28.5         | 65.8         | 15.1    | 70.4            |
| XY McCloud           | 27.8         | 66.6         | 16.9    | 53.5            |
| XY Rockford          | 29.1         | 65.1         | 15.4    | 61.4            |
| Mean                 | 28.2         | 65.7         | 15.8    | 62.5            |
| P-Value              | <0.0001      | <0.0001      | <0.0001 | <0.0001         |
| CV (%)               | 4.4          | 0.4          | 1.6     | 5.6             |
| LSD (0.05)           | 2.0          | 0.4          | 0.4     | 5.7             |

Planted: 4/30/2020

Harvested: 8/31/2020

Previous crop: Lentil Plot Width: 5 ft

P<sub>2</sub>O<sub>5</sub> added (lb/ac): 19

Crop Year Precipitation: 5.68"

(Julian\*) is a continuous count of days since January 1 † Test weight and grain yield were adjusted to 12.0% moisture

N added (lb/ac): 63

11

# Wheat Variety Comparisons, Williston, ND 2020

Gautam Pradhan, Jerald Bergman, Kyle Dragseth

The gross return per acre was based on three-year average yield of spring wheat (2018, 2019, 2020) and twoyear average yield of durum wheat (2019, 2020) from dryland varietal trials, and the market price obtained in the third week of November 2020 from different grain elevators in and around Williston.

|              | Sprii | ng Whea              | at     |           |              |       | Durum   |        |             |
|--------------|-------|----------------------|--------|-----------|--------------|-------|---------|--------|-------------|
|              |       | r Avg.               | Gross  | + or -    |              | 2 Y   | r Avg.  | Gross  | + or -      |
| Variety      | Yield | Protein <sup>#</sup> | Return | ND VitPro | Variety      | Yield | Protein | Return | ND Riveland |
|              | bu/a  | %                    | \$/a   | \$/a      |              | bu/a  | %       | \$/a   | \$/a        |
| TCG-Spitfire | 54.5  | 15.5                 | 289.00 | 31.96     | TCG-Bright   | 49.5  | 15.5    | 296.97 | 3.19        |
| LCS Trigger  | 54.4  | 13.9                 | 288.45 | 31.41     | Grenora      | 49.2  | 16.7    | 295.05 | 1.27        |
| Elgin-ND     | 53.6  | 15.7                 | 284.23 | 27.19     | ND Riveland  | 49.0  | 17.3    | 293.78 | 0.00        |
| Shelly       | 52.6  | 14.8                 | 278.98 | 21.94     | CDC Verona   | 48.3  | 16.9    | 289.88 | -3.90       |
| SY Rockford  | 52.2  | 15.1                 | 276.63 | 19.59     | Divide       | 47.6  | 18.0    | 285.62 | -8.17       |
| Lanning      | 51.9  | 16.0                 | 275.30 | 18.26     | Mountrail    | 46.8  | 17.5    | 280.66 | -13.13      |
| Faller       | 51.6  | 15.5                 | 273.40 | 16.36     | AC Commander | 46.5  | 17.9    | 278.81 | -14.97      |
| AAC Brandon  | 51.3  | 15.8                 | 271.88 | 14.84     | VT Peak      | 46.0  | 16.2    | 276.22 | -17.56      |
| SY Valda     | 51.2  | 15.0                 | 271.17 | 14.13     | Rugby        | 46.0  | 16.3    | 275.76 | -18.02      |
| LCS Rebel    | 50.6  | 15.4                 | 268.02 | 10.98     | Alkabo       | 45.6  | 16.5    | 273.32 | -20.46      |
| MS Chevelle  | 49.7  | 15.1                 | 263.60 | 6.56      | Tioga        | 45.1  | 17.4    | 270.79 | -22.99      |
| ND VitPro    | 48.5  | 14.9                 | 257.04 | 0.00      | ND Grano     | 45.1  | 17.1    | 270.43 | -23.35      |
| Glenn        | 47.9  | 15.8                 | 253.64 | -3.40     | Ben          | 44.9  | 16.7    | 269.48 | -24.30      |
| SY Soren     | 46.3  | 16.4                 | 245.57 | -11.47    | Carpio       | 44.6  | 16.9    | 267.34 | -26.44      |
| MS Camaro    | 46.3  | 16.0                 | 245.20 | -11.84    | Joppa        | 44.4  | 16.7    | 266.51 | -27.27      |
| LCS Cannon   | 46.1  | 15.0                 | 244.44 | -12.60    | Strongfield  | 44.4  | 17.2    | 266.47 | -27.31      |
| Linkert      | 46.1  | 16.3                 | 244.24 | -12.80    | Maier        | 44.3  | 16.6    | 266.00 | -27.78      |
| Barlow       | 46.0  | 15.6                 | 243.71 | -13.33    | Lebsock      | 44.2  | 16.5    | 264.92 | -28.86      |
| ND Frohberg* | 44.6  | 17.0 <sup>§</sup>    | 236.15 | -20.89    | Pierce       | 43.8  | 17.2    | 263.05 | -30.73      |
| MS Barracuda | 44.6  | 15.6                 | 236.12 | -20.92    | AAC Cabri    | 43.8  | 17.8    | 262.91 | -30.87      |
| Bolles       | 44.2  | 16.7                 | 234.52 | -22.52    | TCG-Webster  | 42.6  | 15.7    | 255.37 | -38.41      |
| Lang-MN      | 44.1  | 16.1                 | 233.47 | -23.57    | Normanno     | 40.8  | 16.3    | 244.89 | -48.90      |
| SY Ingmar    | 43.9  | 15.8                 | 232.44 | -24.60    | Alzada       | 39.7  | 17.2    | 237.99 | -55.79      |
| Boost        | 43.6  | 15.9                 | 231.13 | -25.91    |              |       |         |        |             |

#This year protein credit was not available for spring wheat.

\*ND Frohberg is a newly released variety.

<sup>§</sup>Average of two years (2019 & 2020).

#### YOU MIGHT BE A FARMER IF:

You only need two tools - Duct tape and WD-40.

If it moves and shouldn't, use duct tape. If it doesn't move and should, use WD-40.

#### **DURUM VARIETY DESCRIPTIONS**

|                 |         |                 |        |                      |             | Res | istance <sup>-</sup> | To²         |     |                | Quality                     | / Factor        | S                  |
|-----------------|---------|-----------------|--------|----------------------|-------------|-----|----------------------|-------------|-----|----------------|-----------------------------|-----------------|--------------------|
| VARIETY         |         | YEAR<br>RELEASE | Height | <b>M</b> ATURIT<br>Y | Lodgin<br>g |     | FOLIAR<br>DISEAS     | Rоот<br>Rот | SCA | Test<br>Weight | Kernel<br>Size <sup>3</sup> | GRAIN<br>PROTEI | OVERALL<br>QUALITY |
| AC COMMANDER    | CANADA  | 2002            | Μ      | LATE                 | М           | R   | MS                   | М           | VS  | MEDIUM         | LARGE                       | M HIGH          | GOOD               |
| AAC CABRI* **   | CANADA  | 2016            | M TALL | M LATE               | М           | R   | М                    | NA          | MS  | MEDIUM         | M LARGE                     | HIGH            | EXCELLENT          |
| Alkabo          | NDSU    | 2005            | MEDIUM | MEDIUM               | R           | R   | MR                   | М           | MS  | HIGH           | LARGE                       | M LOW           | GOOD               |
| Alzada          | WB      | 2004            | SHORT  | EARLY                | М           | R   | S                    | М           | VS  | MEDIUM         | LARGE                       | MEDIU           | EXCELLENT          |
| Ben             | NDSU    | 1996            | TALL   | MEDIUM               | MR          | R   | MR                   | М           | S   | V HIGH         | V LARGE                     | M HIGH          | AVERAGE            |
| CARPIO          | NDSU    | 2012            | TALL   | M LATE               | MS          | R   | М                    | NA          | М   | MEDIUM         | LARGE                       | M HIGH          | EXCELLENT          |
| CDC VERONA      | CANADA  | 2010            | M TALL | M LATE               | М           | R   | MR                   | NA          | S   | MEDIUM         | LARGE                       | M HIGH          | GOOD               |
| DIVIDE          | NDSU    | 2005            | M TALL | M LATE               | М           | R   | М                    | М           | MR  | MEDIUM         | MEDIUM                      | M HIGH          | EXCELLENT          |
| GRENORA         | NDSU    | 2005            | MEDIUM | M EARLY              | М           | R   | М                    | MR          | MS  | MEDIUM         | MEDIUM                      | MEDIU           | GOOD               |
| JOPPA           | NDSU    | 2013            | MEDIUM | MEDIUM               | R           | R   | М                    | NA          | Μ   | MEDIUM         | LARGE                       | MEDIU           | GOOD               |
| LEBSOCK         | NDSU    | 1999            | M TALL | MEDIUM               | R           | R   | М                    | MS          | MS  | HIGH           | LARGE                       | MEDIU           | AVERAGE            |
| MAIER           | NDSU    | 1998            | M TALL | M LATE               | М           | R   | М                    | М           | S   | HIGH           | MEDIUM                      | HIGH            | AVERAGE            |
| MOUNTRAIL       | NDSU    | 1998            | M TALL | M LATE               | М           | R   | М                    | М           | S   | MEDIUM         | MEDIUM                      | MEDIU           | AVERAGE            |
| ND GRANO*       | NDSU    | 2017            | MEDIUM | M LATE               | MS          | R   | NA                   | NA          | М   | HIGH           | MEDIUM                      | M HIGH          | GOOD               |
| ND RIVELAND*    | NDSU    | 2017            | TALL   | MEDIUM               | М           | R   | NA                   | NA          | Μ   | HIGH           | MEDIUM                      | MHIGH           | GOOD               |
| PIERCE          | NDSU    | 2001            | M TALL | MEDIUM               | М           | R   | MS                   | MR          | S   | V HIGH         | MEDIUM                      | MEDIU           | EXCELLENT          |
| RUGBY           | NDSU    | 1973            | TALL   | M EARLY              | R           | R   | MR                   | М           | S   | MEDIUM         | MEDIUM                      | MEDIU           | POOR               |
| SILVER          | MT      | 2012            | SHORT  | EARLY                | R           | NA  | М                    | NA          | S   | M HIGH         | SMALL                       | M HIGH          | GOOD               |
| AAC SPITFIRE*   | CANADA  | 2016            | Μ      | MEDIUM               | R           | R   | М                    | NA          | S   | MEDIUM         | M LARGE                     | HIGH            | GOOD               |
| AAC             | CANADA  | 2018            | Μ      | MEDIUM               | R           | R   | М                    | NA          | MS  | MEDIUM         | M LARGE                     | HIGH            | GOOD               |
| AC STRONGFIELD* | CANADA  | 2004            | M TALL | M LATE               | М           | R   | М                    | NA          | S   | MEDIUM         | M LARGE                     | V HIGH          | GOOD               |
| TIOGA           | NDSU    | 2010            | TALL   | M LATE               | MR          | R   | М                    | NA          | MS  | M HIGH         | MEDIUM                      | M HIGH          | EXCELLENT          |
| TCG-BRIGHT      | TCG     | 2019            | MEDIUM | M EARLY              | М           | R   | М                    | NA          | S   | HIGH           | MEDIUM                      | MEDIU           | EXCELLENT          |
| TCG-WEBSTER     | TCG     | 2021            | SHORT  | EARLY                | R           | R   | MS                   | М           | S   | MEDIUM         | MEDIUM                      | MEDIU           | EXCELLENT          |
| VT PEAK         | Viterra | 2010            | M TALL | MEDIUM               | MS          | NA  | NA                   | NA          | NA  | MEDIUM         | M SMALL                     | M HIGH          | GOOD               |

<sup>1</sup>Refers to developer: CANADA represents developer from that country; DGP = Dakota Growers Pasta; MT = Montana State University; NDSU = North Dakota State University; TCG = 21<sup>st</sup> Century Genetics; WB = WestBred.

 $^{2}MR$  = Moderately resistant; M = Intermediate; MS = Moderately susceptible; NA = Not adequately tested; R = Resistant; S = Susceptible; VS = Very susceptible. All varieties are resistant to current stem rust races. Foliar Disease = reaction to tan spot and septoria leaf spot complex.

<sup>3</sup>Number seeds/lb: Small = Less than 11,000; Medium = 11,000-12,000; Large = More than 12,000.

\*Indicates low cadmium accumulating variety. \*\*Indicates Solid Stem sawfly tolerance



#### **Durum Dryland Variety Trial - NDSU**

WREC, Williston, ND 2020

|                | Days to | Plant  |       |         | Test    |        | Yield    |             |
|----------------|---------|--------|-------|---------|---------|--------|----------|-------------|
| Variety        | heading | height | Stand | Protein | weight  | 2020   | 2-Yr Avg | 3-Yr<br>Avg |
|                | (DAP)   | (in)   | (%)   | (%)     | (lb/bu) | (bu/a) | (bu/a)   | (bu/a)      |
| AC COMMANDER   | 59      | 19     | 93    | 18.0    | 58.9    | 29.5   | 46.5     | 43.7        |
| CDC VERONA     | 60      | 22     | 90    | 18.6    | 58.8    | 31.2   | 48.3     | 43.6        |
| GRENORA        | 56      | 20     | 85    | 17.0    | 58.9    | 30.7   | 49.2     | 43.6        |
| DIVIDE         | 60      | 23     | 88    | 17.5    | 58.6    | 31.6   | 47.6     | 42.9        |
| TIOGA          | 59      | 23     | 87    | 16.9    | 59.7    | 24.2   | 45.1     | 42.6        |
| MOUNTRAIL      | 60      | 21     | 88    | 17.4    | 58.2    | 25.9   | 46.8     | 42.5        |
| ALKABO         | 58      | 21     | 83    | 16.6    | 59.3    | 28.2   | 45.6     | 42.3        |
| STRONGFIELD    | 60      | 21     | 87    | 19.4    | 58.5    | 25.5   | 44.4     | 42.2        |
| VT PEAK        | 57      | 23     | 90    | 17.6    | 59.8    | 27.7   | 46.0     | 42.2        |
| NDRIVELAND     | 59      | 21     | 93    | 17.7    | 59.0    | 29.4   | 49.0     | 42.2        |
| JOPPA          | 59      | 23     | 88    | 16.8    | 58.9    | 27.4   | 44.4     | 41.6        |
| CARPIO         | 60      | 22     | 93    | 16.2    | 59.4    | 29.3   | 44.6     | 41.2        |
| MAIER          | 59      | 21     | 85    | 18.5    | 58.5    | 23.2   | 44.3     | 40.6        |
| NDGRANO        | 60      | 20     | 87    | 17.6    | 59.4    | 26.5   | 45.1     | 39.9        |
| RUGBY          | 58      | 24     | 90    | 18.1    | 58.8    | 27.5   | 46.0     | 39.8        |
| LEBSOCK        | 56      | 22     | 92    | 16.8    | 59.2    | 25.5   | 44.2     | 39.8        |
| BEN            | 58      | 24     | 83    | 17.8    | 58.7    | 26.9   | 44.9     | 39.7        |
| PIERCE         | 58      | 24     | 90    | 16.2    | 59.7    | 26.1   | 43.8     | 39.5        |
| AL ADA         | 56      | 20     | 87    | 17.1    | 58.3    | 25.1   | 39.7     | 38.3        |
| NORMANNO       | 56      | 17     | 87    | 16.0    | 57.3    | 24.6   | 40.8     | 38.3        |
| TCG-Bright     | 57      | 21     | 94    | 15.9    | 59.7    | 31.4   | 49.5     | -           |
| AAC CABRI      | 62      | 22     | 88    | 19.3    | 59.0    | 24.4   | 43.8     | -           |
| TCG-Webster    | 55      | 20     | 87    | 15.6    | 59.6    | 24.6   | 42.6     | -           |
| AAC Stronghold | 59      | 21     | 88    | 18.2    | 59.2    | 27.0   | -        | -           |
| Mean           | 59      | 22     | 88    | 17.8    | 58.9    | 27.1   | -        | -           |
| CV (%)         | 1.7     | 7      | 5.3   | 2.1     | 0.7     | 11.3   | -        | -           |
| LSD (5%)       | 1.7     | 3      | 7.5   | 0.6     | 0.6     | 4.9    | -        | -           |
| LSD (10%)      | 1.4     | 2      | 6.3   | 0.5     | 0.5     | 4.1    | -        | -           |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft Previous crop: Soybeans Planted: 04-23-2020

Harvested: 08-06-2020 Soil type: Williams-Bowbells loam

Soil test (0-6"): P=20 ppm; K=285 ppm; pH=6.4; OM=2.0% (0-24"): NO3-N=17 lb/a

Applied fertilizers in Ib/a: N=86; P<sub>2</sub>O<sub>5</sub>=20; K<sub>2</sub>O=0

Herbicide Application: Supremacy @ 6 oz/a ; Tacoma @ 10 oz/a (6/9/20)

Farm Girl Tip: Frisk the laundry! If not, you will always find interesting things in your dryer: corn, soybeans, bolts, etc.

| Variety        | Protein | Test weight | Yield  |
|----------------|---------|-------------|--------|
|                | (%)     | (lb/bu)     | (bu/a) |
| Divide         | 16.4    | 58.9        | 39.7   |
| Carpio         | 15.3    | 58.7        | 39.1   |
| ND Riveland    | 15.3    | 59.5        | 38.0   |
| Grenora        | 15.5    | 57.7        | 37.7   |
| Tioga          | 15.2    | 59.4        | 37.3   |
| AAC Spitfire   | 17.1    | 56.6        | 36.7   |
| Joppa          | 15.3    | 59.2        | 35.1   |
| ND Grano       | 15.6    | 57.9        | 32.6   |
| Alkabo         | 15.1    | 58.8        | 31.5   |
| Mountrail      | 15.3    | 57.6        | 31.1   |
| Lebsock        | 16.5    | 58.2        | 30.5   |
| AAC Stronghold | 17.3    | 58.4        | 28.8   |
| Mean           | 15.8    | 58.4        | 34.8   |
| CV (%)         | 3.1     | 0.9         | 8.9    |
| LSD (5%)       | 0.8     | 0.8         | 5.2    |
| LSD (10%)      | 0.7     | 0.7         | 4.3    |

# Durum Dryland Variety Trial - NDSU Keene, McKenzie County, ND 2020

Location: Keene ND; Latitude 47° 59' N; Longitude 102° 48' W; Elevation 2444 ft

Harvested: 09/03/2020

Planted: 05/20/2020 Previous crop: wheat

Soil type: Williams-Bowbells loam

Applied fertilizers in lb/a: N=98; P<sub>2</sub>O<sub>5</sub>=24; K<sub>2</sub>O=0

Herbicide Application: Bison @ 1.5 pts/a ; Tacoma @ .66 pts/a (6/23/20)

#### Durum Dryland Variety Trial - NDSU Corinth, Williams County, ND 2020

| Variety                           | Protein                    | Test weight        | Yield  |
|-----------------------------------|----------------------------|--------------------|--------|
|                                   | (%)                        | (lb/bu)            | (bu/a) |
| AAC Stronghold                    | 17.8                       | 60.8               | 81.3   |
| ND Grano                          | 16.7                       | 61.8               | 80.5   |
| AAC Spitfire                      | 16.4                       | 60.7               | 75.3   |
| Grenora                           | 16.3                       | 60.8               | 71.2   |
| Tioga                             | 15.9                       | 61.5               | 70.4   |
| ND Riveland                       | 16.0                       | 61.6               | 69.4   |
| Joppa                             | 16.1                       | 61.8               | 69.3   |
| Carpio                            | 15.9                       | 61.9               | 68.7   |
| Lebsock                           | 16.2                       | 62.0               | 67.0   |
| Alkabo                            | 14.6                       | 61.7               | 63.7   |
| Mountrail                         | 15.7                       | 60.8               | 62.8   |
| Divide                            | 17.3                       | 60.7               | 58.8   |
| Mean                              | 16.2                       | 61.3               | 69.9   |
| CV (%)                            | 6.1                        | 0.5                | 11.5   |
| LSD (5%)                          | 1.7                        | 0.5                | 13.6   |
| LSD (10%)                         | 1.4                        | 0.4                | 11.2   |
| Location: Corinth ND: Latitude 48 | 3° 36' N. Longitude 103° 1 | 9' W. Elevation 22 | 205 ft |

Location: Corinth ND; Latitude 48° 36' N; Longitude 103° 19' W; Elevation 2205 ft Planted: 05/21/2020 Harvested: 09/04/2020 Previous crop: wheat Soil type: Williams-Bowbells loam

Applied fertilizers in Ib/a: N=98; P<sub>2</sub>O<sub>5</sub>=24; K<sub>2</sub>O=0

Herbicide Application: Bison @ 1.5 pts/a ; Tacoma @ .66 pts/a (6/23/20)

| Durum Irrigated Variety Tri                              | ety Trial - NDSU | SU             |                                                 |            |                         |                                          | 5           | VREC, Ne     | WREC, Nesson Valley, ND 2020           | y, ND 2020                       |
|----------------------------------------------------------|------------------|----------------|-------------------------------------------------|------------|-------------------------|------------------------------------------|-------------|--------------|----------------------------------------|----------------------------------|
|                                                          |                  |                |                                                 |            | Protein <sup>†</sup>    |                                          |             |              | Yield                                  |                                  |
|                                                          | Days to          | Plant          |                                                 | 0000       |                         |                                          | Test        | 0000         |                                        |                                  |
| variety                                                  | DAP)             | neight<br>(in) | (0 - 0,                                         | (%)        | <pre>2-TF AVG (%)</pre> | 3-11 Avg<br>(%)                          | (Ib/bu)     | (bu/a)       | <pre>2-TF AVG (bu/a)</pre>             | <b>3-TFAVg</b><br>(bu/a)         |
| Grenora                                                  | 58               | 31             | 0                                               | 17.2       | 15.8                    | 15.9                                     | 61.3        | 96.7         | 84.7                                   | 77.6                             |
| ND Riveland                                              | 60               | 37             | 0                                               | 17.4       | 16.1                    | 16.2                                     | 61.9        | 87.3         | 79.9                                   | 75.0                             |
| Joppa                                                    | 60               | 31             | 0                                               | 17.6       | 15.6                    | 15.7                                     | 61.4        | 80.5         | 79.8                                   | 72.6                             |
| AC Commander                                             | 59               | 27             | 0                                               | 17.9       | 16.0                    | 16.0                                     | 61.0        | 83.2         | 81.8                                   | 71.7                             |
| Divide                                                   | 60               | 30             | 0                                               | 18.6       | 16.5                    | 16.6                                     | 60.2        | 71.0         | 73.8                                   | 69.6                             |
| Tioga                                                    | 59               | 34             | 0                                               | 17.8       | 16.2                    | 16.2                                     | 60.1        | 71.9         | 73.8                                   | 69.4                             |
| Alkabo                                                   | 58               | 28             | 0                                               | 17.5       | 16.0                    | 15.9                                     | 60.8        | 71.8         | 72.4                                   | 69.1                             |
| Carpio                                                   | 61               | 32             | 0                                               | 18.5       | 16.5                    | 16.4                                     | 60.8        | 72.0         | 71.0                                   | 68.9                             |
| ND Grano                                                 | 60               | 30             | 0                                               | 17.6       | 16.0                    | 16.0                                     | 61.5        | 74.0         | 74.9                                   | 68.5                             |
| Mountrail                                                | 60               | 30             | 0                                               | 18.6       | 16.5                    | 16.3                                     | 59.8        | 70.5         | 73.3                                   | 67.9                             |
| Alzada                                                   | 56               | 26             | 0                                               | 17.2       | 15.9                    | 15.8                                     | 61.5        | 82.8         | 74.8                                   | 67.8                             |
| Strongfield                                              | 58               | 32             | 0                                               | 19.4       | 17.1                    | 17.2                                     | 60.5        | 68.1         | 70.8                                   | 67.0                             |
| Lebsock                                                  | 59               | 30             | 0                                               | 18.8       | 16.8                    | 16.6                                     | 61.1        | 73.5         | 71.5                                   | 66.3                             |
| Rugby                                                    | 58               | 34             | 0                                               | 18.8       | 16.9                    | 16.8                                     | 60.2        | 70.0         | 69.9                                   | 65.0                             |
| Pierce                                                   | 58               | 32             | 0                                               | 18.2       | 16.4                    | 16.3                                     | 61.0        | 67.5         | 69.6                                   | 63.3                             |
| Maier                                                    | 59               | 29             | 0                                               | 20.0       | 17.7                    | 17.4                                     | 59.0        | 64.7         | 67.4                                   | 62.8                             |
| CDC Verona                                               | 59               | 28             | 0                                               | 20.3       | 18.0                    | 18.0                                     | 60.2        | 66.1         | 62.5                                   | 61.7                             |
| AAC Cabri                                                | 61               | 30             | ~                                               | 20.5       | 17.8                    |                                          | 60.7        | 71.9         | 72.9                                   | ı                                |
| VT Peak                                                  | 58               | 30             | 0                                               | 19.0       | 16.9                    | ı                                        | 61.4        | 67.4         | 70.1                                   | ı                                |
| AAC Stronghold                                           | 58               | 30             | 0                                               | 18.8       |                         |                                          | 61.5        | 75.5         | I                                      | ı                                |
| MEAN                                                     | 58.8             | 30.5           | 0.1                                             | 18.49      | 16.56                   | 16.42                                    | 60.79       | 74.31        | 82.69                                  | 74.71                            |
| C.V. (%)                                                 | 3.2              | 9.9            | 542.9                                           | 4.39       |                         |                                          | 1.44        | 11.89        |                                        |                                  |
| LSD (5%)                                                 | 2.6              | 4.3            | 0.4                                             | 1.35       |                         |                                          | 1.44        | 15.63        |                                        |                                  |
| LSD (10%)                                                | 2.2              | 3.6            | 0.3                                             | 1.12       |                         |                                          | 1.20        | 13.05        |                                        | I                                |
| * Days after planting                                    | . :              | ng - 9: plar   | io lodging - 9: plants lying flat on the ground | on the gr  | +-                      | Protein content adjusted to 12% moisture | ent adjuste | d to 12%     | moisture                               |                                  |
| Location: Latitude 48 9.9222'N; Longitude 103 6.132'W    | 9222             | gitude 103     | 6.132'W                                         |            |                         |                                          |             |              | Eleva                                  | Elevation: 1902 ft               |
| Soil test (0-6 in.): P=18 ppm; K=242 ppm; pH=7.5; OM=2.2 | 3 ppm; K=242     | : ppm; pH=     | =7.5; OM=2.                                     | 2 %        |                         |                                          |             | ц.           | Previous crop: Field Pea               | p: Field Pea                     |
| (0-24 in.): NO3-N= 17 lb/a                               | lb/a             |                |                                                 |            |                         |                                          |             |              | Plantec                                | Planted: 4/27/2020               |
| Yield goal: 90 bu/a                                      |                  |                |                                                 |            |                         |                                          |             |              | Harvestec                              | Harvested: 8/17/2020             |
| Planting population: 1.5 million seeds/a                 | 5 million seed   | ls/a           |                                                 |            |                         |                                          | 0)          | Soil type: I | Lihen Loam                             | Soil type: Lihen Loamy Fine Sand |
| Fertilizer applied: 330 lb/a of Urea (46-0-0) [4/30]     | lb/a of Urea (₄  | 46-0-0) [4/    | 30]                                             |            |                         |                                          |             |              | Plo                                    | Plot size: 92 ft <sup>2</sup>    |
| Herbicides applied: Perfect                              | erfect Match (   | 1pt/a), Cla    | Match (1pt/a), Class Act (2qt/100gal) [5/26]    | '100gal) [ | 5/26]                   |                                          | ]           | Rainfall:    | Rainfall: 4.7 inches [4/27 - 8/17]     | [4/27 - 8/17]                    |
| Fungicide appiled: Prosaro 421 (802/a) [6/29]            | saro 421 (802    | z/a) [0/29]    |                                                 |            |                         |                                          |             | gation: 11   | Irrigation: 11.85 incnes [4/2/ - 8/1/] | [4/27 - 8/17]                    |

#### Irrigated Statewide Durum - MSU

EARC, Sidney, MT 2020

|             |                        | Days to              |                                |                |                                |
|-------------|------------------------|----------------------|--------------------------------|----------------|--------------------------------|
| Variety     | Plant Height<br>(inch) | Heading<br>(Julian*) | <b>Test Weight†</b><br>(lb/bu) | Protein<br>(%) | <b>Grain Yield†</b><br>(bu/ac) |
| Alzada      | 29.9                   | 173                  | 63.2                           | 14.6           | 79.7                           |
| Carpio      | 38.5                   | 178                  | 65.3                           | 14.3           | 105.0                          |
| CDC-Vivid   | 35.6                   | 178                  | 64.7                           | 15.5           | 85.5                           |
| Divide      | 39.0                   | 179                  | 65.4                           | 14.6           | 98.3                           |
| Grenora     | 35.7                   | 177                  | 64.7                           | 14.4           | 89.2                           |
| Joppa       | 38.3                   | 178                  | 65.1                           | 14.1           | 95.7                           |
| Mountrail   | 39.3                   | 178                  | 65.4                           | 13.9           | 108.0                          |
| MTD16001    | 35.8                   | 178                  | 64.7                           | 13.6           | 102.3                          |
| MTD16002    | 38.1                   | 179                  | 65.0                           | 14.7           | 92.5                           |
| MTD16005    | 38.3                   | 178                  | 64.8                           | 15.0           | 96.6                           |
| MTD18067    | 37.5                   | 178                  | 63.3                           | 14.2           | 100.1                          |
| MTD18091    | 38.6                   | 178                  | 65.7                           | 13.5           | 96.1                           |
| MTD18148    | 28.2                   | 175                  | 63.9                           | 14.7           | 91.9                           |
| MTD18155    | 31.8                   | 177                  | 63.9                           | 15.0           | 88.4                           |
| MTD18172    | 37.5                   | 180                  | 65.4                           | 14.9           | 96.1                           |
| MTD18179    | 38.1                   | 177                  | 64.1                           | 14.4           | 108.1                          |
| MTD18181    | 39.3                   | 182                  | 64.1                           | 15.3           | 79.6                           |
| MTD18213    | 40.4                   | 179                  | 65.1                           | 13.9           | 104.4                          |
| MTD18217    | 41.3                   | 181                  | 65.2                           | 14.1           | 97.1                           |
| MTD18256    | 41.1                   | 180                  | 65.0                           | 14.2           | 92.6                           |
| MTD18266    | 37.1                   | 181                  | 65.7                           | 14.7           | 95.0                           |
| MTD18313    | 29.1                   | 175                  | 65.3                           | 14.7           | 96.7                           |
| MTD18348    | 41.3                   | 180                  | 65.3                           | 14.2           | 93.1                           |
| MTD18381    | 35.8                   | 175                  | 63.8                           | 15.4           | 83.9                           |
| MTD18413    | 37.1                   | 178                  | 64.3                           | 15.3           | 95.7                           |
| MTD18430    | 42.8                   | 182                  | 63.4                           | 14.6           | 84.8                           |
| MTD18486    | 38.9                   | 182                  | 65.4                           | 13.3           | 99.8                           |
| ND-Grano    | 36.8                   | 178                  | 65.4                           | 14.0           | 106.8                          |
| ND-Riveland | 41.3                   | 178                  | 65.5                           | 14.0           | 100.4                          |
| Tioga       | 39.8                   | 178                  | 64.7                           | 14.3           | 96.0                           |
| Mean        | 37.4                   | 178.4                | 64.8                           | 14.4           | 95.3                           |
| P-Value     | <0.0001                | <0.0001              | <0.0001                        | <0.0001        | 0.01                           |
| CV (%)      | 5.3                    | 0.4                  | 1.0                            | 2.5            | 9.1                            |
| LSD (0.05)  | 3.2                    | 1.2                  | 1.1                            | 0.6            | 2.5                            |

Planted: 4/24/2020

Harvested: 8/19/2020

(Julian\*) is a continuous count of days since January 1

† Test weight and grain yield were adjusted to 12.0% moisture

Soil Test N Avail (lb/ac): 22

N added (lb/ac): 94

Previous crop: Sugar Beet Soil Type: Savage Silty Clay Plot Width: 5 ft Crop Year Precipitation: 7.93" Irrigation (sprinkler): 5.25" Soil Test P<sub>2</sub>O<sub>5</sub> (ppm): 17.5 P<sub>2</sub>O<sub>5</sub> added (lb/ac): 28

If it was easy... everybody would do it.

#### **Dryland Statewide Durum - MSU**

EARC, Sidney, MT 2020

| Variety     | Stand | Plant Height | ays to Headin | Test Weight† | Protein | Grain Yield |
|-------------|-------|--------------|---------------|--------------|---------|-------------|
|             | %     | (inch)       | (Julian*)     | (lb/bu)      | (%)     | (bu/ac)     |
| Alzada      | 78.3  | 22.4         | 170           | 64.0         | 14.1    | 38.2        |
| Carpio      | 78.3  | 26.5         | 176           | 65.2         | 15.3    | 47.8        |
| CDC-Vivid   | 86.7  | 27.9         | 174           | 64.6         | 16.1    | 47.8        |
| Divide      | 76.7  | 27.8         | 174           | 65.2         | 15.7    | 43.5        |
| Grenora     | 81.7  | 25.3         | 174           | 65.2         | 15.2    | 44.9        |
| Joppa       | 66.7  | 27.0         | 174           | 65.3         | 15.3    | 40.4        |
| Mountrail   | 70.0  | 26.9         | 175           | 64.5         | 15.3    | 44.4        |
| MTD16001    | 75.0  | 27.1         | 176           | 64.5         | 14.9    | 42.4        |
| MTD16002    | 78.3  | 28.0         | 177           | 65.3         | 16.0    | 42.4        |
| MTD16005    | 78.3  | 27.7         | 175           | 64.0         | 16.0    | 47.2        |
| MTD18067    | 70.0  | 26.9         | 175           | 64.4         | 15.6    | 40.4        |
| MTD18091    | 73.3  | 26.5         | 176           | 65.1         | 15.3    | 42.3        |
| MTD18148    | 81.7  | 20.2         | 172           | 64.9         | 14.8    | 42.8        |
| MTD18155    | 81.7  | 25.3         | 173           | 64.6         | 15.8    | 43.6        |
| MTD18172    | 85.0  | 26.8         | 175           | 65.7         | 16.6    | 44.3        |
| MTD18179    | 73.3  | 27.3         | 174           | 62.9         | 16.3    | 39.0        |
| MTD18181    | 65.0  | 28.5         | 178           | 65.2         | 16.4    | 38.0        |
| MTD18213    | 81.7  | 26.8         | 177           | 63.7         | 15.8    | 44.8        |
| MTD18217    | 78.3  | 27.1         | 179           | 64.7         | 16.2    | 44.2        |
| MTD18256    | 78.3  | 29.2         | 178           | 64.8         | 16.0    | 50.4        |
| MTD18266    | 78.3  | 27.0         | 177           | 65.5         | 16.8    | 46.4        |
| MTD18313    | 68.3  | 21.5         | 169           | 66.4         | 15.4    | 41.3        |
| MTD18348    | 80.0  | 29.1         | 177           | 64.6         | 15.3    | 54.3        |
| MTD18381    | 73.3  | 24.8         | 173           | 63.5         | 15.3    | 32.1        |
| MTD18413    | 78.3  | 26.4         | 173           | 64.7         | 16.3    | 42.6        |
| MTD18430    | 76.7  | 29.1         | 179           | 63.3         | 15.8    | 43.7        |
| MTD18486    | 86.7  | 26.1         | 179           | 65.8         | 15.7    | 43.9        |
| ND-Grano    | 80.0  | 26.1         | 176           | 65.7         | 15.6    | 41.3        |
| ND-Riveland | 66.7  | 29.4         | 175           | 65.3         | 15.9    | 47.4        |
| Tioga       | 78.3  | 29.4         | 176           | 65.4         | 15.4    | 41.1        |
| Mean        | 76.8  | 26.7         | 175.3         | 64.8         | 15.7    | 43.4        |
| P-Value     | 0.12  | <0.0001      | <0.0001       | <0.0001      | <0.0001 | 0.29        |
| CV (%)      | 10.7  | 5.1          | 0.5           | 0.56         | 1.9     | 15.2        |
| LSD (0.05)  | 13.5  | 2.2          | 1.5           | 0.59         | 0.50    | 10.8        |

Planted: 4/21/2020

Harvested: 8/12/2020

(Julian\*) is a continuous count of days since January 1

† Test weight and grain yield were adjusted to 12.0% moisture

Soil Test N Avail (lb/ac): 29

N added (lb/ac): 76

Previous crop: Fallow Soil Type: Williams Clay Loam Plot Width: 5 ft Crop Year Precipitation: 8.16" Soil Test  $P_2O_5$  (ppm): 25.7  $P_2O_5$  added (lb/ac): 23

"Be happy with what you have while working for what you want." HELEN KELLER

| Roosevelt County | / Dryland Durum -      | MSU                            |                | Poplar, MT 2020         |
|------------------|------------------------|--------------------------------|----------------|-------------------------|
| Variety          | Plant Height<br>(inch) | <b>Test Weight†</b><br>(lb/bu) | Protein<br>(%) | Grain Yield†<br>(bu/ac) |
| Alzada           | 27.3                   | 63.6                           | 14.2           | 46.1                    |
| Carpio           | 35.0                   | 65.4                           | 14.7           | 62.0                    |
| CDC-Dynamic      | 34.5                   | 64.9                           | 15.9           | 61.5                    |
| CDC-Fortitude    | 31.2                   | 64.5                           | 16.1           | 53.3                    |
| CDC-Vivid        | 34.3                   | 65.0                           | 16.3           | 58.8                    |
| Divide           | 35.8                   | 65.1                           | 15.7           | 59.0                    |
| Grenora          | 33.5                   | 65.1                           | 14.9           | 59.8                    |
| Joppa            | 36.4                   | 65.6                           | 14.5           | 57.7                    |
| Mountrail        | 32.6                   | 65.2                           | 15.1           | 66.6                    |
| MTD-16001        | 32.9                   | 64.3                           | 14.6           | 57.5                    |
| MTD16002         | 37.5                   | 65.1                           | 15.0           | 63.5                    |
| MTD16005         | 33.7                   | 64.4                           | 15.7           | 61.2                    |
| ND-Grano         | 34.1                   | 65.8                           | 15.2           | 59.6                    |
| ND-Riveland      | 36.1                   | 65.1                           | 14.8           | 62.7                    |
| Tioga            | 36.6                   | 65.6                           | 15.3           | 65.8                    |
| Transcend        | 36.9                   | 65.1                           | 16.4           | 53.6                    |
| Mean             | 34.3                   | 65.0                           | 15.3           | 59.3                    |
| P-Value          | <0.0001                | <0.0001                        | <0.0001        | 0.0006                  |
| CV (%)           | 3.7                    | 0.6                            | 1.4            | 7.4                     |
| LSD (0.05)       | 2.1                    | 0.7                            | 0.4            | 7.4                     |

Planted: 4/29/2020

Harvested: 8/25/2020

Previous crop: Pea Plot Width: 5 ft

(Julian\*) is a continuous count of days since January 1

† Test weight and grain yield were adjusted to 12.0% moisture

N added (lb/ac): 63

Crop Year Precipitation: 7.72" sture P<sub>2</sub>O<sub>5</sub> added (lb/ac): 19 Additional Fertilizer: MASZ @ 80 lbs/ac

10-40-0-10 sulfur-1Zn

| Sheridan County | <b>Dryland Durum - M</b> | ISU                            |                | Dagmar, MT 2020         |
|-----------------|--------------------------|--------------------------------|----------------|-------------------------|
| Variety         | Plant Height<br>(inch)   | <b>Test Weight†</b><br>(lb/bu) | Protein<br>(%) | Grain Yield†<br>(bu/ac) |
| Alzada          | 25.6                     | 64.9                           | 13.5           | 46.1                    |
| Carpio          | 31.8                     | 66.4                           | 13.7           | 63.0                    |
| CDC-Dynamic     | 31.2                     | 66.1                           | 15.2           | 60.8                    |
| CDC-Fortitude   | 29.0                     | 66.0                           | 14.7           | 55.9                    |
| CDC-Vivid       | 32.0                     | 65.8                           | 15.1           | 57.7                    |
| Divide          | 31.4                     | 66.4                           | 14.6           | 57.4                    |
| Grenora         | 27.7                     | 66.0                           | 13.8           | 53.4                    |
| Joppa           | 31.8                     | 66.5                           | 13.6           | 52.6                    |
| Mountrail       | 30.8                     | 65.9                           | 14.1           | 58.7                    |
| MTD-16001       | 32.0                     | 65.6                           | 13.5           | 58.4                    |
| MTD16002        | 33.5                     | 66.0                           | 14.1           | 59.8                    |
| MTD16005        | 31.0                     | 65.9                           | 14.9           | 57.0                    |
| ND-Grano        | 31.5                     | 66.5                           | 13.8           | 54.4                    |
| ND-Riveland     | 32.4                     | 65.6                           | 14.2           | 55.1                    |
| Tioga           | 33.3                     | 66.1                           | 14.1           | 55.5                    |
| Transcend       | 32.3                     | 66.6                           | 15.3           | 61.9                    |
| Mean            | 31.1                     | 66.0                           | 14.3           | 56.7                    |
| P-Value         | 0.0002                   | <0.0001                        | <0.0001        | 0.0005                  |
| CV (%)          | 5.4                      | 0.5                            | 1.8            | 6.2                     |
| LSD (0.05)      | 2.8                      | 0.5                            | 0.4            | 5.9                     |

Planted: 4/30/2020

Harvested: 8/31/2020

(Julian\*) is a continuous count of days since January 1

† Test weight and grain yield were adjusted to 12.0% moisture N added (lb/ac): 63

Previous crop: Lentil

. Plot Width: 5 ft

Crop Year Precipitation: 5.68"  $P_2O_5$  added (lb/ac): 19

#### HARD RED WINTER WHEAT VARIETY DESCRIPTIONS

|               |         |                  |         |          |                                  |         | RESISTA      | NCE TO <sup>2</sup> |                   | QUALITY        | FACTORS          |
|---------------|---------|------------------|---------|----------|----------------------------------|---------|--------------|---------------------|-------------------|----------------|------------------|
| VARIETY       |         | YEAR<br>RELEASED | HEIGHT  | MATURITY | WINTER<br>HARDINESS <sup>3</sup> | LODGING | Stem<br>Rust | LEAF<br>Rust        | Foliar<br>Disease | Test<br>Weight | GRAIN<br>PROTEIN |
| AAC GATEWAY   | CANADA  | 2012             | M SHORT | MEDIUM   | GOOD                             | R       | R            | R                   | NA                | MEDIUM         | MEDIUM           |
| AAC GOLDRUSH  | CANADA  | 2017             | MEDIUM  | MEDIUM   | GOOD                             | NA      | MR           | R                   | М                 | NA             | NA               |
| AAC WILDFIRE  | CANADA  | 2015             | MEDIUM  | MEDIUM   | GOOD                             | NA      | М            | MS                  | NA                | NA             | NA               |
| ACCIPITER     | CANADA  | 2008             | SHORT   | MEDIUM   | GOOD                             | R       | R            | MS                  | S                 | MEDIUM         | MEDIUM           |
| BEARPAW*      | MT      | 2011             | M SHORT | MEDIUM   | FAIR                             | R       | R            | S                   | NA                | MEDIUM         | LOW              |
| BRAWL CL PLUS | CO      | 2011             | SHORT   | EARLY    | FAIR                             | NA      | NA           | NA                  | NA                | M HIGH         | M HIGH           |
| BROADVIEW     | CANADA  | 2009             | MEDIUM  | MEDIUM   | GOOD                             | R       | R            | R                   | NA                | MEDIUM         | MEDIUM           |
| CDC CHASE     | CANADA  | 2013             | MEDIUM  | MEDIUM   | GOOD                             | М       | R            | MR                  | R                 | M HIGH         | MEDIUM           |
| DECADE        | MT/NDSU | 2010             | MEDIUM  | M EARLY  | GOOD                             | R       | R            | S                   | М                 | MEDIUM         | MEDIUM           |
| DENALI        | CO/KSU  | 2011             | MEDIUM  | M LATE   | NA                               | NA      | MR           | S                   | NA                | MEDIUM         | M HIGH           |
| EMERSON       | CANADA  | 2011             | SHORT   | MEDIUM   | GOOD                             | NA      | R            | MS                  | NA                | M HIGH         | MEDIUM           |
| FLOURISH      | CANADA  | 2010             | SHORT   | EARLY    | GOOD                             | R       | MR           | R                   | NA                | MEDIUM         | M LOW            |
| IDEAL         | SDSU    | 2011             | SHORT   | MEDIUM   | GOOD                             | R       | MR           | MR                  | MS                | MEDIUM         | MEDIUM           |
| Keldin        | WB      | 2011             | SHORT   | MEDIUM   | GOOD                             | NA      | MR           | MR                  | MR                | NA             | NA               |
| JERRY         | NDSU    | 2001             | MEDIUM  | MEDIUM   | GOOD                             | MR      | R            | MR                  | М                 | MEDIUM         | M HIGH           |
| JUDEE*        | MT      | 2011             | MEDIUM  | MEDIUM   | FAIR                             | R       | S            | S                   | NA                | MEDIUM         | M HIGH           |
| LOMA          | MT      | 2016             | MEDIUM  | M LATE   | GOOD                             | NA      | R            | NA                  | NA                | MEDIUM         | MEDIUM           |
| LYMAN         | SDSU    | 2008             | MEDIUM  | MEDIUM   | FAIR                             | М       | R            | R                   | MR                | M HIGH         | M HIGH           |
| MOATS         | CANADA  | 2010             | MEDIUM  | MEDIUM   | GOOD                             | MS      | R            | MR                  | NA                | M HIGH         | MEDIUM           |
| NORTHERN      | MT      | 2015             | M SHORT | M LATE   | FAIR                             | NA      | R            | NA                  | NA                | MEDIUM         | MEDIUM           |
| OVERLAND      | NE      | 2006             | M TALL  | MEDIUM   | FAIR                             | MS      | MS           | MR                  | NA                | M HIGH         | MEDIUM           |
| PEREGRINE     | CANADA  | 2008             | MEDIUM  | M LATE   | V GOOD                           | MR      | R            | MR                  | NA                | M HIGH         | M LOW            |
| RAY**         | MT      | 2019             | M TALL  | M LATE   | GOOD                             | MR      | R            | NA                  | NA                | MEDIUM         | MEDIUM           |
| REDFIELD      | SD      | 2013             | SHORT   | MEDIUM   | FAIR                             | R       | S            | MS                  | NA                | M HIGH         | MEDIUM           |
| SY MONUMENT   | AGRIPRO | 2015             | M SHORT | MEDIUM   | FAIR                             | NA      | MR           | MR                  | NA                | M LOW          | MEDIUM           |
| SY SUNRISE    | AGRIPRO | 2015             | SHORT   | MEDIUM   | GOOD                             | NA      | NA           | NA                  | NA                | NA             | NA               |
| SY WOLF       | AGRIPRO | 2010             | M SHORT | MEDIUM   | Poor                             | R       | R            | MR                  | MR                | HIGH           | M LOW            |
| TCG BOOMLOCK  | TCG     | 2019             | MEDIUM  | MEDIUM   | FAIR                             | NA      | NA           | NA                  | NA                | MEDIUM         | M HIGH           |
| THOMPSON      | SD      | 2017             | MEDIUM  | M EARLY  | NA                               | R       | MR           | MR                  | NA                | NA             | NA               |
| WARHORSE      | MT      | 2013             | SHORT   | M LATE   | FAIR                             | MR      | R            | S                   | NA                | MEDIUM         | MEDIUM           |
| WB 4614       | WB      | 2013             | MEDIUM  | MEDIUM   | GOOD                             | NA      | NA           | NA                  | NA                | M HIGH         | MEDIUM           |
| WB4483        | WB      | 2016             | M SHORT | LATE     | GOOD                             | NA      | MS           | MR                  | MR                | MEDIUM         | M LOW            |
| WB4575        | WB      | 2016             | M SHORT | MEDIUM   | NA                               | NA      | NA           | NA                  | NA                | MEDIUM         | M LOW            |
| WB-MATLOCK    | WB      | 2010             | MEDIUM  | MEDIUM   | GOOD                             | MR      | R            | MS                  | MS                | MEDIUM         | MEDIUM           |
| WB-QUAKE*     | WB      | 2011             | MEDIUM  | LATE     | FAIR                             | MR      | NA           | MR                  | NA                | M LOW          | M LOW            |
| YELLOWSTONE   | MT      | 2005             | MEDIUM  | MEDIUM   | GOOD                             | М       | S            | MS                  | М                 | LOW            | M HIGH           |

<sup>1</sup>REFERS TO DEVELOPER: CANADA REPRESENTS DEVELOPERS FROM THAT COUNTRY; MT = MONTANA STATE UNIVERSITY; NDSU = NORTH DAKOTA STATE UNIVERSITY; NE = UNIVERSITY OF NEBRASKA; TCG = 21<sup>st</sup> CENTURY GENETICS; SDSU = SOUTH DAKOTA STATE UNIVERSITY; WB = WESTBRED.

<sup>2</sup>M = INTERMEDIATE; MR = MODERATELY RESISTANT; MS = MODERATELY SUSCEPTIBLE; NA = DATA NOT AVAILABLE; R = RESISTANT, S = SUSCEPTIBLE.

<sup>3</sup>VARIETIES WITH FAIR TO POOR WINTER HARDINESS SHOULD NOT BE SEEDED ON BARE SOIL.

\*SAWFLY RESISTANT. \*\*DUAL PURPOSE-GRAIN/FORAGE

#### HARD WHITE WINTER WHEAT VARIETY DESCRIPTIONS

| VARIETY<br>ALICE<br>GARY<br>HYALITE*<br>NUDAKOTA<br>NUFRONTIER<br>NUHORIZON<br>NUSKY<br>NUWEST |            | Vere             |         |          | 14/11/200                        |         | RESIST       | ANCE TO <sup>2</sup> |                   | QUALITY        | FACTORS          |
|------------------------------------------------------------------------------------------------|------------|------------------|---------|----------|----------------------------------|---------|--------------|----------------------|-------------------|----------------|------------------|
| VARIETY                                                                                        |            | Year<br>Released | Height  | MATURITY | WINTER<br>HARDINESS <sup>3</sup> | LODGING | Sтем<br>Rust | Leaf<br>Rust         | Foliar<br>Disease | Test<br>Weight | GRAIN<br>PROTEIN |
| ALICE                                                                                          | SDSU       | 2006             | SHORT   | EARLY    | FAIR                             | MR      | MR           | S                    | NA                | M HIGH         | M LOW            |
| GARY                                                                                           | ID         | 2001             | MEDIUM  | M LATE   | FAIR                             | MR      | NA           | NA                   | NA                | MEDIUM         | LOW              |
| HYALITE*                                                                                       | MT/WB      | 2005             | M SHORT | M EARLY  | FAIR                             | MR      | R            | S                    | NA                | MEDIUM         | MEDIUM           |
| ΝυDΑΚΟΤΑ                                                                                       | AgriPro    | 2007             | SHORT   | MEDIUM   | POOR                             | R       | MR           | MR                   | NA                | MEDIUM         | MEDIUM           |
| NUFRONTIER                                                                                     | GM/AgriPro | NA               | M SHORT | EARLY    | FAIR                             | R       | NA           | NA                   | NA                | M HIGH         | LOW              |
| NuHorizon                                                                                      | GM/AGRIPRO | NA               | SHORT   | EARLY    | POOR                             | R       | NA           | NA                   | NA                | HIGH           | M LOW            |
| NUSKY                                                                                          | MSU        | 2001             | MED     | M LATE   | GOOD                             | R       | MR           | S                    | MR                | MEDIUM         | MEDIUM           |
| NUWEST                                                                                         | MSU/GM     | 1994             | MED     | MEDIUM   | GOOD                             | R       | MR           | S                    | MR                | M LOW          | MEDIUM           |
| WENDY                                                                                          | SDSU       | 2004             | SHORT   | EARLY    | GOOD                             | NA      | NA           | NA                   | NA                | MEDIUM         | MEDIUM           |

<sup>1</sup>REFERS TO DEVELOPER: GM = GENERAL MILLS; ID = UNIVERSITY OF IDAHO; MT = MONTANA STATE UNIVERSITY; SDSU = South Dakota State University; WB = WESTBRED.

 $^{2}R$  = resistant, MR = moderately resistant; S = susceptible; NA = data not available.

<sup>3</sup>VARIETIES WITH FAIR TO POOR WINTER HARDINESS SHOULD NOT BE SEEDED ON BARE SOIL.

\*CLEARFIELD WHEAT WITH IMIDAZOLINONE TOLERANCE.

#### Winter Wheat Dryland Variety Trial

WREC, Williston, ND 2020

|              |        | Days to  |         | Winter   | Test    |        |                    |                    |
|--------------|--------|----------|---------|----------|---------|--------|--------------------|--------------------|
| Variety      | Height | Heading  | Protein | Survival | Weight  | 2020   | Yield              | 2 1/4 4.14         |
|              | (in)   | (Julian) | (%)     | (%)      | (lb/bu) | (bu/a) | 2-Yr Avg<br>(bu/a) | 3-Yr Avg<br>(bu/a) |
| Peregrine    | 25     | 158      | 13.1    | 80       | 55.9    | 39.5   | 51.5               | 51.3               |
| WB-4595      | 22     | 158      | 13.6    | 55       | 59.9    | 40.5   | 51.1               | 51.1               |
| Northern     | 21     | 158      | 13.4    | 80       | 57.8    | 46.2   | 52.6               | 50.7               |
| Oahe         | 23     | 155      | 12.1    | 95       | 57.6    | 50.4   | 53.8               | 50.3               |
| Ideal        | 22     | 157      | 11.7    | 90       | 57.4    | 38.4   | 51.1               | 49.9               |
| SY Monument  | 24     | 155      | 11.5    | 95       | 56.6    | 45.3   | 51.4               | 49.8               |
| Jerry        | 24     | 157      | 13.7    | 80       | 58.9    | 43.9   | 50.5               | 49.8               |
| Keldin       | 24     | 159      | 14.6    | 50       | 58.1    | 38.8   | 49.1               | 49.0               |
| Thompson     | 23     | 156      | 12.6    | 85       | 57.0    | 40.7   | 48.8               | 48.3               |
| SY Wolf      | 21     | 155      | 13.3    | 70       | 58.3    | 41.5   | 49.4               | 47.9               |
| AC Emerson   | 23     | 157      | 15.1    | 80       | 56.7    | 39.8   | 47.7               | 45.8               |
| Ray          | 28     | N/A      | 14.6    | N/A      | 58.3    | 54.3   | 54.1               | -                  |
| WB-4462      | 22     | 153      | 12.6    | 60       | 56.7    | 44.8   | 49.5               | -                  |
| TCG-Boomlock | 22     | 158      | 13.4    | 50       | 57.3    | 45.8   | 45.1               | -                  |
| ND Noreen    | 21     | 153      | 13.8    | 80       | 57.9    | 40.1   | 50.0               | -                  |
| MT1683       | 26     | 158      | 13.1    | 55       | 57.0    | 52.3   | -                  | -                  |
| 17NORD-96    | 21     | 159      | 11.9    | 70       | 57.2    | 49.6   | -                  | -                  |
| NE14696      | 25     | 158      | 13.6    | 70       | 57.2    | 47.5   | -                  | -                  |
| AAC-Wildfire | 23     | 159      | 13.8    | 90       | 55.7    | 46.9   | -                  | -                  |
| SY Wolverine | 19     | 153      | 12.5    | 70       | 58.4    | 44.5   | -                  | -                  |
| NW13493      | 21     | 154      | 12.5    | 80       | 56.6    | 43.6   | -                  | -                  |
| MT1793       | 19     | 155      | 14.1    | 85       | 56.8    | 43.5   | -                  | -                  |
| CP7017AX     | 22     | 153      | 12.0    | 65       | 57.3    | 40.9   | -                  | -                  |
| SY Sunrise   | 17     | 155      | 12.6    | 70       | 58.0    | 40.2   | -                  | -                  |
| CP7050AX     | 21     | 150      | 13.6    | 85       | 59.6    | 38.3   | -                  | -                  |
| CP7909       | 19     | 150      | 12.8    | 75       | 58.2    | 36.2   | -                  | -                  |
| Mean         | 22     | 155      | 13.1    | 76       | 57.5    | 44.9   | -                  | -                  |
| CV (%)       | 5.7    | 0.8      | 5.6     | 17.0     | 0.7     | 8.9    | -                  | -                  |
| LSD (5%)     | 2.1    | 2.0      | 1.2     | 21.4     | 0.7     | 6.6    | -                  | -                  |
| LSD (10%)    | 1.7    | 1.6      | 1.0     | 17.8     | 0.6     | 5.5    | -                  | -                  |

Location of the WREC: Latitude 48 8'; Longitude 103 44'W; Elevation 2105 ft Planting Date: 9/24/2019

 Soil test to 6" in ppm:
 P=35 ppm K= 277 ppr OM=1.9% pH=5.4

 Soil test to 24" in Ib/a:
 N=12 Ib/a

Applied fertilizers in Ib/a: N=42; P=20; K=0; S = 0.5

Herbicide Application: Supremacy at 6 oz/a; Tacoma at 10 oz/a (5/22/2020)

Previous Crop: soybeans Harvest Date: 7/22/2020 Soil type: Williams-Bowbells loam

#### I HEAR WHAT YOU ARE SAYING BUT I REALLY JUST WANT TO Talk About **TRACTORS**

| Winter         Plant         Days to<br>bays to<br>Survival         Winter         Plant         Days to<br>Mead         Codging         2021<br>(%)           Variety         (%)         (in)         (julian*)         (0-9)         (%)           Peregrine         98         25         165         0         14.3           Peregrine         98         25         165         0         14.1           Decade         96         23         164         0         14.1           Oahe         96         21         162         0         14.1           Jerry         96         21         162         0         14.1           Jerry         96         22         164         0         14.1           Jerry         96         23         165         0         14.1           Jerry         96         22         164         0         14.1           Jerry         98         25         164         0         14.1           Kedicice         98         25         165         0         14.1           Northern         95         21         166         0         14.1           Noroteon         98 <th>Codging<br/>(0 - 0)<br/>(0 - 0)<br/>(0</th> <th>2020     2-Yr Avg<sup>‡</sup>       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)</th> <th><b>3-Yr Avg*</b> (%) (%) 12.3 12.7 12.7 13.6 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2</th> <th>Test Veight 0.5</th> <th><b>2020</b><br/>(bu/a)<br/>(bu/a)<br/>105.0<br/>89.3<br/>96.7<br/>105.3<br/>97.0<br/>94.0<br/>105.3<br/>105.3<br/>105.7<br/>100.6<br/>101.8</th> <th><b>2-Yr Avg<sup>‡</sup></b><br/>(bu/a)<br/>(bu/a)<br/>109.1<br/>100.9<br/>97.4<br/>93.9<br/>91.0<br/>93.9<br/>101.5<br/>89.4<br/>103.1<br/>103.1</th> <th><b>3-Yr Avg*</b><br/>(bu/a)<br/>(bu/a)<br/>117.2<br/>112.7<br/>110.3<br/>106.6<br/>105.3<br/>105.3<br/>103.8<br/>102.2<br/>102.2</th> | Codging<br>(0 - 0)<br>(0 | 2020     2-Yr Avg <sup>‡</sup> (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%) | <b>3-Yr Avg*</b> (%) (%) 12.3 12.7 12.7 13.6 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test Veight 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>2020</b><br>(bu/a)<br>(bu/a)<br>105.0<br>89.3<br>96.7<br>105.3<br>97.0<br>94.0<br>105.3<br>105.3<br>105.7<br>100.6<br>101.8                 | <b>2-Yr Avg<sup>‡</sup></b><br>(bu/a)<br>(bu/a)<br>109.1<br>100.9<br>97.4<br>93.9<br>91.0<br>93.9<br>101.5<br>89.4<br>103.1<br>103.1 | <b>3-Yr Avg*</b><br>(bu/a)<br>(bu/a)<br>117.2<br>112.7<br>110.3<br>106.6<br>105.3<br>105.3<br>103.8<br>102.2<br>102.2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variety         Survival         Height         Head $(\%)$ $(m)$ $(m)$ $(m)^{-1}$ Peregrine         98         25         165           Accipiter         98         25         162           Accipiter         98         26         163           Decade         96         20         160           Oahe         96         21         163           Jerry         96         26         163           Jerry         96         26         163           Jerry         96         21         165           Jerry         96         26         163           Northern         93         21         165           Northern         93         21         165           Act Scioter         91         25         165           Act Wildfire         98         25         165           Act Scioter         98         26         166           Act Scioter         98         20         161           Keldin         96         20         166           Act Scioter         98         27         166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>3-Yr Avg*</b> (%) (%) 12.3 12.3 13.6 13.6 13.6 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weight<br>(lb/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>(b/bu)<br>( | 2020<br>(bu/a)<br>105.0<br>89.3<br>96.7<br>96.7<br>96.7<br>97.0<br>97.0<br>97.0<br>97.0<br>94.0<br>111.7<br>105.7<br>105.7<br>105.7<br>105.7   | <b>2-Yr Avg<sup>‡</sup></b><br>(bu/a)<br>(bu/a)<br>109.1<br>97.4<br>93.1<br>93.9<br>93.9<br>101.5<br>89.4<br>103.1<br>103.1          | <b>3-Yr Avg*</b><br>(bu/a)<br>117.2<br>112.7<br>110.3<br>106.6<br>105.4<br>105.3<br>103.8<br>102.2<br>102.2           |
| (%)         (in)         (julian*)           Peregrine         98         25         165           Accipiter         98         25         165           Decade         93         25         164           Decade         96         21         164           Oahe         96         21         163           Jerry         96         21         165           Jerry         96         21         165           Jerry         96         21         165           Jerry         96         21         165           Jerry         98         23         165           Northern         93         21         165           Vellowstone         98         23         165           Act Wildfire         94         25         165           Act Goldrush         98         21         165           Act Goldrush         97         25         165           ND Noreen         98         20         161           Keldin         98         21         165           CDC Chase         98         26         166           Act Goldrush         98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , o o o o o o o o o o o o o o o o o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (%)<br>12:3<br>13:9<br>13:6<br>13:3<br>13:3<br>13:3<br>13:3<br>13:2<br>13:3<br>13:2<br>13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (lb/bu)<br>62.2<br>60.8<br>61.9<br>61.1<br>61.3<br>61.9<br>61.9<br>62.4<br>62.4<br>62.4<br>62.3<br>63.3<br>62.4<br>62.3<br>63.3<br>62.4<br>62.3<br>62.4<br>62.3<br>63.3<br>62.4<br>62.2<br>62.1<br>62.1<br>62.1<br>62.1<br>62.1<br>62.1<br>62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (bu/a)<br>105.0<br>89.3<br>96.7<br>96.7<br>105.1<br>84.5<br>92.0<br>97.0<br>97.0<br>94.0<br>111.7<br>106.0<br>111.7<br>105.7<br>109.6<br>101.8 | (bu/a)<br>109.1<br>109.1<br>100.9<br>93.1<br>93.9<br>93.9<br>101.5<br>89.4<br>103.1                                                  | (bu/a)<br>117.2<br>112.7<br>112.7<br>106.6<br>105.4<br>105.3<br>102.3<br>102.2<br>102.2                               |
| Peregrine         98         25         165           Accipiter         89         19         164           Decade         93         25         162           Ac Broadview         96         20         160           Oahe         96         21         162           Jerry         96         21         163           Jerry         96         21         163           Jerry         96         26         163           Northern         98         23         165           Northern         98         23         165           Northern         98         23         165           Northern         98         23         165           AC Wildfire         98         25         167           AC Wildfire         98         21         165           AC Coldrush         97         25         165           AC Goldrush         98         20         161           Keldin         96         20         161           CDC Chase         98         21         165           Redfield         98         21         165           CP7017A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.3<br>12.7<br>13.9<br>13.0<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62.2<br>60.8<br>61.9<br>61.1<br>61.7<br>61.3<br>62.0<br>62.3<br>62.4<br>62.4<br>62.3<br>62.3<br>62.3<br>62.4<br>62.3<br>62.3<br>62.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105.0<br>89.3<br>96.7<br>105.1<br>84.5<br>92.0<br>97.0<br>97.0<br>94.0<br>111.7<br>106.0<br>111.7<br>105.7<br>103.6                            | 109.1<br>100.9<br>97.4<br>93.1<br>93.9<br>93.9<br>101.5<br>89.4<br>103.1<br>103.1                                                    | 117.2<br>112.7<br>110.3<br>106.6<br>105.4<br>105.3<br>103.8<br>102.2<br>102.2                                         |
| Accipiter         89         19         164           Decade         93         25         162           Decade         96         20         160           Oahe         96         20         160           Jerry         96         21         162           Jerry         96         21         163           Jerry         96         26         163           Northern         98         23         165           Northern         93         21         165           Northern         98         23         165           Northern         98         23         165           AC Gateway         98         23         165           AC Wildfire         98         25         167           AC Wildfire         98         26         167           AC Wildfire         98         20         161           Keldin         96         26         167           AC Goldrush         98         20         167           CP7017AX         94         19         167           CP7017AX         94         28         175           CP7050AX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12:17<br>13:07<br>13:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:07<br>14:070 | 60.8<br>61.9<br>61.1<br>61.1<br>61.3<br>62.2<br>62.4<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89.3<br>96.7<br>105.1<br>84.5<br>92.0<br>97.0<br>97.0<br>94.0<br>111.7<br>106.0<br>111.7<br>105.7<br>101.8                                     | 100.9<br>97.4<br>93.1<br>91.0<br>93.9<br>93.9<br>101.5<br>89.4<br>103.1                                                              | 112.7<br>110.3<br>106.6<br>105.4<br>105.3<br>103.8<br>102.2<br>-                                                      |
| Decade         93         25         162           AC Broadview         96         23         164           Oahe         96         20         160           Ideal         96         21         162           Jerry         96         26         163           Jerry         96         21         165           Jerry         96         26         164           Northern         93         21         165           Northern         93         21         165           Northern         93         21         165           Northern         93         21         165           AC Gateway         98         26         165           AC Wildfire         98         26         165           AC Goldrush         97         25         165           ND Noreen         96         20         161           Keldin         96         20         165           AC Goldrush         97         25         165           CDC Chase         98         20         164           Keldin         96         20         161           CD Soomlock <td></td> <td></td> <td>13.9<br/>13.0<br/>14.0<br/>14.0<br/>14.0<br/>14.0<br/>14.0<br/>14.0<br/>14.0<br/>14</td> <td>61.9<br/>61.1<br/>61.7<br/>61.7<br/>61.3<br/>62.2<br/>62.4<br/>62.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3</td> <td>96.7<br/>105.1<br/>84.5<br/>92.0<br/>97.0<br/>94.0<br/>111.7<br/>106.0<br/>111.7<br/>105.7<br/>109.6</td> <td>97.4<br/>93.1<br/>91.0<br/>93.9<br/>93.9<br/>101.5<br/>89.4<br/>103.1</td> <td>110.3<br/>106.6<br/>105.4<br/>105.3<br/>103.8<br/>102.2<br/>102.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.9<br>13.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.9<br>61.1<br>61.7<br>61.7<br>61.3<br>62.2<br>62.4<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96.7<br>105.1<br>84.5<br>92.0<br>97.0<br>94.0<br>111.7<br>106.0<br>111.7<br>105.7<br>109.6                                                     | 97.4<br>93.1<br>91.0<br>93.9<br>93.9<br>101.5<br>89.4<br>103.1                                                                       | 110.3<br>106.6<br>105.4<br>105.3<br>103.8<br>102.2<br>102.2                                                           |
| AC Broadview       96       23       164         Oahe       96       20       160         Ideal       96       21       162         Jerry       96       26       163         Jerry       96       26       163         Jerry       96       26       163         Ac Gateway       98       22       164         Northern       93       21       165         Northern       93       21       165         Northern       93       21       165         Northern       98       26       165         Act Wildfire       98       25       165         Act Goldrush       97       25       165         ND Noreen       95       21       166         Act Goldrush       97       25       165         Redfield       98       20       161         Keldin       96       20       161         TCG Boomlock       95       21       167         CP70050AX       94       19       157         CP70050AX       94       28       21         LOM       7.5       10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.1<br>13.6<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.9<br>61.1<br>61.7<br>61.3<br>62.2<br>62.4<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.1<br>84.5<br>92.0<br>97.0<br>94.0<br>111.7<br>106.0<br>111.7<br>105.7<br>109.6                                                             | 93.1<br>91.0<br>93.9<br>101.5<br>89.4<br>103.1                                                                                       | 106.6<br>105.4<br>105.3<br>103.8<br>102.2<br>102.2                                                                    |
| Oahe       96       20       160         Ideal       96       21       162         Jerry       96       26       163         Jerry       96       26       163         AC Gateway       98       22       164         Northern       93       21       165         Northern       98       23       165         Northern       98       23       165         Northern       98       23       165         Northern       98       23       165         AC Chase       94       26       165         AC Wildfire       98       25       167         ND Noreen       95       21       166         AC Goldrush       97       25       165         AC Goldrush       98       20       161         Keldin       96       20       161         Keldin       96       20       156         Keldin       96       20       157         CP70050AX       94       19       157         Keldin       97       28       21         CP7050AX       94       28       21 </td <td></td> <td></td> <td>13.6<br/>13.3<br/>13.2<br/>13.2<br/>13.2<br/>13.2<br/>13.2<br/>13.3<br/>13.3</td> <td>61.1<br/>61.7<br/>61.3<br/>62.0<br/>62.2<br/>62.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3</td> <td>84.5<br/>92.0<br/>97.0<br/>97.0<br/>94.0<br/>111.7<br/>106.0<br/>111.7<br/>105.7<br/>109.6</td> <td>91.0<br/>93.9<br/>101.5<br/>89.4<br/>103.1<br/>109.5</td> <td>105.4<br/>105.3<br/>103.8<br/>102.2<br/>102.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.6<br>13.3<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.3<br>13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.1<br>61.7<br>61.3<br>62.0<br>62.2<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84.5<br>92.0<br>97.0<br>97.0<br>94.0<br>111.7<br>106.0<br>111.7<br>105.7<br>109.6                                                              | 91.0<br>93.9<br>101.5<br>89.4<br>103.1<br>109.5                                                                                      | 105.4<br>105.3<br>103.8<br>102.2<br>102.2                                                                             |
| Ideal       96       21       162         Jerry       96       26       163         Jerry       98       22       164         Northern       93       21       165         Northern       93       21       165         Northern       93       21       165         Northern       93       23       165         Yellowstone       94       26       165         FourOSix       94       26       165         AC Wildfire       98       25       165         ND Noreen       95       21       166         AC Goldrush       97       25       165         AC Goldrush       97       25       165         AC Goldrush       97       25       166         AC Goldrush       98       20       161         Keldin       96       20       156         TCG Boomlock       95       21       161         CP70050AX       94       19       156         MEAN       7.5       10.7       1.1         CP7050AX       94       2.8       2.1         LON       93       2.6 </td <td></td> <td></td> <td>13.3<br/>13.2<br/>13.2<br/>13.2<br/>13.2<br/>13.2</td> <td>61.7<br/>61.3<br/>63.0<br/>62.0<br/>62.4<br/>62.3<br/>63.3<br/>62.3<br/>63.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3</td> <td>92.0<br/>105.3<br/>97.0<br/>94.0<br/>111.7<br/>105.7<br/>109.6<br/>101.8</td> <td>93.9<br/>101.5<br/>89.4<br/>103.1<br/>109.5</td> <td>105.3<br/>103.8<br/>102.2<br/>102.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.3<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.7<br>61.3<br>63.0<br>62.0<br>62.4<br>62.3<br>63.3<br>62.3<br>63.3<br>62.3<br>62.3<br>62.3<br>62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92.0<br>105.3<br>97.0<br>94.0<br>111.7<br>105.7<br>109.6<br>101.8                                                                              | 93.9<br>101.5<br>89.4<br>103.1<br>109.5                                                                                              | 105.3<br>103.8<br>102.2<br>102.2                                                                                      |
| Jerry       96       26       163         AC Gateway       98       22       164         Northern       93       21       165         Northern       93       21       165         Northern       93       21       165         Northern       98       23       165         FourOSix       91       25       165         FourOSix       94       26       165         AC Wildfire       98       25       167         ND Noreen       95       21       166         AC Goldrush       97       25       165         ND Noreen       98       20       161         AC Goldrush       97       25       165         AC Goldrush       98       20       161         Keldin       96       20       156         CP700AX       94       19       158         CP7050AX       94       28       155         MEAN       7.5       10.7       1.1         CP7050AX       94       2.8       2.1         Lonol       3.4       2.8       2.1         Lonologing       8.4       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.2<br>14.0<br>13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.3<br>63.0<br>62.1<br>62.2<br>62.3<br>63.3<br>63.3<br>62.4<br>62.3<br>63.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.3<br>97.0<br>94.0<br>111.7<br>105.7<br>109.6<br>101.8                                                                                      | 101.5<br>89.4<br>103.1<br>109.5                                                                                                      | 103.8<br>102.2<br>102.2<br>-                                                                                          |
| AC Gateway       98       22       164         Northern       93       21       165         Yellowstone       98       23       165         FourOSix       91       25       165         FourOSix       91       25       165         FourOSix       94       26       165         AC Wildfire       98       25       167         ND Noreen       95       25       163         AC Wildfire       98       26       166         ND Noreen       95       21       161         AC Goldrush       97       25       165         AC Goldrush       97       25       165         AC Goldrush       98       20       161         Keldin       96       20       164         TCG Boomlock       95       21       161         CP7017AX       94       19       155         MEAN       7.5       10.7       1.1         CP7050AX       94.2       28.4       26         CP7050AX       94.2       28.4       162.6         Low       7.5       10.7       1.1         Low       8.4 <td></td> <td></td> <td>14.0<br/>13.2<br/>13.2</td> <td>63.0<br/>62.2<br/>62.2<br/>62.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3<br/>62.3</td> <td>97.0<br/>94.0<br/>106.0<br/>111.7<br/>105.7<br/>109.6<br/>101.8</td> <td>89.4<br/>103.1<br/>109.5</td> <td>102.2<br/>102.2<br/>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.0<br>13.2<br>13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63.0<br>62.2<br>62.2<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3<br>62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.0<br>94.0<br>106.0<br>111.7<br>105.7<br>109.6<br>101.8                                                                                      | 89.4<br>103.1<br>109.5                                                                                                               | 102.2<br>102.2<br>-                                                                                                   |
| Northern         93         21         165           Yellowstone         98         23         165           FourOSix         91         25         165           CDC Chase         94         26         165           AAC Wildfire         98         25         167           ND Noreen         95         25         167           AAC Wildfire         98         25         165           AAC Wildfire         98         27         166           AAC Goldrush         97         25         165           AAC Goldrush         97         25         165           Redfield         98         20         161           Keldin         96         20         161           CP7017AX         94         19         158           CP7017AX         94         20         157           CP70050AX         94.2         20         155           MEAN         7.5         10.7         1.1           CP7050AX         94.2         28.4         256           Lonos         7.5         10.7         1.1           LOSO         84         2.8         2.1         2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62.0<br>61.9<br>62.2<br>62.3<br>62.3<br>62.3<br>63.3<br>62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.0<br>106.0<br>111.7<br>105.7<br>109.6<br>101.8                                                                                              | 103.1<br>109.5                                                                                                                       | 102.2<br>-                                                                                                            |
| Yellowstone       98       23       165         FourOSix       91       25       165         CDC Chase       94       26       165         AAC Wildfire       98       25       167         ND Noreen       98       25       167         ND Noreen       98       25       167         ND Noreen       95       25       166         AAC Wildfire       98       20       161         ND Noreen       95       21       166         AAC Goldrush       97       25       165         AAC Goldrush       97       25       165         Redfield       98       20       161         CF0017AX       94       19       156         CP70090       84       20       157         CP70050AX       94.2       20       157         CP7050AX       94.2       20.7       157         CP7050AX       94.2       20.7       155         MEAN       7.5       10.7       1.1         CP7050AX       94.2       20.7       155         MEAN       7.5       10.7       1.1         CP1050       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.9<br>62.2<br>62.3<br>62.3<br>63.3<br>62.1<br>62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106.0<br>111.7<br>105.7<br>109.6<br>101.8                                                                                                      | 109.5                                                                                                                                |                                                                                                                       |
| FourOSix       91       25       165         CDC Chase       94       26       165         AAC Wildfire       98       25       167         ND Noreen       95       25       167         ND Noreen       95       25       165         ND Noreen       95       21       166         AAC Wildfire       98       20       161         ND Noreen       95       21       166         AAC Goldrush       97       25       165         Redfield       98       20       161         Keldin       96       20       161         Keldin       96       20       161         CP7017AX       94       19       158         CP7017AX       94       19       156         MEAN       7.5       10.7       1.1         CP7050AX       94.2       20       157         MEAN       7.5       10.7       1.1         CP7050AX       94.2       2.8       2.1         Low       7.5       10.7       1.1         Low       7.5       10.0       3.4       2.5         LSD (5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.2<br>62.4<br>62.3<br>63.3<br>61.8<br>62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111.7<br>105.7<br>109.6<br>101.8                                                                                                               |                                                                                                                                      |                                                                                                                       |
| CDC Chase       94       26       165         AAC Wildfire       98       25       167         ND Noreen       95       25       167         ND Noreen       95       25       163         ND Noreen       95       25       163         ND Noreen       95       21       166         AAC Goldrush       97       25       165         AAC Goldrush       98       20       161         Keldin       98       20       161         Keldin       96       20       164         TCG Boomlock       95       21       161         CP7017AX       94       19       158         CP7017AX       94       19       155         MEAN       94.2       20       157         CP7050AX       94.2       22.4       162.6         MEAN       7.5       10.7       1.1         CP7050AX       94.2       28.4       2.5         MEAN       7.5       10.7       1.1         LSD (5%)       8.4       2.8       2.1         ASD (5%)       8.4       2.8       2.1         LSD (5%)       8.4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.4<br>62.3<br>63.3<br>61.8<br>62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105.7<br>109.6<br>101.8                                                                                                                        | 108.6                                                                                                                                |                                                                                                                       |
| AAC Wildfire       98       25       167         ND Noreen       95       25       163         ND Noreen       95       25       163         Loma       85       21       166         AAC Goldrush       97       25       165         AAC Goldrush       97       25       165         Redfield       98       20       161         Keldin       96       20       164         TCG Boomlock       95       21       161         CP7017AX       94       19       158         CP70909       84       20       157         CP70909       84       20       157         CP7050AX       94.2       22.4       165         MEAN       7.5       10.7       1.1         LSD (5%)       8.4       2.8       2.1         LSD (5%)       8.4       2.8       2.1         AEN (10%)       8.4       2.8       2.1         LSD (5%)       8.4       2.8       2.1         LSD (5%)       8.4       2.8       2.1         LSD (10%)       8.4       2.8       2.1         LSD (10%)       8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.3<br>63.3<br>61.8<br>62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.6<br>101.8                                                                                                                                 | 107.1                                                                                                                                |                                                                                                                       |
| ND Noreen       95       25       163         Loma       85       21       166         AAC Goldrush       97       25       165         Redfield       98       20       161         Keldin       96       20       161         Keldin       96       20       161         TCG Boomlock       95       21       161         CP7017AX       94       19       158         CP70909       84       20       157         CP70909       84       20       155         CP7050AX       94.2       22.4       162.6         CP7050AX       94.2       22.4       162.6         CV. (%)       7.5       10.7       1.1         LSD (5%)       8.4       2.8       2.1         ASD (5%)       8.4       2.8       2.1         LSD (10%)       8.4       2.8       2.1         + Days after January 1, 2020       * 0: no lodging - 9: plants lying       2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.3<br>61.8<br>62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101.8                                                                                                                                          | 104.9                                                                                                                                |                                                                                                                       |
| Loma       85       21       166         AAC Goldrush       97       25       165         Redfield       98       20       161         Keldin       96       20       161         Keldin       96       20       164         TCG Boomlock       95       21       161         TCG Boomlock       95       21       161         CP7017AX       94       19       158         CP7090       84       20       157         CP7090       84       20       155         CP7050AX       94       19       155         MEAN       7.5       10.7       1.1         LSD (5%)       8.4       2.8       2.1         LSD (10%)       8.4       2.8       2.1         + Days after January 1, 2020       * 0: no lodging - 9: plants lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.8<br>62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                | 104.1                                                                                                                                | ı                                                                                                                     |
| AAC Goldrush       97       25       165         Redfield       98       20       161         Keldin       96       20       161         Keldin       96       20       164         TCG Boomlock       95       21       161         CP7017AX       94       19       158         CP70909       84       20       157         CP70903       84       20       157         CP70903       84       20       157         CP70903       84       20       157         CP70903       84       20       157         CP7050AX       94.2       20       157         CP7050AX       94.2       22.4       162.6         MEAN       7.5       10.7       1.1         LSD (10%)       8.4       2.8       2.1         + Days after January 1, 2020       * 0: no lodging - 9: plants lying       2.0       2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.1<br>24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.2                                                                                                                                          | 103.6                                                                                                                                |                                                                                                                       |
| Redfield       98       20       161         Keldin       96       20       164         TCG Boomlock       95       21       161         CP7017AX       94       19       158         CP701909       84       20       157         CP70903       84       20       157         CP70903       84       20       157         CP70903       84       20       157         CP70903       84       20       157         MEAN       94.2       22.4       162.6         CV. (%)       7.5       10.7       1.1         LSD (10%)       8.4       2.8       2.1         + Days after January 1, 2020<*0: no lodging - 9: plants lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۲ .<br>۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.1                                                                                                                                           | 96.5                                                                                                                                 |                                                                                                                       |
| Keldin       96       20       164         TCG Boomlock       95       21       161         CP7017AX       94       19       158         CP7009       84       20       157         CP7050AX       94       19       157         CP7050AX       94.2       20       157         CP7050AX       94.2       22.4       162.6         MEAN       94.2       22.4       162.6         CV. (%)       7.5       10.7       1.1         LSD (5%)       8.4       2.8       2.1         HEAN       94.2       22.4       162.6         CV. (%)       7.5       10.7       1.1         LSD (10%)       8.4       2.8       2.1         + Days after January 1, 2020       * 0: no lodging - 9: plants lying       2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.1                                                                                                                                           | 91.4                                                                                                                                 | I                                                                                                                     |
| TCG Boomlock       95       21       161         CP7017AX       94       19       158         CP7017AX       94       19       158         CP7009       84       20       157         CP7050AX       93       19       155         MEAN       94.2       22.4       162.6         CV. (%)       7.5       10.7       1.1         LSD (5%)       8.4       2.8       2.5         LSD (10%)       8.4       2.8       2.1         + Days after January 1, 2020       * 0: no lodging - 9: plants lying       2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98.6                                                                                                                                           | ı                                                                                                                                    | ı                                                                                                                     |
| CP7017AX       94       19       158         CP7909       84       20       157         CP7050AX       93       19       155         MEAN       94.2       22.4       162.6         MEAN       94.2       22.4       162.6         CV. (%)       7.5       10.7       1.1         LSD (5%)       8.4       2.8       2.1         Ass after January 1, 2020       * 0: no lodging - 9: plants lying       2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.7 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.6                                                                                                                                           |                                                                                                                                      |                                                                                                                       |
| CP7909     84     20     157       CP7050AX     93     19     155       MEAN     94.2     22.4     162.6       C.V. (%)     7.5     10.7     1.1       LSD (5%)     8.4     2.8     2.1       + Days after January 1, 2020     * 0: no lodging - 9: plants lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.3                                                                                                                                           | ·                                                                                                                                    |                                                                                                                       |
| CP7050AX         93         19         155           MEAN         94.2         22.4         162.6           C.V. (%)         7.5         10.7         1.1           LSD (5%)         8.4         2.8         2.1           + Days after January 1, 2020         * 0: no lodging - 9: plants lying         * 0: no lodging - 9: plants lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67.9                                                                                                                                           | ı                                                                                                                                    | ı                                                                                                                     |
| MEAN         94.2         22.4         162.6           C.V. (%)         7.5         10.7         1.1           LSD (5%)         10.0         3.4         2.5           LSD (10%)         8.4         2.8         2.1           + Days after January 1, 2020         * 0: no lodging - 9: plants lying         2000         2000         2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54.7                                                                                                                                           |                                                                                                                                      | ı                                                                                                                     |
| C.V. (%) 7.5 10.7 1.1<br>LSD (5%) 7.0 3.4 2.5<br>LSD (10%) 8.4 2.8 2.1<br>+ Days after January 1, 2020 * 0: no lodging - 9: plants lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.03 14.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.92                                                                                                                                          | 100.31                                                                                                                               | 107.29                                                                                                                |
| LSD (5%) 10.0 3.4 2.5<br>LSD (10%) 8.4 2.8 2.1<br>+ Days after January 1, 2020 * 0: no lodging - 9: plants lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 204.9 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.34 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.09                                                                                                                                          | ·                                                                                                                                    |                                                                                                                       |
| LSD (10%) 8.4 2.8 2.1<br>+ Days after January 1, 2020 * 0: no lodging - 9: plants lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.71 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.58                                                                                                                                          |                                                                                                                                      |                                                                                                                       |
| + Days after January 1, 2020 * 0: no lodging - 9: plants lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.59 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.03                                                                                                                                          | ı                                                                                                                                    |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g flat on the groui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | † Protein content adjusted to 0% moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | to 0% moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ture                                                                                                                                           |                                                                                                                                      |                                                                                                                       |
| $\pm 2$ -Yf average from 2019 and 2020 $\pm 3$ -Yf average from 2017, 2019, and 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 017, 2019, and 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                |                                                                                                                                      |                                                                                                                       |
| Location: Latitude 48 9.9222'N; Longitude 103 6.132'W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                | Eleva                                                                                                                                | Elevation: 1902 ft                                                                                                    |
| Soil test (0-6 in.): P=18 ppm; K=216 ppm; pH=7.7; OM=2.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                | Previous crop: Field Pea                                                                                                             | p: Field Pea                                                                                                          |
| (0-24 in.): NO3-N=21 lb/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                | Planted                                                                                                                              | Planted: 9/24/2019                                                                                                    |
| Yield goal: 120 bu/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                | Harveste                                                                                                                             | Harvested: 8/3/2020                                                                                                   |
| Planting population: 1.5 million seeds/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soil type                                                                                                                                      | Soil type: Lihen Loamy Fine Sand                                                                                                     | y Fine Sand                                                                                                           |
| Fertilizer applied: 330 lb/a of Urea (46-0-0) [4/30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                | Plo                                                                                                                                  | Plot size: 92 ft <sub>s</sub>                                                                                         |
| Herbicides applied: Perfect Match (1pt/a), and Class Act (2qt/100gal) [5/26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100gal) [5/26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rain                                                                                                                                           | Rainfall: 6.3 inches [9/24 - 8/3]                                                                                                    | s [9/24 - 8/3]                                                                                                        |
| Eunaticida appliad: Drosaro 101 (803/a) [6/00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Irrigation                                                                                                                                     | Irrigation: 11 85 inches [0/24 - 8-3]                                                                                                | 10/2/ _ 8_3                                                                                                           |

| Dryland Intrastate W |                    | Evaluation - MS |                    |              | EARC, S | idney, MT 2020 |
|----------------------|--------------------|-----------------|--------------------|--------------|---------|----------------|
| Variety              | Winter<br>Survival | Plant Height    | Days to<br>Heading | Test Weight† | Protein | Grain Yield†   |
| variety              | %                  | (inch)          | (Julian*)          | (lb/bu)      | (%)     | (bu/ac)        |
| AAC Wildfire         | 98.3               | 25.3            | 165                | 59.9         | 14.1    | 57.0           |
| Bobcat               | 90.0               | 23.2            | 161                | 60.9         | 13.7    | 59.8           |
| Brawl CL Plus        | 91.7               | 22.6            | 155                | 62.9         | 13.2    | 58.6           |
| Byrd CL Plus         | 81.7               | 26.2            | 159                | 59.9         | 12.4    | 60.9           |
| CP7909               | 81.7               | 22.8            | 154                | 61.2         | 12.4    | 55.1           |
| Flathead             | 95.0               | 25.2            | 156                | 61.4         | 13.3    | 61.3           |
| FourOsix             | 91.7               | 22.4            | 160                | 61.2         | 13.9    | 61.4           |
| Incline AX           | 85.0               | 22.7            | 160                | 60.2         | 12.6    | 53.3           |
| Judee                | 86.7               | 23.4            | 161                | 62.8         | 14.6    | 54.3           |
| Keldin               | 90.0               | 26.0            | 161                | 61.9         | 12.7    | 64.2           |
| Langin               | 86.7               | 21.8            | 155                | 59.9         | 12.1    | 56.1           |
| LCS Jet              | 76.7               | 20.7            | 162                | 60.0         | 13.3    | 60.7           |
| LCS Photon AX        | 88.3               | 24.0            | 157                | 63.3         | 13.1    | 47.9           |
| LCS15ACC-8-21        | 85.0               | 23.0            | 156                | 63.1         | 12.2    | 60.5           |
| LCS-18-7071          | 73.3               | 24.1            | 162                | 62.2         | 11.7    | 54.5           |
| Loma                 | 91.7               | 23.1            | 163                | 61.0         | 13.8    | 59.5           |
| Long Branch          | 96.7               | 23.0            | 155                | 60.8         | 12.2    | 56.3           |
| Mpress (SWW)         | 95.0               | 23.5            | 163                | 59.7         | 12.3    | 67.2           |
| MT1642               | 98.3               | 25.2            | 158                | 60.4         | 13.9    | 68.3           |
| MT1683               | 95.0               | 27.4            | 161                | 61.0         | 13.6    | 68.3           |
| MT1745               | 98.3               | 23.5            | 161                | 59.7         | 13.1    | 57.4           |
| MT1746               | 93.3               | 23.5            | 159                | 61.1         | 13.1    | 55.7           |
| MT1787               | 93.3               | 23.4            | 161                | 61.4         | 13.9    | 64.2           |
| MT1793               | 96.7               | 24.9            | 159                | 60.6         | 14.1    | 62.9           |
| MT1845               | 95.0               | 25.3            | 159                | 61.1         | 13.4    | 62.0           |
| MT1848               | 91.7               | 22.6            | 162                | 60.2         | 14.9    | 54.5           |
| MT1855               | 88.3               | 21.8            | 163                | 61.4         | 14.2    | 57.9           |
| MT1866               | 80.0               | 22.7            | 161                | 60.4         | 13.8    | 49.9           |
| MT1867               | 91.7               | 24.5            | 159                | 57.6         | 13.4    | 55.7           |
| MT1872               | 96.7               | 24.9            | 161                | 61.2         | 12.8    | 57.9           |
| MTCL1732             | 95.0               | 23.6            | 159                | 58.7         | 13.9    | 54.8           |
| MTCL1737             | 88.3               | 22.4            | 163                | 61.3         | 14.1    | 64.9           |
| MTCS1601R            | 98.3               | 24.3            | 162                | 59.7         | 13.6    | 53.8           |
| MTS1810              | 96.7               | 23.4            | 164                | 61.9         | 14.8    | 50.5           |
| MTS18116             | 95.0               | 22.0            | 163                | 62.1         | 13.3    | 64.0           |
| MTS18149             | 88.3               | 20.9            | 163                | 61.3         | 13.7    | 63.0           |
| MTS1831              | 88.3               | 23.0            | 165                | 62.6         | 12.7    | 63.4           |
| Northern             | 96.7               | 24.9            | 162                | 61.4         | 14.1    | 65.4           |
| SY 517 CL2           | 88.3               | 21.9            | 156                | 62.3         | 13.7    | 45.5           |
| SY Clearstone 2CL    | 100.0              | 25.5            | 161                | 60.4         | 13.9    | 68.2           |
| SY Legend CL2        | 95.0               | 24.7            | 158                | 58.8         | 14.0    | 55.6           |
| SY Monument          | 80.0               | 24.0            | 159                | 59.5         | 12.4    | 56.0           |
| SY Wolverine         | 81.7               | 21.9            | 155                | 60.7         | 13.0    | 53.2           |
| Warhorse             | 95.0               | 23.0            | 161                | 60.8         | 14.2    | 54.3           |
| Continued on next p  | bage               |                 |                    |              |         |                |

# Continued from previous page

| Dryland Intrastate W | /inter Wheat | <b>Evaluation - MS</b> | U         |              | EARC, S | idney, MT 2020   |
|----------------------|--------------|------------------------|-----------|--------------|---------|------------------|
| Mariatu              | Winter       | Diant Liaisht          | Days to   |              | Dratain | Grain Vieldt     |
| Variety              | Survival     | Plant Height           | Heading   | Test Weight† | Protein | Grain Yield†     |
|                      | %            | (inch)                 | (Julian*) | (lb/bu)      | (%)     | (bu/ac)          |
| WB4269               | 80.0         | 21.5                   | 158       | 62.3         | 12.2    | 58.0             |
| WB4311               | 78.3         | 23.2                   | 159       | 63.4         | 13.1    | 52.0             |
| WB4418               | 83.3         | 22.3                   | 155       | 61.3         | 12.4    | 60.0             |
| WB4792               | 83.3         | 24.9                   | 160       | 64.1         | 12.3    | 64.3             |
| Yellowstone          | 98.3         | 27.2                   | 161       | 62.0         | 13.2    | 75.1             |
| Mean                 | 90.1         | 23.6                   | 159.8     | 61.1         | 13.3    | 58.9             |
| P-Value              | <0.0001      | <0.0001                | <0.0001   | <0.0001      | <0.0001 | <0.0001          |
| CV (%)               | 8.9          | 6.8                    | 0.7       | 1.3          | 1.9     | 9.7              |
| LSD (0.05)           | 13           | 2.6                    | 1.9       | 1.3          | 0.4     | 9.3              |
| Plantod: 0/25/2010   |              |                        |           |              | Drovie  | aus crop: Fallow |

Planted: 9/25/2019

Harvested: 7/28/2020

N added (lb/ac): 72 lb/ac

(Julian\*) is a continuous count of days since January 1

† Grain yield were adjusted to 12.0% moisture

Previous crop: Fallow Soil Type: William Clay Loam Plot Width: 5 ft Crop Year Precipitation: 8.16" Irrigation: N/A



#### **Barley Variety Descriptions**

|              |          |                  |                  |         |          |         | RE           | SISTANCE      | To <sup>3</sup> |                | QUALITY        | FACTORS          |
|--------------|----------|------------------|------------------|---------|----------|---------|--------------|---------------|-----------------|----------------|----------------|------------------|
| VARIETY      |          | USE <sup>2</sup> | YEAR<br>RELEASED | HEIGHT  | MATURITY | LODGING | Stem<br>Rust | Loose<br>Smut |                 | SPOT<br>BLOTCH | Test<br>Weight | GRAIN<br>PROTEIN |
| Two-Row      |          |                  |                  |         |          |         |              |               |                 |                |                |                  |
| AAC SYNERGY  | SY       | M/F              | 2015             | M SHORT | M LATE   | MR      | MR           | NA            | MR              | MR             | NA             | NA               |
| ABI BALSTER  | BARI     | M/F              | 2015             | M SHORT | MEDIUM   | М       | NA           | NA            | NA              | NA             | NA             | NA               |
| ABI GROWLER  | BARI     | M/F              | 2015             | M SHORT | MEDIUM   | MR      | NA           | NA            | NA              | S              | NA             | NA               |
| AC METCALFE  | CANADA   | М                | 1997             | MEDIUM  | LATE     | М       | S            | MR            | MS              | MS             | MEDIUM         | MEDIUM           |
| CDC Bow      | CANADA   | М                | 2019             | Medium  | LATE     | MR      | R            | MS            | MS              | MR             | HIGH           | MEDIUM           |
| CDC COPELAND | CANADA   | М                | 1999             | TALL    | M LATE   | MS      | MR           | S             | MS              | VS             | LOW            | MEDIUM           |
| CDC MEREDITH | CANADA   | М                | 2008             | MEDIUM  | LATE     | М       | MR           | NA            | MS              | S              | NA             | NA               |
| CELEBRATION  | BARI     | M/F              | 2008             | M SHORT | MEDIUM   | MR      | S            | NA            | MS/S            | MR/R           | NA             | NA               |
| CHAMPION     | WB       | F                | 1997             | MEDIUM  | MEDIUM   | MR      | R            | S             | MR              | NA             | M LOW          | MEDIUM           |
| CONLON       | NDSU     | F/M              | 1996             | M SHORT | EARLY    | MS      | S            | S             | MR              | MS             | M HIGH         | M LOW            |
| CONRAD       | BARI     | М                | 2007             | M TALL  | M LATE   | MR      | NA           | S             | NA              | NA             | M HIGH         | M LOW            |
| CRAFT        | MT       | F/M              |                  | TALL    | MEDIUM   | MR      | NA           | S             | S               | NA             | M HIGH         | M HIGH           |
| ESLICK       | MT       | F                | 2003             | MEDIUM  | M LATE   | MS      | S            | NA            | NA              | MS             | MEDIUM         | M LOW            |
| EXPLORER     | SECOBRA  | М                | NA               | M SHORT | M LATE   | MR      | NA           | NA            | MR              | S              | NA             | NA               |
| Нахву        | MT       | F                | 2003             | MEDIUM  | MEDIUM   | MS      | S            | S             | S               | MS             | V HIGH         | MEDIUM           |
| HOCKETT      | MT       | F/F              | 2008             | MEDIUM  | MEDIUM   | MS      | S            | S             | NA              | NA             | MEDIUM         | M HIGH           |
| LCS GENIE    | LIME     | М                | NA               | SHORT   | MEDIUM   | MR      | NA           | NA            | MS              | S              | NA             | NA               |
| LCS ODYSSEY  | LIME     | M/F              | NA               | SHORT   | MEDIUM   | М       | NA           | NA            | NA              | NA             | NA             | NA               |
| ND GENESIS   | NDSU     | F/F              | 2015             | MEDIUM  | M LATE   | MR      | S            | NA            | MR              | MR             | HIGH           | LOW              |
| PINNACLE     | NDSU     | F/F              | 2006             | MEDIUM  | M LATE   | MR      | S            | S             | MS              | MR             | HIGH           | LOW              |
| SIRISH       | SYNGENTA | М                | NA               | SHORT   | M LATE   | MR      | S            | S             | MS              | MS             | MEDIUM         | MEDIUM           |
| SIX-ROW      |          |                  |                  |         |          |         |              |               |                 |                |                |                  |
| CELEBRATION  | BARI     | F/M              | 2008             | M SHORT | MEDIUM   | R       | S            | S             | MS/S            | MR/R           | MEDIUM         | MEDIUM           |
| INNOVATION   | BARI     | М                | 2009             | M SHORT | MEDIUM   | MR      | S            | S             | MS/S            | MR/R           | MEDIUM         | MEDIUM           |
| LACEY        | MN       | F/M              | 1999             | M SHORT | MEDIUM   | MR      | S            | S             | MS/S            | MR/R           | MEDIUM         | MEDIUM           |
| QUEST        | MN       | М                | 2010             | M SHORT | MEDIUM   | MS      | S            | S             | MR              | MR/R           | M LOW          | MEDIUM           |
| STELLAR-ND   | NDSU     | F/M              | 2005             | M SHORT | MEDIUM   | R       | S            | S             | MS/S            | MR/R           | MEDIUM         | M LOW            |
| TRADITION    | BARI     | F/M              | 2003             | M SHORT | MEDIUM   | R       | S            | S             | MS/S            | MR/R           | MEDIUM         | M LOW            |
| SPECIALTY    |          |                  |                  |         |          |         |              |               |                 |                |                |                  |
| HAYBET       | MT       | н                | 1989             | TALL    | MEDIUM   | S       | NA           | S             | NA              | NA             | LOW            | MEDIUM           |
| HAYS         | MT       | н                | 2003             | M TALL  | MEDIUM   | MS      | NA           | NA            | NA              | NA             | LOW            | MEDIUM           |

<sup>1</sup>Refers to developer: BARI = Busch Ag Resources; Inc.; CANADA represents developers from that country; Lime = Limagrain; MN = University of Minnesota; MT = Montana State University; NDSU = North Dakota State University; SY = Syngenta; WB = WestBred. <sup>2</sup>F = Feed; M = Malt.

<sup>3</sup>MR = Moderately resistant; M = Intermediate; MS = Moderately susceptible; NA = Not available; R = Resistant; S = Susceptible; VS = Very susceptible.



#### **Barley Dryland Variety Trial - NDSU**

|             | Days to | Plant  |       |        |       |         | Test    |        | Yield       |             |
|-------------|---------|--------|-------|--------|-------|---------|---------|--------|-------------|-------------|
| Variety     | heading | height | Stand | Plumps | Thins | Protein | weight  | 2020   | 2-Yr<br>Avg | 3-Yr<br>Avg |
|             | (DAP)   | (in)   | (%)   | (%)    | 9%)   | (%)     | (lb/bu) | (bu/a) | (bu/a)      | (bu/a)      |
| Two-Row     |         |        |       |        |       |         |         |        |             |             |
| AAC Synergy | 69      | 18     | 95    | 95.5   | 1.0   | 13.6    | 51.4    | 36.4   | 70.8        | 69.5        |
| Pinnacle    | 62      | 18     | 96    | 95.4   | 1.3   | 11.5    | 52.3    | 40.2   | 74.8        | 69.1        |
| ND Genesis  | 63      | 20     | 93    | 96.0   | 0.5   | 11.4    | 51.3    | 40.8   | 75.2        | 68.3        |
| AAC Connect | 66      | 17     | 95    | 95.0   | 0.8   | 13.9    | 51.4    | 38.1   | 66.6        | 66.6        |
| Explorer    | 72      | 15     | 95    | 95.0   | 1.1   | 13.8    | 51.7    | 37.7   | 71.7        | 65.2        |
| Hockett     | 71      | 18     | 97    | 95.8   | 1.2   | 14.2    | 52.7    | 38.6   | 68.8        | 62.2        |
| CDC Bow     | 68      | 18     | 97    | 95.3   | 0.9   | 13.4    | 51.6    | 36.2   | 67.0        | -           |
| Conlon      | 58      | 19     | 96    | 96.7   | 1.1   | 13.0    | 51.1    | 35.5   | 64.0        | -           |
| Six-Row     |         |        |       |        |       |         |         |        |             |             |
| Tradition   | 60      | 18     | 94    | 85.3   | 1.2   | 14.6    | 50.2    | 27.9   | 50.7        | 51.7        |
| Mean        | 65      | 17     | 96    | 94.6   | 1.0   | 12.7    | 51.0    | 37.7   | -           | -           |
| CV (%)      | 2.9     | 9.0    | 3.4   | 1.0    | 25.9  | 3.1     | 0.6     | 10.9   | -           | -           |
| LSD (5%)    | 3.1     | 2.6    | 5.3   | 1.5    | 0.4   | 0.6     | 0.5     | 6.8    | -           | -           |
| LSD (10%)   | 2.6     | 2.1    | 4.4   | 1.3    | 0.4   | 0.5     | 0.4     | 5.7    | -           | -           |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft

Planted: 04/23/2020

Soil test (0-6"): P=20 ppm; K=285 ppm; pH=6.4; OM=2.0%

(0-24"): NO3-N=17 lb/a Applied fertilizers in lb/a: N=36; P<sub>2</sub>O<sub>5</sub>=26; K<sub>2</sub>O=0

Herbicide Application: Supremacy at 6 oz/a; Axial XL at 12.4 oz/a (6/09/20)

#### **Barley Irrigated Variety Trial - NDSU**

WREC, Nesson Valley, ND 2020 **Protein<sup>†</sup>** Yield Plant Days to 2-Yr Test 2-Yr 3-Yr Variety Height Head Lodging 2020 Avg 3-Yr Avg Weight Plump % 2020 Avg Avg (DAP\*  $(0 - 9^{+})$ (%) (lb/bu) 6/64) (bu/a) (in) (%) (%) (bu/a) (bu/a) **TWO ROW** 0 ND Genesis 31 56 12.5 12.6 55.2 71.6 139.1 123.3 11.5 135.8 0 12.3 Pinnacle 31 56 11.0 12.7 56.5 73.0 125.4 132.6 121.8 AAC Synergy 28 60 0 12.7 13.9 14.1 55.4 72.5 128.7 125.1 118.5 Explorer 23 59 0 12.1 13.2 13.8 55.4 71.5 121.9 130.2 111.9 Hockett 28 57 1 12.9 14.0 13.9 55.8 69.8 115.9 119.6 111.6 Conlon 29 0 51 13.2 13.7 14.0 55.2 73.0 114.3 113.0 104.4 AAC Connect 29 58 0 12.9 13.6 54.8 71.2 130.4 135.7 --CDC Bow 30 60 0 12.7 55.3 72.4 137.8 \_ ---SIX ROW 56 0 70.2 136.4 Celebration 31 13.1 14.3 14.9 54.8 153.6 145.3 Innovation 29 55 0 12.0 13.3 13.9 54.1 71.9 145.8 136.6 131.0 Tradition 32 55 0 13.2 13.9 14.1 55.1 71.4 139.5 141.5 130.7 MEAN 29.2 56.5 0.1 12.49 13.47 13.77 55.23 71.69 132.04 131.53 121.06 C.V. (%) 328.0 3.97 6.3 1.9 0.78 1.22 10.85 LSD (5%) 2.7 1.6 0.3 0.84 0.74 1.99 20.69 LSD (10%) 2.2 1.3 0.3 0.70 0.61 1.65 17.20

\* Days after planting \* 0: no lodging - 9: plants lying f Location: Latitude 48 9.9222'N; Longitude 103 6.132'W <sup>+</sup> 0: no lodging - 9: plants lying flat on the ground † Protein content adjusted to 0% moisture

Soil test (0-6 in.): P=18 ppm; K=242 ppm; pH=7.5; OM=2.2%

(0-24 in.): NO3-N=17 lb/a

Yield goal: 120 bu/a

Planting population: 1.25 million seeds/a

Fertilizer applied: 200 lb/a Urea [4/30]

Herbicides applied: Aim (0.5oz/a), Bison (1.5pt/a), Axial XL (16oz/a),

Class Act (1qt/100gal) [5/29]

Fungicide applied: Prosaro 421 (8oz/a) [6/29]

Elevation: 1902 ft Previous crop: Field Pea Planted: 4/29/2020 Harvested: 8/10/2020 Soil type: Lihen Loamy Fine Sand Plot size: 92 ft<sup>2</sup>

Rainfall: 4.4 inches [4/29 - 8/10]

Irrigation: 11.85 inches [4/29 - 8/10]

Previous crop: Soybeans Harvested: 07/29/2020 Soil type: Williams-Bowbells loam

WREC, Williston, ND 2020

# Irrigated Intrastate Barley Evaluation - MSU

EARC, Sidney, MT 2020

|                              | Plant        | Days to   | Plump        | Regular | Test    | EARC, Slui | Grain   |
|------------------------------|--------------|-----------|--------------|---------|---------|------------|---------|
| Variety                      | Height       | Heading   |              | 5/64    | Weight† | Protein    | Yield†  |
| -                            | (inch)       | (Julian*) | (%)          | (%)     | (lb/bu) | (%)        | (bu/ac) |
| 2IM14-8212                   | 30.3         | 174       | 98.7         | 1.2     | 54.1    | 11.8       | 135.1   |
| AAC Connect                  | 31.4         | 177       | 98.3         | 1.6     | 54.4    | 11.8       | 119.1   |
| ABI Eagle                    | 31.0         | 176       | 95.7         | 3.8     | 55.2    | 12.4       | 149.3   |
| Buzz                         | 29.9         | 174       | 98.2         | 1.6     | 54.4    | 11.6       | 129.6   |
| Hockett                      | 30.4         | 173       | 97.9         | 1.8     | 56.1    | 12.5       | 128.8   |
| KWS Fantex                   | 28.0         | 177       | 98.2         | 1.5     | 54.0    | 12.1       | 149.7   |
| KWS Jessie                   | 26.7         | 175       | 98.7         | 1.2     | 54.2    | 11.8       | 135.2   |
| Merit 57                     | 32.4         | 176       | 94.9         | 4.6     | 53.6    | 12.7       | 133.6   |
| MT16M00209                   | 30.1         | 170       | 99.6         | 0.4     | 53.9    | 12.4       | 120.4   |
| MT16M00305                   | 30.8         | 172       | 98.9         | 1.1     | 53.7    | 12.9       | 128.1   |
| MT16M00406                   | 32.4         | 176       | 99.1         | 0.8     | 54.0    | 12.0       | 127.5   |
| MT16M00407                   | 32.0         | 171       | 99.0         | 1.0     | 54.1    | 13.4       | 125.9   |
| MT16M00504                   | 30.3         | 171       | 99.1         | 0.9     | 53.3    | 12.5       | 125.9   |
| MT16M00603                   | 32.8         | 173       | 98.7         | 1.3     | 53.5    | 12.8       | 137.4   |
| MT16M00610                   | 33.5         | 171       | 98.9         | 1.0     | 55.4    | 12.8       | 122.6   |
| MT16M00707                   | 32.3         | 175       | 98.3         | 1.6     | 54.5    | 12.0       | 135.1   |
| MT16M00709                   | 32.6         | 174       | 98.5         | 1.5     | 54.6    | 11.2       | 123.9   |
| MT16M00806                   | 33.7         | 174       | 98.1         | 1.7     | 55.3    | 13.0       | 138.4   |
| MT16M01405                   | 30.4         | 172       | 98.9         | 1.0     | 55.4    | 12.1       | 140.2   |
| MT16M01705                   | 30.7         | 169       | 98.2         | 1.7     | 55.2    | 12.3       | 127.8   |
| MT16M01801                   | 30.8         | 175       | 98.1         | 1.8     | 54.4    | 11.4       | 151.8   |
| MT16M01819                   | 29.9         | 170       | 98.8         | 1.0     | 54.5    | 12.8       | 120.4   |
| MT16M01901                   | 29.8         | 172       | 98.9         | 0.9     | 54.6    | 12.0       | 126.2   |
| MT16M01902                   | 31.1         | 172       | 98.8         | 1.1     | 54.4    | 12.4       | 143.7   |
| MT16M02101                   | 31.5         | 172       | 97.3         | 2.5     | 52.8    | 11.6       | 130.5   |
| MT16M02107                   | 34.1         | 170       | 98.3         | 1.5     | 55.5    | 12.6       | 145.8   |
| MT16M02201                   | 32.8         | 170       | 99.1         | 0.8     | 53.1    | 12.0       | 145.0   |
| MT16M05403                   | 29.9         | 174       | 96.5         | 3.1     | 55.0    | 11.8       | 120.7   |
| MT16M05405                   | 31.6         | 170       | 98.0         | 1.9     | 54.3    | 12.7       | 116.7   |
| MT16M06404                   | 30.8         | 175       | 90.0<br>97.5 | 2.3     | 55.7    | 12.7       | 129.2   |
| MT16M07806                   | 29.5         | 175       | 97.5<br>98.1 | 1.7     | 56.5    | 12.3       | 129.2   |
| MT16M09602                   | 29.5         | 170       | 98.1         | 1.4     | 55.6    | 12.1       | 124.3   |
| MT17M00302                   | 32.3         | 171       | 98.0         | 1.4     | 55.6    | 12.0       | 124.3   |
| MT17M00502                   | 32.3<br>31.8 | 170       | 98.0<br>99.1 | 1.0     | 55.2    | 12.4       | 132.2   |
| MT17M00504<br>MT17M01711     |              |           |              |         |         |            |         |
|                              | 29.6         | 174       | 97.7         | 2.0     | 53.7    | 11.8       | 139.1   |
| MT17M01906<br>MT17M01908     | 29.1         | 171       | 99.0         | 0.9     | 53.9    | 12.2       | 143.8   |
|                              | 31.0         | 171       | 99.1         | 0.9     | 54.3    | 11.6       | 124.6   |
| MT17M02009                   | 33.8         | 174       | 98.4<br>08.6 | 1.4     | 54.0    | 11.7       | 141.4   |
| MT17M02507                   | 31.6         | 174       | 98.6         | 1.3     | 55.3    | 11.1       | 149.5   |
| MT17M02510                   | 31.0         | 170       | 98.6         | 1.3     | 54.3    | 12.1       | 141.0   |
| MT17M04801                   | 33.8         | 174       | 97.8         | 2.0     | 55.6    | 11.6       | 132.7   |
| MT17M05416                   | 29.6         | 175       | 97.0         | 2.8     | 54.8    | 11.9       | 133.7   |
| MT17M05502                   | 34.9         | 176       | 98.5         | 1.4     | 55.6    | 11.8       | 127.8   |
| MT17M05508<br>Continued on n | 33.0         | 177       | 98.2         | 1.7     | 54.9    | 11.8       | 129.0   |

Continued on next page

#### Continued from previous page

| Irrigated Intrast | tate Barley E   | Evaluation - M     | SU             |                 |                 | EARC, Sidr | ney, MT 2020    |
|-------------------|-----------------|--------------------|----------------|-----------------|-----------------|------------|-----------------|
| Variety           | Plant<br>Height | Days to<br>Heading | Plump<br>>6/64 | Regular<br>5/64 | Test<br>Weight† | Protein    | Grain<br>Yield† |
|                   | (inch)          | (Julian*)          | (%)            | (%)             | (lb/bu)         | (%)        | (bu/ac)         |
| MT17M05808        | 30.2            | 174                | 97.9           | 1.9             | 54.5            | 12.5       | 112.9           |
| MT17M07704        | 30.8            | 173                | 97.0           | 2.6             | 54.8            | 13.0       | 133.4           |
| MT17M08702        | 29.8            | 172                | 97.2           | 2.5             | 56.0            | 11.7       | 133.3           |
| MT17M08808        | 29.9            | 174                | 98.0           | 1.8             | 55.5            | 11.3       | 152.2           |
| MT17M09602        | 31.0            | 173                | 98.4           | 1.6             | 55.1            | 10.6       | 118.3           |
| Mean              | 31.1            | 173.4              | 98.2           | 1.6             | 54.7            | 12.1       | 132.0           |
| P-Value           | <0.0001         | <0.0001            | <0.0001        | <0.0001         | <0.0001         | <0.0001    | <0.0001         |
| CV (%)            | 4.4             | 0.6                | 0.5            | 28.0            | 1.1             | 2.3        | 8.0             |
| LSD (0.05)        | 2.2             | 1.8                | 0.8            | 0.8             | 0.9             | 0.5        | 17.2            |
|                   |                 |                    |                |                 |                 |            |                 |

Planted: 4/23/2020

Harvested: 8/17/2020

(Julian\*) is a continuous count of days since January 1

† Test weight and grain yield were adjusted to 12.0% moisture Soil Test N Avail (lb/ac): 22

N added (lb/ac): 76

Previous crop: Sugar Beet Soil Type: Savage Silty Clay Plot Width: 5 ft Crop Year Precipitation: 7.93" Irrigation (sprinkler): 4.64" Soil Test  $P_2O_5$  (ppm): 17.5  $P_2O_5$  added (lb/ac): 23



Becky Garza - EARC Research Assistant

#### Dryland Intrastate Barley Evaluation - MSU

EARC, Sidney, MT 2020

|             | late Barley Ev | Plant  | Days to   | Plump | Regular> | Test                | KC, Siulley | Grain  |
|-------------|----------------|--------|-----------|-------|----------|---------------------|-------------|--------|
| Variety     | Emergence      | Height | Heading   | >6/64 | 5/64     | Weight <del>†</del> | Protein     | Yield† |
|             | (%)            | (inch) | (Julian*) | (%)   | (%)      | (lb/bu)             | (%)         | (bu/ac |
| 2IM14-8212  | 81.7           | 21.5   | 173       | 96.9  | 2.7      | 52.7                | 13.0        | 67.5   |
| AAC Connect | 85.0           | 22.2   | 175       | 96.3  | 3.5      | 54.5                | 13.7        | 61.4   |
| ABI Eagle   | 93.3           | 21.0   | 175       | 93.5  | 6.0      | 55.1                | 13.6        | 61.5   |
| Buzz        | 91.7           | 22.4   | 170       | 97.6  | 1.4      | 54.3                | 12.2        | 65.4   |
| Hockett     | 93.3           | 22.8   | 174       | 97.2  | 2.5      | 56.4                | 13.6        | 66.3   |
| KWS Fantex  | 91.7           | 19.6   | 179       | 97.4  | 2.4      | 55.3                | 14.1        | 69.6   |
| KWS Jessie  | 90.0           | 21.0   | 173       | 97.3  | 2.4      | 53.8                | 14.0        | 62.6   |
| Merit 57    | 91.7           | 24.9   | 174       | 91.1  | 8.3      | 54.5                | 14.3        | 62.3   |
| MT16M00209  | 90.0           | 21.6   | 168       | 99.4  | 0.5      | 54.5                | 13.0        | 59.6   |
| MT16M00305  | 88.3           | 22.6   | 170       | 98.9  | 1.0      | 53.7                | 13.7        | 62.3   |
| MT16M00406  | 86.7           | 25.1   | 177       | 98.2  | 1.6      | 55.4                | 13.0        | 65.3   |
| MT16M00407  | 90.0           | 23.5   | 169       | 98.3  | 1.5      | 55.2                | 13.7        | 54.8   |
| MT16M00504  | 95.0           | 20.4   | 171       | 98.0  | 1.6      | 55.2                | 12.9        | 60.5   |
| MT16M00603  | 90.0           | 24.3   | 171       | 98.1  | 1.6      | 54.9                | 13.5        | 56.8   |
| MT16M00610  | 85.0           | 24.3   | 167       | 98.4  | 1.4      | 55.7                | 13.4        | 55.5   |
| MT16M00707  | 83.3           | 24.7   | 175       | 97.6  | 2.2      | 55.9                | 12.9        | 61.1   |
| MT16M00709  | 85.0           | 27.3   | 172       | 97.1  | 2.6      | 55.2                | 12.3        | 69.8   |
| MT16M00806  | 90.0           | 23.6   | 173       | 97.0  | 2.8      | 55.8                | 13.7        | 60.4   |
| MT16M01405  | 75.0           | 20.8   | 169       | 97.8  | 1.9      | 54.5                | 13.2        | 53.9   |
| MT16M01705  | 86.7           | 22.3   | 169       | 96.0  | 3.3      | 54.5                | 13.3        | 50.2   |
| MT16M01801  | 80.0           | 24.7   | 174       | 96.9  | 2.6      | 55.6                | 12.6        | 62.4   |
| MT16M01819  | 88.3           | 23.4   | 167       | 97.4  | 2.1      | 56.2                | 13.7        | 51.8   |
| MT16M01901  | 91.7           | 21.7   | 169       | 97.9  | 1.9      | 55.6                | 11.8        | 62.2   |
| MT16M01902  | 88.3           | 23.9   | 170       | 98.1  | 1.7      | 54.9                | 13.4        | 70.2   |
| MT16M02101  | 91.7           | 24.6   | 169       | 94.7  | 4.8      | 54.1                | 12.6        | 66.2   |
| MT16M02107  | 90.0           | 23.1   | 169       | 97.4  | 2.3      | 56.1                | 14.0        | 62.6   |
| MT16M02201  | 93.3           | 23.6   | 170       | 97.9  | 1.9      | 53.9                | 12.3        | 70.8   |
| MT16M05403  | 90.0           | 22.6   | 176       | 94.8  | 4.8      | 56.3                | 12.8        | 67.2   |
| MT16M05610  | 81.7           | 23.6   | 175       | 98.0  | 1.9      | 56.1                | 14.0        | 59.0   |
| MT16M06404  | 88.3           | 23.6   | 175       | 96.9  | 2.8      | 55.6                | 14.5        | 52.0   |
| MT16M07806  | 83.3           | 23.7   | 174       | 97.6  | 2.2      | 56.4                | 13.6        | 54.3   |
| MT16M09602  | 85.0           | 22.0   | 168       | 97.6  | 2.0      | 56.4                | 13.0        | 54.8   |
| MT17M00302  | 91.7           | 24.4   | 175       | 97.6  | 2.3      | 56.5                | 12.2        | 68.9   |
| MT17M00504  | 81.7           | 24.2   | 169       | 97.7  | 1.7      | 54.7                | 13.0        | 55.7   |
| MT17M01711  | 90.0           | 22.7   | 171       | 97.3  | 2.4      | 53.4                | 13.0        | 75.0   |
| MT17M01906  | 85.0           | 22.6   | 169       | 96.5  | 2.9      | 54.7                | 13.2        | 62.4   |
| MT17M01908  | 90.0           | 23.9   | 168       | 97.6  | 2.2      | 54.8                | 12.4        | 63.0   |
| MT17M02009  | 93.3           | 24.0   | 169       | 96.0  | 3.7      | 54.8                | 12.7        | 62.5   |
| MT17M02507  | 95.0           | 23.7   | 170       | 96.9  | 2.7      | 54.1                | 11.9        | 72.2   |
| MT17M02510  | 90.0           | 21.8   | 168       | 98.9  | 1.0      | 55.6                | 12.7        | 59.1   |
| MT17M04801  | 88.3           | 25.6   | 170       | 97.2  | 2.7      | 55.6                | 13.3        | 64.5   |
| MT17M05416  | 86.7           | 24.2   | 174       | 96.5  | 3.2      | 54.7                | 13.1        | 59.6   |
| MT17M05502  | 90.0           | 24.4   | 175       | 97.4  | 2.4      | 55.8                | 14.6        | 55.3   |
|             |                | 25.8   | 176       | 96.4  | 3.4      | 55.6                | 14.2        | 59.5   |

#### Continued from previous page

| Dryland Intras | tate Barley Ev | aluation - | WISU      |         |          | EA                  | RC, Slaney | , IVI I ZUZU |
|----------------|----------------|------------|-----------|---------|----------|---------------------|------------|--------------|
|                |                | Plant      | Days to   | Plump   | Regular> | Test                |            | Grain        |
| Variety        | Emergence      | Height     | Heading   | >6/64   | 5/64     | Weight <del>†</del> | Protein    | Yield†       |
|                | (%)            | (inch)     | (Julian*) | (%)     | (%)      | (lb/bu)             | (%)        | (bu/ac)      |
| MT17M05808     | 88.3           | 22.8       | 174       | 97.1    | 2.6      | 54.9                | 13.9       | 67.6         |
| MT17M07704     | 88.3           | 23.9       | 172       | 96.2    | 3.4      | 55.8                | 14.7       | 57.8         |
| MT17M08702     | 95.0           | 21.0       | 169       | 97.6    | 2.1      | 56.3                | 12.8       | 61.2         |
| MT17M08808     | 91.7           | 23.1       | 173       | 96.6    | 2.8      | 55.7                | 12.4       | 67.5         |
| MT17M09602     | 98.3           | 23.7       | 171       | 97.5    | 2.2      | 56.8                | 11.5       | 61.0         |
| Mean           | 88.6           | 23.2       | 171.7     | 97.1    | 2.6      | 55.2                | 13.2       | 61.9         |
| P-Value        | 0.2329         | <0.0001    | <0.0001   | <0.0001 | <0.0001  | <0.0001             | <0.0001    | <0.0001      |
| CV (%)         | 8.1            | 7.1        | 0.9       | 0.8     | 26.6     | 0.8                 | 2.8        | 9.4          |
| LSD (0.05)     | 11.6           | 2.7        | 2.5       | 1.2     | 1.1      | 0.8                 | 0.6        | 9.4          |
|                |                |            |           |         |          |                     |            |              |

#### **Dryland Intrastate Barley Evaluation - MSU**

EARC, Sidney, MT 2020

Planted: 4/20/2020

Harvested: 8/10/2020

(Julian\*) is a continuous count of days since January 1

† Test weight and grain yield were adjusted to 12.0% moisture

Soil Test N Avail (lb/ac): 29

N added (lb/ac): 63

Previous crop: Fallow Soil Type: William Clay Loam Plot Width: 5 ft Crop Year Precipitation: 8.16" Soil Test  $P_2O_5$  (ppm): 25.7  $P_2O_5$  added (lb/ac): 19



Harvesting Kernza plots at WREC

#### Irrigated Hulless Barley Evaluation - MSU

EARC, Sidney, MT 2020

|             |              |                 |                          |         | , <u>,</u>   |
|-------------|--------------|-----------------|--------------------------|---------|--------------|
| Variety     | Plant Height | Days to Heading | Test Weight <del>†</del> | Protein | Grain Yield† |
|             | (inch)       | (Julian*)       | (lb/bu)                  | (%)     | (bu/ac)      |
| 09WA-265.12 | 32.4         | 176             | 65.4                     | 13.2    | 5736.7       |
| Havener     | 30.6         | 177             | 65.6                     | 13.2    | 6193.0       |
| MT16H09302  | 32.4         | 174             | 64.3                     | 13.0    | 5856.4       |
| MT16H09308  | 30.4         | 173             | 64.1                     | 12.4    | 6228.1       |
| MT18H01302  | 31.5         | 175             | 62.2                     | 14.5    | 5616.8       |
| MT18H01402  | 31.0         | 176             | 62.9                     | 14.9    | 4904.9       |
| MT18H01901  | 30.6         | 171             | 64.5                     | 14.3    | 5154.1       |
| MT18H02702  | 34.0         | 176             | 64.5                     | 13.8    | 6156.0       |
| MT18H02801  | 33.6         | 180             | 64.0                     | 12.8    | 5971.4       |
| MT18H02901  | 32.9         | 175             | 65.2                     | 14.0    | 5664.7       |
| MT18H03001  | 32.8         | 174             | 66.1                     | 17.1    | 3677.6       |
| MT18H03002  | 31.6         | 175             | 64.2                     | 15.1    | 3931.4       |
| MT18H03003  | 29.0         | 169             | 65.1                     | 15.1    | 4803.9       |
| MT18H03101  | 30.3         | 177             | 63.6                     | 15.2    | 3974.7       |
| MT18H03102  | 29.8         | 174             | 63.0                     | 13.2    | 4936.9       |
| OR29-2-B    | 30.0         | 175             | 62.9                     | 13.3    | 6126.9       |
| Mean        | 31.4         | 174.8           | 64.2                     | 14.1    | 5308.3       |
| P-Value     | <0.01        | <0.0001         | <0.0001                  | <0.0001 | <0.0001      |
| CV (%)      | 5.1          | 0.4             | 0.9                      | 2.3     | 7.4          |
| LSD (0.05)  | 2.7          | 1.1             | 1.0                      | 0.5     | 653.3        |
|             |              |                 |                          |         |              |

P2O5 added (lb/ac): 19

Planted: 4/23/2020

Harvested: 8/17/2020

(Julian\*) is a continuous count of days since January 1

† Test weight and grain yield were adjusted to 12.0% moisture

Soil Test N Avail (lb/ac): 22 N added (lb/ac): 63

#### **Dryland Hulless Barley Evaluation - MSU**

Previous crop: Sugar Beet Soil Type: Savage Silty Clay Plot Width: 5 ft Crop Year Precipitation: 7.93" Irrigation (sprinkler): 4.64" Soil Test P<sub>2</sub>O<sub>5</sub> (ppm): 17.5

EARC, Sidney, MT 2020

| Di yiana manes.  | 3 Duricy Evaluation |              |                 |              |          | icy, wit 2020 |
|------------------|---------------------|--------------|-----------------|--------------|----------|---------------|
| Variety          | Emergence           | Plant Height | Days to Heading | Test Weight† | Protein  | Yield†        |
|                  | (%)                 | (inch)       | (Julian*)       | (lb/bu)      | (%)      | (bu/ac)       |
| 09WA-265.12      | 73.3                | 24.5         | 177             | 64.4         | 16.0     | 2473.2        |
| Havener          | 63.3                | 22.8         | 176             | 65.7         | 15.3     | 2244.1        |
| MT16H09302       | 76.7                | 24.1         | 172             | 64.3         | 15.1     | 2103.8        |
| MT16H09308       | 70.0                | 23.7         | 171             | 64.1         | 13.9     | 1995.6        |
| MT18H01302       | 70.0                | 23.2         | 171             | 62.1         | 16.0     | 1868.7        |
| MT18H01402       | 63.3                | 23.4         | 175             | 63.2         | 16.6     | 1847.2        |
| MT18H01901       | 63.3                | 24.5         | 172             | 64.1         | 15.8     | 1855.8        |
| MT18H02702       | 73.3                | 25.3         | 175             | 65.0         | 15.5     | 2611.7        |
| MT18H02801       | 78.3                | 24.7         | 180             | 65.1         | 15.0     | 2770.4        |
| MT18H02901       | 78.3                | 25.3         | 173             | 65.0         | 16.1     | 2336.7        |
| MT18H03001       | 53.3                | 25.7         | 172             | 65.1         | 18.5     | 927.5         |
| MT18H03002       | 80.0                | 24.3         | 174             | 64.2         | 16.4     | 1902.8        |
| MT18H03003       | 75.0                | 23.6         | 167             | 64.7         | 16.6     | 1611.3        |
| MT18H03101       | 85.0                | 22.7         | 173             | 64.0         | 15.3     | 1684.3        |
| MT18H03102       | 86.7                | 22.8         | 169             | 64.1         | 14.2     | 1665.5        |
| OR29-2-B         | 78.3                | 22.8         | 175             | 63.2         | 16.5     | 2020.9        |
| Mean             | 73.0                | 24.0         | 173.2           | 64.3         | 15.8     | 1995.0        |
| P-Value          | 0.059               | 0.55         | <0.0001         | <0.0001      | <0.0001  | <0.0001       |
| CV (%)           | 15.0                | 7.4          | 0.9             | 0.8          | 3.0      | 12.1          |
| LSD (0.05)       | 18.3                | 3.0          | 2.5             | 2.9          | 0.8      | 402.8         |
| Planted: 4/20/20 | 120                 |              |                 |              | Previous | crop: Fallow  |

Planted: 4/20/2020 Harvested: 8/11/2020

(Julian\*) is a continuous count of days since January 1

+ Test weight and grain yield were adjusted to 12.0% me

† Test weight and grain yield were adjusted to 12.0% moisture Soil Test N Avail (lb/ac): 29

N added (lb/ac): 63

P2O5 added (lb/ac): 19

Previous crop: Fallow Soil Type: William Clay Loam Plot Width: 5 ft Crop Year Precipitation: 8.16" Irrigation: N/A Soil Test P<sub>2</sub>O<sub>5</sub> (ppm): 25.7

#### **OAT VARIETY DESCRIPTIONS**

|              |          |                  |                |        |          |         | RESIST       | ANCE TO <sup>2</sup> |                           | QUALIT         | Y FACTORS        |
|--------------|----------|------------------|----------------|--------|----------|---------|--------------|----------------------|---------------------------|----------------|------------------|
| VARIETY      |          | Year<br>Released | GRAIN<br>Color | Неіднт | MATURITY | Lodging | Stem<br>Rust | Crown<br>Rust        | BARLEY<br>YELLOW<br>DWARF | Test<br>Weight | GRAIN<br>PROTEIN |
| AC PINNACLE  | CANADA   | 1999             | WHITE          | TALL   | LATE     | MS      | R            | R                    | S                         | MEDIUM         | LOW              |
| BEACH        | NDSU     | 2004             | WHITE          | TALL   | M LATE   | MR      | S            | MR/MS                | MS                        | MEDIUM         | M HIGH           |
| CDC DANCER   | CANADA   | 2000             | WHITE          | TALL   | LATE     | MR      | S            | MS                   | S                         | HIGH           | MEDIUM           |
| CDC MINSTREL | CANADA   | 2006             | WHITE          | TALL   | LATE     | MR      | S            | S                    | S                         | M HIGH         | MEDIUM           |
| CS CAMDEN    | CANTERRA | 2016             | WHITE          | MEDIUM | MED      | R       | S            | MS                   | NA                        | NA             | NA               |
| DEON         | MN       | 2013             | YELLOW         | TALL   | LATE     | R       | S            | R                    | т                         | V HIGH         | NA               |
| HAYDEN       | SDSU     | 2014             | WHITE          | MEDIUM | MED      | М       | S            | MR/MS                | MR                        | M HIGH         | MEDIUM           |
| HIFI         | NDSU     | 2001             | WHITE          | TALL   | LATE     | MR      | MR           | R                    | т                         | M HIGH         | MEDIUM           |
| HYTEST       | SDSU     | 1986             | WHITE          | TALL   | EARLY    | MS      | S            | MS                   | S                         | V HIGH         | HIGH             |
| JURY         | NDSU     | 2012             | WHITE          | TALL   | LATE     | MS      | R            | R                    | MR                        | M HIGH         | MEDIUM           |
| KILLDEER     | NDSU     | 2000             | WHITE          | MED    | MED      | MR      | S            | MS                   | MR                        | M HIGH         | MEDIUM           |
| LEGGETT      | CANADA   | 2005             | WHITE          | TALL   | LATE     | MR      | MR           | R                    | S                         | MEDIUM         | MEDIUM           |
| NEWBURG      | NDSU     | 2011             | WHITE          | TALL   | LATE     | MS      | R            | R                    | MR                        | MEDIUM         | MEDIUM           |
| ΟΤΑΝΑ        | MT       | 1977             | WHITE          | TALL   | LATE     | S       | S            | S                    | S                         | HIGH           | MEDIUM           |
| ORE3541M     | CANADA   | 2018             | WHITE          | MEDIUM | LATE     | R       | S            | R                    | MS                        | HIGH           | M HIGH           |
| ORE3542M     | CANADA   | 2019             | WHITE          | MEDIUM | LATE     | R       | S            | R                    | S                         | M HIGH         | MEDIUM           |
| PAUL         | NDSU     | 1994             | HULLESS        | V TALL | LATE     | MS      | R            | MR                   | т                         | V HIGH         | HIGH             |
| ROCKFORD     | NDSU     | 2008             | WHITE          | TALL   | LATE     | R       | S            | R                    | MR                        | M HIGH         | MEDIUM           |
| Souris       | NDSU     | 2006             | WHITE          | MED    | MED      | R       | MS           | R                    | MS                        | HIGH           | MEDIUM           |
| STALLION     | SDSU     | 2006             | WHITE          | TALL   | LATE     | М       | S            | MR                   | NA                        | HIGH           | MEDIUM           |

<sup>1</sup>Refers to developer: CANADA represents developers from that country; MN = Minnesota; MT = Montana State University; NDSU = North Dakota State University. SDSU = South Dakota State University. <sup>2</sup>M = Intermediate; MR = Moderately resistant; MS = Moderately susceptible; NA = Not available; R = Resistant; S = Susceptible; T = Tolerant; VS = Very susceptible.



#### DON'T LOOK BACK

\*\*\*\*\*\* YOU'RE NOT HEADED THAT WAY

| Oats Dryland Variety Tr |         |        |         | WRE    | C, Williston | , ND 2020 |
|-------------------------|---------|--------|---------|--------|--------------|-----------|
| Variety                 | Days to | Plant  | Test    |        | Yield        |           |
|                         | heading | height | weight  | 2020   | 2-Yr Avg     | -         |
|                         | (DAP)   | (in)   | (lb/bu) | (bu/a) | (bu/a)       | (bu/a)    |
| Killdeer                | 51      | 26     | 45.3    | 74.8   | 134.7        | 115.9     |
| CS Camden               | 52      | 26     | 44.1    | 71.7   | 133.3        | 114.7     |
| Jury                    | 51      | 28     | 45.7    | 68.7   | 126.1        | 113.1     |
| Leggett                 | 52      | 24     | 44.5    | 63.9   | 127.3        | 112.5     |
| CDC Dancer              | 50      | 25     | 46.6    | 64.9   | 125.5        | 111.0     |
| ND131603                | 52      | 22     | 45.6    | 66.5   | 126.3        | 110.1     |
| Rockford                | 53      | 29     | 45.5    | 68.5   | 126.5        | 108.2     |
| ND141338                | 53      | 23     | 46.8    | 67.7   | 121.4        | 107.4     |
| ND141327                | 53      | 26     | 46.2    | 61.1   | 117.9        | 106.8     |
| Deon                    | 53      | 24     | 45.4    | 60.1   | 118.4        | 105.8     |
| Otana                   | 53      | 28     | 44.3    | 65.8   | 118.4        | 105.6     |
| Minstrel CDC            | 53      | 27     | 45.7    | 65.1   | 118.9        | 104.4     |
| Hayden                  | 51      | 23     | 45.1    | 60.7   | 118.5        | 103.0     |
| ND130202                | 51      | 26     | 46.6    | 66.1   | 117.7        | 102.9     |
| Stallion                | 51      | 27     | 45.3    | 66.7   | 111.6        | 102.4     |
| ND141363                | 53      | 27     | 46.3    | 59.0   | 112.9        | 101.8     |
| HiFi                    | 54      | 26     | 43.5    | 61.2   | 112.6        | 101.2     |
| Newburg                 | 52      | 26     | 45.5    | 70.0   | 108.9        | 101.1     |
| Souris                  | 51      | 26     | 46.1    | 63.3   | 112.8        | 99.4      |
| Beach                   | 50      | 25     | 45.0    | 62.4   | 100.2        | 94.6      |
| ND Heart (ND121901)     | 48      | 26     | 44.4    | 58.5   | 100.1        | 89.9      |
| Hytest                  | 48      | 25     | 44.9    | 55.9   | 91.5         | 80.3      |
| Paul                    | 54      | 27     | 51.4    | 41.0   | 80.6         | 72.1      |
| ND040341 (High oil)     | 54      | 27     | 52.6    | 34.6   | 66.6         | 57.9      |
| ND151085                | 53      | 26     | 45.3    | 63.0   | 118.0        | -         |
| ORE3542M                | 51      | 24     | 43.5    | 68.6   | 116.5        | -         |
| Warrior                 | 49      | 28     | 44.6    | 62.0   | 114.0        | -         |
| ORE3541M                | 49      | 26     | 45.5    | 67.0   | 106.9        | -         |
| ND161472                | 49      | 27     | 45.4    | 77.8   | -            | -         |
| ND161473                | 49      | 26     | 45.0    | 76.1   | -            | -         |
| ND160259                | 53      | 27     | 48.0    | 76.0   | -            | -         |
| ND161443                | 52      | 24     | 44.3    | 70.4   | -            | -         |
| ND161488                | 49      | 25     | 43.4    | 70.1   | -            | -         |
| ND161367                | 52      | 25     | 44.4    | 68.4   | -            | -         |
| ND160171                | 52      | 27     | 48.0    | 65.5   | -            | -         |
| ND160173                | 53      | 26     | 45.4    | 65.0   | -            | -         |
| CDC Haymaker            | 54      | 28     | 45.0    | 42.4   | -            | -         |
| Mean                    | 51.6    | 25.9   | 45.7    | 64.1   | -            | -         |
| CV (%)                  | 1.9     | 12.3   | 1.3     | 8.6    | -            | -         |
| LSD (5%)                | 1.6     | 5.2    | 1.0     | 9.0    | -            | -         |
| LSD (10%)               | 1.4     | 4.3    | 0.8     | 7.5    | -            | -         |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft

Planted: 05-15-2020 Harvested:08-21-2020 Previous crop: Soybeans

Soil test (0-6"): P=20 ppm; K=285 ppm; pH=6.4; OM=2.0% (0-24"): NO3-N=24 lb/a

Soil type: Williams-Bowbells loam

Applied fertilizers in Ib/a: N=72;  $P_2O_5=20$ ;  $K_2O=0$ Herbicide Application: Supremacy @ 6 oz/a  $\binom{6}{09}/2020$ 

| Oat Irrigated Variety Trial                               |                 | - NDSU           |                                                                   |                                                                                   | WRE     | WREC, Nesson Valley, ND 2020 | illey, ND 2020                         |
|-----------------------------------------------------------|-----------------|------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|------------------------------|----------------------------------------|
|                                                           | ì               |                  |                                                                   |                                                                                   |         | Yield                        |                                        |
|                                                           | Plant<br>Heimbe | Days to          |                                                                   | Test                                                                              |         |                              |                                        |
| Variety                                                   | Height<br>(in)  | неаа<br>(DAP*)   | Loaging<br>(0 - 9 <sup>+</sup> )                                  | (lb/bu)                                                                           | (bu/a)  | z-Tr Avg<br>(bu/a)           | <b>3-YFAVg</b><br>(bu/a)               |
| Deon                                                      | 40              | 57               | 0                                                                 | 45.4                                                                              | 198.1   | 186.7                        | 198.9                                  |
| CS Camden                                                 | 33              | 57               | 0                                                                 | 43.5                                                                              | 218.4   | 203.1                        | 198.3                                  |
| Hayden                                                    | 37              | 56               | 0                                                                 | 45.4                                                                              | 186.3   | 184.2                        | 185.9                                  |
| Hytest                                                    | 40              | 54               | 0                                                                 | 46.9                                                                              | 170.1   | 156.4                        | 151.6                                  |
| ORE3541M                                                  | 36              | 55               | 0                                                                 | 46.7                                                                              | 198.4   | 191.1                        | ı                                      |
| ORE3542M                                                  | 33              | 55               | 0                                                                 | 45.3                                                                              | 201.6   | 185.7                        | ı                                      |
| Warrior                                                   | 36              | 55               | 0                                                                 | 45.4                                                                              | 200.1   | ı                            | ı                                      |
| ND Heart                                                  | 36              | 54               | 0                                                                 | 44.2                                                                              | 195.0   |                              |                                        |
|                                                           |                 |                  |                                                                   |                                                                                   |         |                              |                                        |
| MEAN                                                      | 36.4            | 55.2             | 0.0                                                               | 45.34                                                                             | 195.98  | 184.55                       | 183.70                                 |
| C.V. (%)                                                  | 5.9             | 1.8              | ns                                                                | 1.17                                                                              | 10.44   | ı                            | ı                                      |
| LSD (5%)                                                  | 3.2             | 1.4              | ns                                                                | 0.93                                                                              | 30.11   | ı                            | ı                                      |
| LSD (10%)                                                 | 2.6             | 1.2              | ns                                                                | 0.76                                                                              | 24.91   |                              | I                                      |
| * Days after planting                                     | :0<br>+         | o lodging - 9: p | no lodging - 9: plants lying flat on the ground                   | on the ground                                                                     |         |                              |                                        |
| Location: Latitude 48 9.9222'N; Longitude 103 6.132'W     | 9.922           | N; Longitude 1   | 03 6.132'W                                                        |                                                                                   |         | Ele                          | Elevation: 1902 ft                     |
| Soil test (0-6 in.): P=18 ppm; K=242 ppm; pH=7.5; OM=2.2% | .): P=18 ppm    | ; K=242 ppm; p   | H=7.5; OM=2.3                                                     | 2%                                                                                |         | Previous                     | Previous crop: Field Pea               |
| (0-24 in.): NO3-N=17 lb/a                                 | -N=17 Ib/a      |                  |                                                                   |                                                                                   |         | Plar                         | Planted: 4/29/2020                     |
| Yield goal: 200 bu/a                                      | bu/a            |                  |                                                                   |                                                                                   |         | Harves                       | Harvested: 8/10/2020                   |
| Planting population: 1.25 million seeds/a                 | tion: 1.25 mill | ion seeds/a      |                                                                   |                                                                                   | Soil    | type: Lihen Lo               | Soil type: Lihen Loamy Fine Sand       |
| Fertilizer applied: 430 lb/a of Urea (46-0-0) [4/30]      | d: 430 lb/a of  | Urea (46-0-0) [  | 4/30]                                                             |                                                                                   |         |                              | Plot size: 92 ft <sup>2</sup>          |
| Herbicides appl                                           | lied: Aim (0.5d | oz/a), Bison (1. | 5pt/a), Class Ac                                                  | Herbicides applied: Aim (0.5oz/a), Bison (1.5pt/a), Class Act (1qt/100gal) [5/29] |         | ainfall: 4.4 inch            | Rainfall: 4.4 inches [4/29 - 8/10]     |
| Fungicides applied: None applied                          | lied: None ap   | plied            |                                                                   |                                                                                   | Irrigat | ion: 11.85 inch              | Irrigation: 11.85 inches [4/29 - 8/10] |
|                                                           |                 |                  |                                                                   |                                                                                   |         |                              |                                        |
|                                                           |                 | 01               | In Every Journey,<br>Who You Travel With<br>Can Be More Important | rervey,<br>rel With<br>mportant                                                   |         |                              |                                        |
|                                                           |                 | F                | I han Your Destination.                                           | truation                                                                          |         |                              |                                        |

## **Safflower Variety Descriptions**

|              |         |                  |                           |                       |                     |                   |        |      |          | TOLE | RANCE <sup>6</sup> |
|--------------|---------|------------------|---------------------------|-----------------------|---------------------|-------------------|--------|------|----------|------|--------------------|
| VARIETY      |         | PVP <sup>2</sup> | HULL<br>Type <sup>3</sup> | OIL TYPE <sup>4</sup> | Irrigated<br>Yield⁵ | Dryland<br>Yield⁵ | TWT⁵   | OIL⁵ | MATURITY | ALT  | BB                 |
| BALDY        | MT      | YES              | N                         | HIGH LINO             | FAIR                | GOOD              | V HIGH | LOW  | MED      | S    | NA                 |
| CARDINAL     | MT/NDSU | YES              | Ν                         | HIGH LINO             | V GOOD              | V GOOD            | HIGH   | FAIR | MED      | Т    | MT                 |
| FINCH        | MT/NDSU | NO               | Ν                         | HIGH LINO             | GOOD                | V GOOD            | V HIGH | FAIR | M EARLY  | MS   | Т                  |
| HYBRID 200   | STI     | YES              | Ν                         | HIGH OLEIC            | V GOOD              | V GOOD            | V HIGH | FAIR | MED      | MT   | NA                 |
| Hybrid 300   | STI     | YES              | Ν                         | HIGH OLEIC            | V GOOD              | V GOOD            | V HIGH | FAIR | MED      | MT   | NA                 |
| Hybrid 446   | STI     | YES              | N                         | HIGH OLEIC            | V GOOD              | V GOOD            | V HIGH | FAIR | MED      | MT   | NA                 |
| HYBRID 528   | STI     | YES              | STP                       | HIGH OLEIC            | GOOD                | GOOD              | M HIGH | GOOD | MED      | MT   | NA                 |
| HYBRID 621   | STI     | YES              | STP                       | HIGH OLEIC            | GOOD                | GOOD              | M HIGH | GOOD | MED      | MT   | NA                 |
| HYBRID 1601  | STI     | YES              | STP                       | HIGH OLEIC            | V GOOD              | V GOOD            | MED    | GOOD | M LATE   | MT   | MT                 |
| Hybrid 9049  | STI     | YES              | Ν                         | HIGH OLEIC            | V GOOD              | V GOOD            | V HIGH | FAIR | MED      | MT   | MT                 |
| MonDak       | MT/NDSU | YES              | Ν                         | HIGH OLEIC            | GOOD                | V GOOD            | HIGH   | FAIR | M EARLY  | т    | MT                 |
| MONTOLA 2000 | MT/NDSU | YES              | N                         | HIGH OLEIC            | M GOOD              | GOOD              | MED    | GOOD | EARLY    | MS   | MS                 |
| Montola 2001 | MT/NDSU | YES              | STP                       | HIGH OLEIC            | GOOD                | FAIR              | MED    | GOOD | MED      | MT   | MT                 |
| Montola 2003 | MT/NDSU | YES              | Ν                         | HIGH OLEIC            | V GOOD              | V GOOD            | M HIGH | GOOD | M EARLY  | MT   | MT                 |
| MONTOLA 2004 | MT/NDSU | YES              | Ν                         | HIGH OLEIC            | GOOD                | GOOD              | M HIGH | GOOD | M EARLY  | MS   | MT                 |
| MORLIN       | MT/NDSU | YES              | STP                       | HIGH LINO             | V GOOD              | GOOD              | MED    | GOOD | M LATE   | т    | т                  |
| NUTRASAFF    | MT/NDSU | YES              | RED                       | HIGH LINO             | GOOD                | GOOD              | MED    | HIGH | MED      | т    | MT                 |
| RUBIS RED    | MT      | YES              | Ν                         | HIGH LINO             | GOOD                | GOOD              | V HIGH | LOW  | MED      | MS   | NA                 |
| STI 1201     | STI     | YES              | STP                       | HIGH OLEIC            | GOOD                | GOOD              | M HIGH | GOOD | MED      | MT   | NA                 |
| STI 1401     | STI     | YES              | STP                       | HIGH OLEIC            | GOOD                | GOOD              | M HIGH | HIGH | MED      | MT   | NA                 |

<sup>1</sup>Refers to developer: MT = Montana State University; NDSU = North Dakota State University; STI = Safflower Technologies International. <sup>2</sup>PVP = Plant Variety Protection. "YEs" indicates that the variety is protected, and the seed may be sold for planting purposes only as a class of certified seed (Title V option) and/or exclusive licensed variety.

<sup>3</sup>N = Normal; RED = Reduced; STP = Striped.

<sup>4</sup>Lino = Linoleic.

<sup>5</sup>Relative ratings of yield, test weight, and oil will vary under conditions of moderate-severe disease infestation. <sup>6</sup>Alt = Alternaria leaf spot disease; BB = Bacterial blight; MS = Moderately susceptible; MT = Moderately tolerant; S = Susceptible; T = Tolerant. NA = Not Available



#### Safflower Dryland Variety Trial - NDSU

WREC, Williston, ND 2020

|              | -<br>Dave to         | Plant           |       |      | Test           |        |        | Yield  | ,           |              |
|--------------|----------------------|-----------------|-------|------|----------------|--------|--------|--------|-------------|--------------|
| Variety      | Days to<br>Flowering | Plant<br>height | Stand | Oil  | Test<br>weight | 2020   | 2019   | 2018   | 2-Yr<br>Avg | 3-Yr<br>Avg* |
|              | (DAP)                | (in)            | (%)   | (%)  | (lb/bu)        | (lb/a) | (lb/a) | (lb/a) | (lb/a)      | (lb/a)       |
| Chickadee    | 83                   | 23.2            | 76    | 41.9 | 43.1           | 1269   | 1865   | 1136   | 1567        | 1423         |
| Cardinal     | 85                   | 22.0            | 39    | 43.5 | 43.0           | 1280   | 1583   | 1241   | 1432        | 1368         |
| Hybrid 300   | 83                   | 23.2            | 78    | 35.9 | 43.6           | 1516   | 1400   | 1162   | 1458        | 1359         |
| Hybrid 1601  | 83                   | 22.5            | 78    | 42.2 | 35.9           | 1380   | 1375   | 1273   | 1378        | 1343         |
| Hybrid 446   | 82                   | 23.4            | 81    | 34.2 | 43.3           | 1221   | 1375   | 1305   | 1298        | 1300         |
| Hybrid 528   | 82                   | 22.6            | 70    | 45.0 | 35.3           | 1066   | 1500   | 1261   | 1283        | 1275         |
| Hybrid 200   | 82                   | 25.3            | 76    | 35.0 | 42.9           | 1271   | 1239   | 1300   | 1255        | 1270         |
| Morlin       | 80                   | 20.8            | 84    | 45.5 | 39.9           | 1171   | 1442   | 1095   | 1306        | 1236         |
| Montola 2003 | 81                   | 21.2            | 65    | 41.6 | 41.6           | 1311   | 1216   | 989    | 1264        | 1172         |
| MonDak       | 82                   | 21.9            | 64    | 39.4 | 41.6           | 1161   | 1360   | 914    | 1260        | 1145         |
| Finch        | 82                   | 21.2            | 68    | 44.3 | 45.1           | 1215   | 934    | 926    | 1074        | 1025         |
| NutraSaff    | 82                   | 21.1            | 78    | 52.7 | 37.2           | 1043   | 986    | 959    | 1014        | 996          |
| Hybrid 621   | 84                   | 23.5            | 70    | 45.6 | 32.7           | 1046   | 856    | 1001   | 951         | 968          |
| Rubis Red    | 81                   | 20.2            | 63    | 38.9 | 45.1           | 729    | 1143   | 885    | 936         | 919          |
| Montola 2000 | 82                   | 20.3            | 74    | 42.1 | 41.2           | 1196   | 1452   | -      | 1324        | -            |
| Montola 2001 | 84                   | 22.8            | 91    | 41.7 | 37.5           | 1021   | -      | 1361   | -           | -            |
| STI 1201     | 85                   | 22.5            | 68    | 45.1 | 38.1           | 1198   | 938    | -      | 1068        | -            |
| STI 1401     | 83                   | 22.6            | 66    | 49.6 | 35.1           | 877    | -      | -      | -           | -            |
| Mean         | 82                   | 22.2            | 71    | 43.1 | 39.3           | 1117   | -      | -      | -           | -            |
| CV (%)       | 2.3                  | 8.4             | 25.0  | 1.8  | 2.1            | 17.8   | -      | -      | -           | -            |
| LSD (5%)     | 2.6                  | 2.6             | 25.0  | 1.1  | 1.2            | 281.3  | -      | -      | -           | -            |
| LSD (10%)    | 2.2                  | 2.2             | 20.9  | 0.9  | 1.0            | 235.1  | -      | -      | -           | -            |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft Planted: 04/30/2020

Soil test to 6" in ppm: K= 264 OM= 1.9% pH=5.6 P= 22

Soil test to 24" in lb/a: N= 10

Applied fertilizers in Ib/a: N=30; P<sub>2</sub>O<sub>5</sub>=18; K<sub>2</sub>O=0

Applied fungicides: 07/15/2020 - Azoxystar @ 8 oz/A

Applied herbicides: 06/15/2020- Clethodin @ 8 oz/A, 07/06/2020-Allure II @ 12 oz/A

Soil type: Williams-Bowbells loam

Previous Crop: Wheat

Harvested: 09/15/2020



36

| Safflower Irrigated Variety Trial - NDSU                                                       | <b>Frial - NDSU</b> |                              |                |               |          | WREC    | WREC, Nesson Valley, ND 2020         | ey, ND 2020                   |
|------------------------------------------------------------------------------------------------|---------------------|------------------------------|----------------|---------------|----------|---------|--------------------------------------|-------------------------------|
|                                                                                                | Į                   |                              | oil⁺           |               | ·        |         | Yield                                |                               |
|                                                                                                | Days to             |                              |                |               | Test     |         |                                      |                               |
| Variety                                                                                        | Flower              | 2020                         | 2-Yr Avg       | 3-Yr Avg      | Weight   | 2020    | 2-Yr Avg                             | 3-Yr Avg                      |
|                                                                                                | (DAP*)              | (%)                          | (%)            | (%)           | (nq/ql)  | (Ib/a)  | (lb/a)                               | (lb/a)                        |
| Hybrid 446                                                                                     | 75                  | 33.4                         | 35.9           | 33.5          | 41.7     | 2012    | 1818                                 | 1706                          |
| Hybrid 300                                                                                     | 76                  | 35.5                         | 37.6           | 34.6          | 41.2     | 1684    | 1777                                 | 1638                          |
| Hybrid 200                                                                                     | 76                  | 33.2                         | 35.9           | 33.6          | 40.0     | 1703    | 1615                                 | 1593                          |
| MonDak                                                                                         | 76                  | 37.1                         | 39.2           | 36.3          | 39.9     | 1723    | 1593                                 | 1499                          |
| Montola 2003                                                                                   | 17                  | 39.7                         | 40.9           | 38.4          | 39.3     | 1220    | 1204                                 | 1369                          |
| Chickadee                                                                                      | 76                  | 38.4                         | 40.3           | 38.1          | 40.3     | 1347    | 1349                                 | 1330                          |
| Hybrid 1601                                                                                    | 77                  | 41.8                         | 42.3           | 38.6          | 35.2     | 1262    | 1183                                 | 1323                          |
| Rubis Red                                                                                      | 75                  | 36.4                         | 37.0           | 33.4          | 43.9     | 1717    | 1425                                 | 1306                          |
| Cardinal                                                                                       | 17                  | 41.9                         | 41.4           | 38.2          | 42.3     | 1354    | 1323                                 | 1291                          |
| STI 1201                                                                                       | 75                  | 43.1                         | 43.4           | 42.1          | 36.1     | 1388    | 1286                                 | 1187                          |
| Hybrid 621                                                                                     | 77                  | 43.8                         | 43.2           | 42.3          | 31.2     | 1079    | 1033                                 | 1060                          |
| Finch                                                                                          | 75                  | 41.3                         | 40.8           | 38.1          | 40.9     | 1343    | 1165                                 | 1011                          |
| Morlin                                                                                         | 17                  | 43.3                         | 40.7           | 39.1          | 38.6     | 1287    | 1115                                 | 993                           |
| STI 1401                                                                                       | 77                  | 46.9                         | 46.7           | 45.8          | 33.7     | 1097    | 970                                  | 859                           |
| NutraSaff                                                                                      | 76                  | 50.3                         | 47.7           | 46.4          | 37.0     | 1158    | 965                                  | 752                           |
| Montola 2000                                                                                   | 76                  | 39.2                         | 40.8           | ,             | 37.6     | 1265    | 1330                                 |                               |
| Montola 2001                                                                                   | 77                  | 38.3                         | 36.6           |               | 33.7     | 1133    | 1069                                 |                               |
| MEAN                                                                                           | 76.2                | 35.59                        | 38.31          | 36.98         | 38.38    | 1398.4  | 1307.0                               | 1261.1                        |
| C.V. (%)                                                                                       | 1.2                 | 1.71                         | ı              |               | 2.34     | 13.2    | ·                                    |                               |
| LSD (5%)                                                                                       | 1.5                 | 1.15                         | ı              | ·             | 1.50     | 305.9   | ı                                    |                               |
| LSD (10%)                                                                                      | 1.3                 | 0.95                         | ı              | I             | 1.24     | 254.4   |                                      | I                             |
| * Days after planting  † Oil content r                                                         | content reported    | reported on oven dried basis | ed basis       |               |          |         |                                      |                               |
| Location: Latitude 48 9.9222'N; Longitude 103 6.132'W                                          | N; Longitude 103    | 6.132'W                      |                |               |          |         | Elev                                 | Elevation: 1902 ft            |
| Soil test (0-6 in.): P=24 ppm; K=158 ppm; pH=7.9; OM=2.9 %                                     | K=158 ppm; pH=      | =7.9; OM=2.                  | % 6            |               |          |         | Previous                             | Previous crop: Durum          |
| (0-24 in.): NO3-N=29 lb/a                                                                      |                     |                              |                |               |          |         | Plant                                | Planted: 5/14/2020            |
| Yield goal: 2,000 lb/a                                                                         |                     |                              |                |               |          |         | Harvest                              | Harvested: 9/18/2020          |
| Planting population: Conventional 20ll                                                         | ional 20lb/a PLS,   | b/a PLS, Hybrid 18 lb/a PLS  | o/a PLS        |               |          | Soil ty | Soil type: Lihen Loamy Fine Sand     | my Fine Sand                  |
| Fertilizer applied: 160 lb/a of Urea (46-0-0) [5/19]                                           | Urea (46-0-0) [5/   | 19]                          |                |               |          |         | С.                                   | Plot size: 40 ft <sup>2</sup> |
| Herbicides applied: Prowl H2O (1.5 pt/a) [5/19], Section 3 (5.33 oz/A), Superb (1 qt/A) [6/16] | O (1.5 pt/a) [5/19  | ], Section 3                 | (5.33 oz/A), S | uperb (1 qt/A | ) [6/16] | Rain    | Rainfall: 5.1 inches [5/14 - 9/18]   | s [5/14 - 9/18]               |
| Fungicide applied: Priaxor (8oz/A) [7/21]                                                      | oz/A) [7/21] [8/3]  | 3]                           |                |               |          | Irrigat | Irrigation: 8.0 inches [5/14 - 9/18] | s [5/14 - 9/18]               |
|                                                                                                |                     |                              |                |               |          |         |                                      |                               |

| Safflower Irrigated Varie | ety Trial |         | MSU-   | EARC Sidn | ey, MT 2020 |
|---------------------------|-----------|---------|--------|-----------|-------------|
|                           |           | Test    |        | Yield     |             |
| Variety                   | Oil       | Weight  | 2020   | 2019      | 2-Yr Avg    |
|                           |           | (lb/bu) | (lb/a) | (lb/a)    | (lb/a)      |
| Hybrid 300                | 37.4      | 43.2    | 3391   | 3135      | 3263        |
| Hybrid 200                | 36.6      | 42.8    | 3769   | 2521      | 3145        |
| MonDak                    | 40.4      | 40.5    | 3274   | 3011      | 3142        |
| Montola 2003              | 41.4      | 40.8    | 3024   | 3193      | 3108        |
| Hybrid 446                | 35.4      | 43.0    | 3533   | 2360      | 2947        |
| Chickadee                 | 42.8      | 43.2    | 3227   | 2652      | 2939        |
| Hybrid 1601               | 44.0      | 36.5    | 2903   | 2363      | 2633        |
| STI 1201                  | 48.4      | 40.0    | 3041   | 2204      | 2623        |
| STI 1401                  | 52.8      | 36.3    | 2927   | 2187      | 2557        |
| Hybrid 621                | 46.7      | 33.9    | 2849   | 1981      | 2415        |
| Morlin                    | 45.8      | 39.7    | 2634   | 2115      | 2375        |
| Rubis Red                 | 38.2      | 45.4    | 2256   | 2442      | 2349        |
| Montola 2000              | 42.7      | 39.3    | 2548   | 2100      | 2324        |
| Hybrid 528                | 46.9      | 36.9    | 2555   | 1973      | 2264        |
| NutraSaff                 | 54.0      | 38.4    | 2671   | 1799      | 2235        |
| Cardinal                  | 43.7      | 41.7    | 2086   | 1710      | 1898        |
| Finch                     | 44.1      | 40.8    | 2149   | 1365      | 1757        |
| Montola 2001              | 42.1      | 37.6    | 1750   | 1707      | 1729        |
| Mean                      | 43.8      | 39.8    | 2792   | -         | -           |
| CV (%)                    | 1.0       | 1.8     | 17.1   | -         | -           |
| LSD (5%)                  | 0.7       | 1.2     | 788.0  | -         | -           |
| LSD (10%)                 | 0.6       | 1.0     | 656.2  | -         | -           |

Location: Sidney, MT

Planted: 05/08/2020

Applied fertilizers: 60 lb/A at planting

Previous Crop: Wheat

Harvested: 09/15/2020 Soil Type: Williams Clay Loam

Applied fungicides: Quadris @ 16 oz/A at 10% flowering

Applied herbicides: 04/09/2020- Sonalan @ 3 pts/A & Eptam @ 3 pts/A

Irrigation : 5/14/2020 0.55"

5/20/2020 1.00" 6/3/2020 1.04" 6/11/2020 1.04"



#### Sunflowers-Clearfield Dryland Variety Trial - NDSU

WREC, Williston, ND 2020

| Variety        | Origin           | Hybrid | Oil Type   | Days to   | Plant  | Oil  | Test    | _      | Yield    |          |
|----------------|------------------|--------|------------|-----------|--------|------|---------|--------|----------|----------|
| variety        | Oligin           | Туре   | On Type    | Flowering | height | 011  | weight  | 2020   | 2-Yr Avg | 3-Yr Avg |
|                |                  |        |            | (DAP)     | (in)   | (%)  | (lb/bu) | (lb/a) | (lb/a)   | (lb/a)   |
| Camaro II      | NuSeed           | CL     | Nusun      | 73        | 42.5   | 42.2 | 28.4    | 1455   | 1253     | 1673     |
| N4H470 CL Plus | NuSeed           | CL     | High Oleic | 73        | 42.7   | 43.6 | 26.1    | 1025   | 1227     | 1537     |
| H49HO19CL      | Dyna-Gro         | CL     | High Oleic | 72        | 40.2   | 41.4 | 26.0    | 1496   | 1395     | -        |
| H44HO12CL      | Dyna-Gro         | CL     | High Oleic | 69        | 40.9   | 44.6 | 26.9    | 1443   | 1391     | -        |
| H45NS16CL      | Dyna-Gro         | CL     | Nusun      | 71        | 38.8   | 41.9 | 27.5    | 1196   | 1296     | -        |
| H42HO18CL      | Dyna-Gro         | CL     | High Oleic | 71        | 38.7   | 40.6 | 27.1    | 1325   | 1066     | -        |
| 12G25CL        | Proseed          | CL     | High Oleic | 71        | 44.3   | 44.7 | 28.4    | 1785   | -        | -        |
| SF440          | S W Seed Company | CL     | High Oleic | 74        | 40.5   | 41.0 | 25.8    | 1537   | -        | -        |
| SF110          | S W Seed Company | CL     | High Oleic | 72        | 35.3   | 41.1 | 27.1    | 1263   | -        | -        |
| E-50016        | Proseed          | CL     | High Oleic | 72        | 42.1   | 42.1 | 28.1    | 1253   | -        | -        |
| N4H422 CL      | NuSeed           | CL     | High Oleic | 73        | 46.7   | 41.1 | 26.7    | 1186   | -        | -        |
| Mean           |                  |        |            | 71        | 40.8   | 42.0 | 27.2    | 1367   | -        | -        |
| CV (%)         |                  |        |            | 1.8       | 7.1    | 1.6  | 2.1     | 19.5   | -        | -        |
| LSD (5%)       |                  |        |            | 1.9       | 4.1    | 1.0  | 0.8     | 383.6  | -        | -        |
| LSD (10%)      |                  |        |            | 1.5       | 3.5    | 0.8  | 0.7     | 319.1  | -        | -        |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft.

Planted: 05/28/2020

Soil test to 6" in ppm: P = 22; K = 264; OM =1.9%, pH = 5.6

Soil test to 24" in lb/N=10 lb/a

Applied fertilizers in N=130; P=20; K=0; S=40

Herbicide Application: Valor @ 3 oz/a (10/21/19); PowerMax @ 32 oz/a (6/2/20); Assure II @ 12 oz/a (7/6/2020)

#### Sunflowers-Express Dryland Variety Trial - NDSU

Previous crop: wheat Harvested: 10/05/2020 Soil type: Williams-Bowbells loam DAP = Days after planting

WREC, Williston, ND 2020

|           |          |             | Oil          | Days to       | Plant  |      | Test -  |        | Yield     |           |
|-----------|----------|-------------|--------------|---------------|--------|------|---------|--------|-----------|-----------|
| Variety   | Origin   | Hybrid Type | Туре         | Flowering     | height | Oil  | weight  | 2020   | 2-<br>Avg | 3-<br>Avg |
|           |          |             |              | (DAP)         | (in)   | (%)  | (lb/bu) | (lb/a) | (lb/a)    | (lb/a)    |
| Falcon    | NuSeed   | Express     | Nusun        | 74            | 43.1   | 43.1 | 27.6    | 1153   | 1070      | 1561      |
| N4H302 E  | NuSeed   | Express     | High Oleic   | 72            | 42.5   | 40.2 | 25.8    | 1312   | 1225      | 1196      |
| CP455E    | Croplan  | Express     | High Oleic   | 72            | 43.7   | 39.4 | 26.0    | 2012   | 1500      | -         |
| CP450E    | Croplan  | Express     | High Oleic   | 73            | 43.5   | 40.2 | 26.4    | 1730   | 1459      | -         |
| E-91      | Proseed  | Express     | Nusun        | 75            | 55.6   | 41.1 | 27.4    | 1617   | 1239      | -         |
| H45HO10EX | Dyna-Gro | Express     | High Oleic   | 71            | 44.4   | 39.8 | 25.6    | 1426   | 1056      | -         |
| E-93 E    | Proseed  | Express     | Nusun        | 73            | 54.2   | 40.3 | 24.7    | 1816   | -         | -         |
| Mean      |          |             |              | 72            | 46.8   | 40.9 | 26.4    | 1636   | -         | -         |
| CV (%)    |          |             |              | 1.0           | 6.9    | 2.1  | 2.3     | 19.9   | -         | -         |
| LSD (5%)  |          |             |              | 1.0           | 4.7    | 1.3  | 0.9     | 474.8  | -         | -         |
| LSD (10%) |          |             |              | 0.8           | 3.9    | 1.1  | 0.7     | 393.6  | -         | -         |
|           |          |             | 4000 441 144 | Elevention 04 | 05 4   |      |         | Due    |           |           |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft.

Planted: 05/28/2020

Soil test to 6" in ppm: P =22; K = 264; OM = 1.9%; pH = 5.6 Soil test to 24" in lb/a: N=10 lb/a Previous crop: wheat Harvested: 10/05/2020

Soil type: Williams-Bowbells loam DAP = Days after planting

Applied fertilizers in Ib/a: N=130; P=20; K=0; S=40

Herbicide Application: Valor @ 3 oz/a (10/21/19); PowerMax @ 32 oz/a (6/2/20); Assure II @ 12 oz/a (7/6/2020)

#### **The Family Farm**

More than a business ---the Family Farm is a lifestyle---it is an ideal worth preserving.

| Sunflower Irrigated Variety Trial - NDSU | ariety Trial - NDSU                                                                                   |                       |           |                      |                                        |             |          |             | WREC, Nesson Valley, ND 2020                    | sson Valle                       | /, ND 2020                    |
|------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------|-----------|----------------------|----------------------------------------|-------------|----------|-------------|-------------------------------------------------|----------------------------------|-------------------------------|
|                                          |                                                                                                       |                       |           |                      |                                        | −iio        |          |             |                                                 | Yie                              | Yield <sup>‡</sup>            |
|                                          |                                                                                                       |                       | Plant     | Days to              | Days to                                |             |          | Test        | Harvest                                         |                                  |                               |
| Variety                                  | Brand / Company                                                                                       | Oil Type <sup>¥</sup> | Height    | Flower               | Maturity                               | 2020        | 2-Yr Avg | Weight      | Moisture                                        | 2020                             | 2-Yr Avg                      |
|                                          |                                                                                                       |                       | (III)     | ("UAP")              | (UAP")                                 | (%)         | (%)      | (na/al)     | (%)                                             | (ID/a)                           | (ID/a)                        |
| N4H470 CL Plus                           | NuSeed                                                                                                | ОН                    | 20        | 20                   | 116                                    | 44.3        | 43.0     | 32.3        | 9.7                                             | 3108                             | 2969                          |
| N4H302 E                                 | NuSeed                                                                                                | Р                     | 63        | 69                   | 116                                    | 41.1        | 39.6     | 29.8        | 8.6                                             | 3075                             | 2794                          |
| Camaro II                                | NuSeed                                                                                                | SN                    | 72        | 69                   | 115                                    | 42.2        | 41.1     | 32.3        | 8.6                                             | 2834                             | 2719                          |
| Falcon                                   | NuSeed                                                                                                | NS                    | 99        | 70                   | 116                                    | 41.9        | 41.1     | 31.2        | 7.7                                             | 2320                             | 2699                          |
| H45HO10EX                                | Dyna-Gro                                                                                              | 우                     | 99        | 68                   | 117                                    | 42.3        | 40.9     | 28.8        | 7.9                                             | 2853                             | 2547                          |
| H44H012CL                                | Dyna-Gro                                                                                              | Р                     | 67        | 65                   | 115                                    | 44.0        | 42.1     | 31.8        | 8.5                                             | 2923                             | 2516                          |
| H42H018CL                                | Dyna-Gro                                                                                              | РН                    | 65        | 66                   | 115                                    | 41.4        | 40.1     | 31.0        | 7.7                                             | 2730                             | 2509                          |
| E-91 E                                   | Proseed                                                                                               | Р                     | 76        | 69                   | 116                                    | 40.9        | 38.3     | 30.8        | 7.9                                             | 2690                             | 2392                          |
| SF440                                    | S W Seed Company                                                                                      | 우                     | 75        | 72                   | 116                                    | 43.7        |          | 31.8        | 8.9                                             | 3189                             | •                             |
| E-50016                                  | Proseed                                                                                               | РH                    | 71        | 70                   | 116                                    | 38.4        |          | 29.2        | 7.8                                             | 3010                             |                               |
| SF110                                    | S W Seed Company                                                                                      | РН                    | 20        | 67                   | 116                                    | 41.7        |          | 31.7        | 7.5                                             | 2641                             |                               |
| E-93 E                                   | Proseed                                                                                               | NS                    | 76        | 68                   | 115                                    | 38.1        |          | 28.5        | 7.9                                             | 2612                             | ,                             |
| 12G25 CL                                 | Proseed                                                                                               | Р                     | 67        | 67                   | 115                                    | 42.3        | I        | 31.9        | 8.9                                             | 2387                             | I                             |
| MEAN                                     |                                                                                                       |                       | 69.4      | 68.3                 | 115.6                                  | 32.7        | 36.2     | 30.9        | 8.3                                             | 2798                             | 2643                          |
| C.V. (%)                                 |                                                                                                       |                       | 6.5       | 1.5                  | 0.6                                    | 3.32        | ı        | 2.50        | 7.26                                            | 14.97                            | •                             |
| LSD (5%)                                 |                                                                                                       |                       | 7.7       | 1.7                  | 1.2                                    | 1.83        |          | 1.30        | 1.00                                            | 705.77                           |                               |
| LSD (10%)                                |                                                                                                       |                       | 6.4       | 1.4                  | 1.0                                    | 1.52        |          | 1.08        | 0.83                                            | 585.05                           | •                             |
| * Days after planting                    | * 0: no lodging - 9: plants lying flat on the ground                                                  | g flat on the gr      |           | <b>Dil content a</b> | † Oil content adjusted to 10% moisture | )% moisture |          | idjusted to | <pre>‡ Yield adjusted to harvest moisture</pre> | sture                            |                               |
| ¥ HO=high oleic, NS=N                    | uSun                                                                                                  |                       |           |                      |                                        |             |          |             |                                                 |                                  |                               |
| Location: Latitude 48 9.                 | Location: Latitude 48 9.9222'N; Longitude 103 6.132'W                                                 | Ņ                     |           |                      |                                        |             |          |             |                                                 | Elevat                           | Elevation: 1902 ft            |
| Soil test (0-6 in.): P=20                | Soil test (0-6 in.): P=20 ppm; K=134 ppm; pH=7.7; OM=1.9%                                             | M=1.9%                |           |                      |                                        |             |          |             | Previor                                         | Previous crop: Winter Wheat      | nter Wheat                    |
| (0-24 in.): NO3-N=29 lb/a                | /a                                                                                                    |                       |           |                      |                                        |             |          |             |                                                 | Planted                          | Planted: 5/27/2020            |
| Yield goal: 2,500 lb/a                   |                                                                                                       |                       |           |                      |                                        |             |          |             |                                                 | Harvested                        | Harvested: 11/5/2020          |
| Planting population: 22,000 seeds/a      | ,000 seeds/a                                                                                          |                       |           |                      |                                        |             |          |             | Soil type: Lihen Loamy Fine Sand                | ihen Loamy                       | Fine Sand                     |
| Fertilizer applied: 270 lt               | Fertilizer applied: 270 lb/a of Urea (46-0-0) [5/28]                                                  |                       |           |                      |                                        |             |          |             |                                                 | Plot                             | Plot size: 90 ft <sup>2</sup> |
| Herbicides applied: Pro                  | Herbicides applied: Prowl H2O (2pt/a) [5/29], Cornerstone (32oz/a), Class Act NG (1qt/100gal) [5/29], | stone (32oz/a)        | Class Act | : NG (1qt/10         | 0gal) [5/29],                          |             |          |             | Rainfall:                                       | Rainfall: 5.0 inches [5/27-11/5] | [5/27-11/5]                   |
|                                          | Section 3 (5.3302/a), Superb (1qt/100gal) [6/26                                                       | ) (1qt/100gal) [      | 0/70      |                      |                                        |             |          |             | Irrigation: 18.8 inches [2/2/ -11/2]            | 8.8 inches                       | [G/LL- 17/G                   |

Prianting population: 22,000 seedsta Fertilizer applied: 270 lb/a of Urea (46-0-0) [5/28] Herbicides applied: Prowl H2O (2pt/a) [5/29], Cornerstone (32oz/a), Class Act NG (1qt/100gal) [5/29], Section 3 (5:33oz/a), Superb (1qt/100gal) [6/26 Fungicides applied: none applied



40

#### Canola - Roundup Ready Dryland Variety Trial - NDSU

#### WREC, Williston, ND 2020

|             |                   | Duration of         | Days to           | Uniorht        | Oil  | Test              |                | Yield              |                    |
|-------------|-------------------|---------------------|-------------------|----------------|------|-------------------|----------------|--------------------|--------------------|
| Variety     | Company           | Flowering<br>(Days) | Maturity<br>(DAP) | Height<br>(in) | (%)  | Weight<br>(lb/bu) | 2020<br>(Ib/a) | 2-Yr Avg<br>(Ib/a) | 3-Yr Avg<br>(Ib/a) |
| Star 402    | Star Specialty    | 30                  | 94                | 27.2           | 44.3 | 49.8              | 881            | 948                | 948                |
| 6090RR      | BrettYoung        | 26                  | 95                | 29.9           | 41.6 | 49.5              | 824            | 899                | 827                |
| CP930RR     | Winfield/Croplan  | 32                  | 93                | 27.9           | 44.5 | 49.9              | 1019           | 1127               | -                  |
| CP955RR     | Winfield/Croplan  | 30                  | 93                | 28.4           | 43.7 | 50.8              | 1176           | 1077               | -                  |
| CP9978TF    | Winfield/Croplan  | 27                  | 95                | 28.6           | 39.9 | 49.6              | 795            | 1067               | -                  |
| StarFlex    | Star Specialty    | 28                  | 95                | 29.0           | 42.4 | 50.4              | 894            | 1002               | -                  |
| CS2100      | Meridian/Canterra | 27                  | 94                | 26.5           | 39.2 | 49.5              | 783            | 978                | -                  |
| CS2600 CR-T | Meridian/Canterra | 30                  | 94                | 28.4           | 40.8 | 49.9              | 942            | 912                | -                  |
| CS2300      | Meridian/Canterra | 29                  | 96                | 29.2           | 41.6 | 49.6              | 759            | 842                | -                  |
| CP9919RR    | Winfield/Croplan  | 32                  | 94                | 23.6           | 40.2 | 48.6              | 777            | 516                | -                  |
| BY 6204TF   | BrettYoung        | 27                  | 95                | 29.3           | 40.4 | 49.8              | 944            | -                  | -                  |
| DKTF91SC    | Bayer/Dekalb      | 31                  | 94                | 26.0           | 40.7 | 49.2              | 740            | -                  | -                  |
| Mean        |                   | 29                  | 94                | 28             | 41.7 | 49.8              | 886            | -                  | -                  |
| CV %        |                   | 4.7                 | 0.6               | 9.3            | 1.1  | 1.8               | 15.8           | -                  | -                  |
| LSD 0.05    |                   | 2.0                 | 0.8               | 3.7            | 0.7  | 1.3               | 201.2          | -                  | -                  |
| LSD 0.10    |                   | 1.6                 | 0.7               | 3.1            | 0.6  | 1.1               | 167.5          | -                  | -                  |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft. Planted: 05/13/2020

Soil test to 6" in ppm:

P=20 ppm; K=285; OM=2.0; pH=6.4 Soil test to 24" in lb/a: N=17 lb/a

Applied fertilizers in Ib/a: N=90; P=20; K=0; S=24

<sup>1</sup>DAP = Days after planting.

Herbicide Application: PowerMax @ 22 oz/a (5/18/20 and 6/15/20)

#### **Clearfield Canola Dryland Variety Trial - NDSU**

| Clearfield Canola I | Dryland Variety Trial - NDS | U        |          |        |      | WRE    | C, Willisto | on, ND 2020 |
|---------------------|-----------------------------|----------|----------|--------|------|--------|-------------|-------------|
| Variety             | Compony/Brond               | Flower   | Days to  | Plant  | Oil  | Test   | Yield       | Yield       |
| variety             | Company/Brand               | Duration | Maturity | height | (%)  | weight | (lb/a)      | 2-Yr Avg    |
| CS2500 CL           | Meridian/Canterra           | 28       | 95       | 29     | 41.9 | 48.3   | 1086        | 1255        |
| CS2700 CL           | Meridian/Canterra           | 27       | 95       | 31     | 43.7 | 49.6   | 969         | -           |
| Mean                |                             | 27       | 95       | 29     | 42.5 | 48.8   | 1013        | -           |
| CV (%)              |                             | 5.9      | 0.9      | 7.1    | 1.1  | 4.2    | 11.8        | -           |
| LSD (5%)            |                             | 1.7      | 0.9      | 2.2    | 0.5  | 2.2    | 127.7       | -           |
| LSD (10%)           |                             | 1.4      | 0.7      | 1.8    | 0.4  | 1.8    | 104.9       | -           |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft. Planted: 05/13/2020

Soil test to 6" in ppm: P = 20; K = 285; OM = 2.0; pH = 6.4

Soil test to 24" in lb/a: N = 17 lbs/a

Applied fertilizers in Ib/a: N=90; P=20; K=0; S=24

<sup>1</sup>DAP = Days after planting.

Herbicide Application: PowerMax @ 32 oz/a (5/18/20); Beyond @ 4 oz/a (6/15/20)

If the saying is true, that what doesn't kill you makes you stronger, at this point I should be able to bench press a semi.

Previous crop: Soybeans Harvested: 08/20/2020

Soil type: Williams-Bowbells loam

Previous crop: Soybeans Harvested: 08/20/2020 Soil type: Williams-Bowbells loam

| RR Canola Irrigated Variety Trial - NDSU                                                  | ariety Trial .          | - NDSU        |              |                                                  |                  |                                             |                                         | >       | VREC, Ne    | WREC, Nesson Valley, ND 2020         | , ND 2020                     |
|-------------------------------------------------------------------------------------------|-------------------------|---------------|--------------|--------------------------------------------------|------------------|---------------------------------------------|-----------------------------------------|---------|-------------|--------------------------------------|-------------------------------|
|                                                                                           |                         |               |              |                                                  |                  | oil⁺                                        |                                         |         |             | Yield                                |                               |
|                                                                                           | Days to                 | Days to       | Plant        | I                                                |                  |                                             |                                         | Test    |             |                                      |                               |
| Variety                                                                                   | Flower                  | Maturity      | Height       | Lodging                                          | 2020             | 2-Yr Avg                                    | 3-Yr Avg                                | Weight  | 2020        | 2-Yr Avg                             | 3-Yr Avg                      |
|                                                                                           | (DAP*)                  | (DAP*)        | (in)         | (0 - 9+)                                         | (%)              | (%)                                         | (%)                                     | (Id/dl) | (Ib/a)      | (lb/a)                               | (Ib/a)                        |
| Star 402                                                                                  | 54                      | 95            | 42           | Ļ                                                | 42.0             | 43.2                                        | 42.7                                    | 51.5    | 2298        | 2060                                 | 2183                          |
| 6090RR                                                                                    | 55                      | 66            | 45           | <del>.                                    </del> | 39.1             | 40.8                                        | 40.4                                    | 50.4    | 2130        | 2048                                 | 2117                          |
| CP955RR                                                                                   | 53                      | 97            | 41           | 0                                                | 41.7             | 42.9                                        | ı                                       | 51.8    | 2712        | 2397                                 | ı                             |
| CP930RR                                                                                   | 52                      | 96            | 41           | -                                                | 41.9             | 42.8                                        | ı                                       | 51.3    | 2771        | 2375                                 | ı                             |
| CP9978TF                                                                                  | 53                      | 98            | 38           | ~                                                | 39.9             | 40.8                                        | ı                                       | 51.7    | 2612        | 2303                                 | I                             |
| StarFlex                                                                                  | 54                      | 96            | 43           | <del>.                                    </del> | 40.3             | 41.4                                        |                                         | 52.1    | 2308        | 2080                                 |                               |
| CP9919RR                                                                                  | 54                      | 98            | 30           | 4                                                | 37.2             | 38.8                                        | ı                                       | 50.5    | 1820        | 1726                                 | ı                             |
| BY6204TF                                                                                  | 55                      | 96            | 43           | -                                                | 37.8             |                                             |                                         | 50.8    | 2500        | •                                    |                               |
| MEAN                                                                                      | 53.7                    | 96.7          | 40.4         | 1.2                                              | 39.99            | 41.53                                       | 41.57                                   | 51.27   | 2394.1      | 2141.2                               | 2149.8                        |
| C.V. (%)                                                                                  | 3.8                     | 1.8           | 7.1          | 57.7                                             | 3.11             |                                             |                                         | 1.56    | 10.5        | •                                    | ı                             |
| LSD (5%)                                                                                  | 3.0                     | 2.6           | 4.2          | 2.1                                              | 1.83             |                                             |                                         | 1.17    | 369.9       |                                      |                               |
| LSD (10%)                                                                                 | 2.5                     | 2.1           | 3.5          | 0.8                                              | 1.52             |                                             | ·                                       | 0.97    | 306.0       |                                      |                               |
| * Days after planting                                                                     | + 0: no lodging - 9: pl | ng - 9: plan  | ts lying fla | ants lying flat on the ground                    |                  | <b>Dil content</b>                          | + Oil content adjusted to 8.5% moisture | 8.5% mo | isture      |                                      |                               |
| 6.                                                                                        | 9222'N; Lon             | gitude 103    | 6.132'W      |                                                  |                  |                                             |                                         |         |             | Elevati                              | Elevation: 1902 ft            |
| Soil test (0-6 in.): P=24 ppm; K=158 ppm; pH=7.9; OM=2.9 %                                | ppm; K=158              | ppm; pH=      | 7.9; OM=2    | 2.9 %                                            |                  |                                             |                                         |         |             | Previous crop: Durum                 | op: Durum                     |
| (0-24 in.): NO3-N=29 lb/a                                                                 | /a                      |               |              |                                                  |                  |                                             |                                         |         |             | Planteo                              | Planted: 5/5/2020             |
| Yield goal: 2,500 lb/a                                                                    |                         |               |              |                                                  |                  |                                             |                                         |         |             | Harvested: 8/19/2020                 | 8/19/2020                     |
| Planting population: 520,000 seeds/a                                                      | 0,000 seeds/            | a             |              |                                                  |                  |                                             |                                         | S       | oil type: L | Soil type: Lihen Loamy Fine Sand     | Fine Sand                     |
| Fertilizers applied: 125 lb/a of AMS (21-0-0-24S) [5/8], 197 lb/a of Urea (46-0-0) [5/11] | lb/a of AMS             | (21-0-0-24    | S) [5/8], 19 | 97 lb/a of Ur                                    | ea (46-0-        | 0) [5/11]                                   |                                         |         |             | Plot                                 | Plot size: 61 ft <sup>2</sup> |
| Herbicides applied: Sonolan HFP (1.5 pt/a) [5/11], Cornerstone (24oz/a) and               | iolan HFP (1            | .5 pt/a) [5/1 | 11], Corne   | rstone (24o:                                     | z/a) and         | 1                                           |                                         |         | Rainfall:   | Rainfall: 4.6 inches [5/5 - 8/19]    | [5/5 - 8/19]                  |
| Class Act (1pt/100gal) [6/24]                                                             | I) [6/24]               |               |              |                                                  |                  |                                             |                                         | _       | rrigation:  | Irrigation: 10.2 inches [5/5 - 8/19] | [5/5 - 8/19]                  |
| Fungicide applied: Proline (5oz/a) [7/6]                                                  | ne (5oz/a) [7           | /6]           |              |                                                  |                  |                                             |                                         |         |             |                                      |                               |
|                                                                                           |                         |               |              |                                                  |                  |                                             |                                         |         |             |                                      |                               |
|                                                                                           |                         |               |              |                                                  |                  |                                             |                                         |         |             |                                      |                               |
|                                                                                           |                         | λΟ            | U MIGHT      | YOU MIGHT BE A FARMER'S DAUGHTER IF              | ER'S DAU         | GHTER IF.                                   |                                         |         |             |                                      |                               |
|                                                                                           |                         | ЛОЛ           | SPEND YO     | /OU SPEND YOUR FRIDAY NIGHTS<br>in the comb      | IGHTS<br>combine | DAY NIGHTS<br>in the combine with your dad, | ad,                                     |         |             |                                      |                               |

RATHER THAN OUT ON A DATE.

| Variety    | Company/Brand | Relative<br>Maturity | Protein | Oil  | Test<br>weight | Yield  |
|------------|---------------|----------------------|---------|------|----------------|--------|
|            |               |                      | (%)     | (%)  | (lb/bu)        | (bu/a) |
| S009XT68   | Dyna-Gro Seed | 00.9                 | 36.3    | 21.9 | 56.9           | 27.5   |
| LGS00899RX | LG Seeds      | 00.8                 | 34.2    | 23.5 | 57.5           | 25.0   |
| 50-10      | Proseed       | 0.1                  | 38.2    | 23.0 | 57.3           | 24.8   |
| XT20-07    | Proseed       | 00.7                 | 34.2    | 23.2 | 56.9           | 24.7   |
| XT70-09    | Proseed       | 00.9                 | 34.8    | 23.3 | 57.5           | 24.7   |
| ND18008GT  | NDSU          | 00.8                 | 37.4    | 22.7 | 57.3           | 23.3   |
| 20215      | Integra       | 0.2                  | 38.3    | 22.0 | 56.3           | 22.7   |
| ND17009GT  | NDSU          | 00.9                 | 39.3    | 22.5 | 58.6           | 22.6   |
| EL80-093   | Proseed       | 00.9                 | 36.3    | 22.4 | 57.1           | 22.5   |
| LGS0111RX  | LG Seeds      | 0.1                  | 36.6    | 23.0 | 57.0           | 19.1   |
| 50309N     | Integra       | 0.3                  | 37.5    | 21.9 | 57.0           | 19.1   |
| S03XT29    | Dyna-Gro Seed | 0.3                  | 35.0    | 22.7 | 56.6           | 18.7   |
| ND14-6120  | NDSU          | 00.8                 | 35.3    | 22.8 | 57.9           | 18.5   |
| RX0411     | REA Hybrids   | 0.4                  | 36.0    | 23.0 | 56.8           | 18.1   |
| 40201N     | Integra       | 0.2                  | 37.4    | 22.1 | 55.6           | 14.4   |
| ND15-22873 | NDSU          | 0.7                  | 37.3    | 22.0 | 55.9           | 14.0   |
| S02EN71    | Dyna-Gro Seed | 0.2                  | 36.3    | 22.5 | 56.3           | 13.2   |
| RX0520     | REA Hybrids   | 0.5                  | 39.3    | 22.0 | 56.1           | 10.9   |
| Mean       |               |                      | 36.6    | 22.6 | 56.9           | 20.2   |
| CV (%)     |               |                      | 2.5     | 1.6  | 1.1            | 11.6   |
| LSD (5%)   |               |                      | 1.5     | 0.6  | 1.1            | 3.9    |
| LSD (10%)  |               |                      | 1.3     | 0.5  | 0.9            | 3.2    |

Roundup Ready Soybean Dryland Variety Trial - NDSU Keene, McKenzie County, ND 2020

Location: Keene ND; Latitude 47° 59' N; Longitude 102° 48' W; Elevation 2444 ft

Planted: 05/20/2020 Previous crop: wheat Harvested: 10/09/2020 Soil type: Williams-Bowbells loam

Applied fertilizers in Ib/a: N=0; P<sub>2</sub>O<sub>5</sub>=0; K<sub>2</sub>O=0

Herbicide Application: PowerMax @ 32 oz/a (5/22/20 and 6/23/20)

|            | Connu         | i, williams (        | Sounty, ND | 2020 |                |        |
|------------|---------------|----------------------|------------|------|----------------|--------|
| Variety    | Company/Brand | Relative<br>Maturity | Protein    | Oil  | Test<br>weight | Yield  |
|            |               | Waturity             | (%)        | (%)  | (lb/bu)        | (bu/a) |
| XT20-07    | Proseed       | 00.7                 | 34.7       | 22.2 | 56.5           | 35.2   |
| 20215      | Integra       | 0.2                  | 37.3       | 20.2 | 57.5           | 33.1   |
| 50309N     | Integra       | 0.3                  | 37.4       | 20.4 | 56.8           | 32.4   |
| ND17009GT  | NDSU          | 00.9                 | 39.6       | 21.8 | 58.7           | 32.0   |
| XT70-09    | Proseed       | 00.9                 | 35.3       | 22.2 | 57.6           | 31.7   |
| EL80-093   | Proseed       | 00.9                 | 34.6       | 21.3 | 57.9           | 30.7   |
| S009XT68   | Dyna-Gro Seed | 00.9                 | 36.8       | 20.2 | 58.5           | 30.6   |
| S03XT29    | Dyna-Gro Seed | 0.3                  | 38.5       | 20.4 | 57.2           | 29.3   |
| LGS00899RX | LG Seeds      | 00.8                 | 35.5       | 22.6 | 57.6           | 29.3   |
| 50-10      | Proseed       | 0.1                  | 37.5       | 22.4 | 57.9           | 27.9   |
| LGS0111RX  | LG Seeds      | 0.1                  | 36.9       | 21.3 | 57.4           | 26.0   |
| ND18008GT  | NDSU          | 00.8                 | 39.2       | 21.3 | 58.1           | 26.0   |
| ND14-6120  | NDSU          | 00.8                 | 35.5       | 21.6 | 58.1           | 25.6   |
| RX0411     | REA Hybrids   | 0.4                  | 34.5       | 19.8 | 56.8           | 24.5   |
| 40201N     | Integra       | 0.2                  | 36.7       | 19.7 | 57.4           | 24.4   |
| S02EN71    | Dyna-Gro Seed | 0.2                  | 36.3       | 19.9 | 57.4           | 23.5   |
| RX0520     | REA Hybrids   | 0.5                  | 37.8       | 19.6 | 57.2           | 22.8   |
| ND15-22873 | NDSU          | 0.7                  | 36.1       | 19.7 | 57.8           | 21.9   |
| Mean       |               |                      | 36.7       | 20.9 | 57.6           | 28.2   |
| CV (%)     |               |                      | 3.2        | 2.3  | 0.6            | 13.5   |
| LSD (5%)   |               |                      | 1.9        | 0.8  | 0.5            | 6.3    |
| LSD (10%)  |               |                      | 1.6        | 0.7  | 0.4            | 5.2    |
|            |               |                      |            |      |                |        |

Roundup Ready Soybean Dryland Variety Trial - NDSU Corinth, Williams County, ND 2020

Location: Corinth ND; Latitude 48° 36' N; Longitude 103° 19' W; Elevation 2205 ft

Planted: 05/21/2020 Previous crop: wheat Harvested: 10/09/2020 Soil type: Williams-Bowbells loam

Applied fertilizers in Ib/a: N=0; P<sub>2</sub>O<sub>5</sub>=0; K<sub>2</sub>O=0

Herbicide Application: PowerMax @ 32 oz/a (5/22/20 and 6/23/20)

| Dry Bean Irrigated Variety Trial - NDSU                                                          | rriety Trial - N                                                                    | IDSU                                |                                  |                                  |                  |                           | WREC                  | WREC, Nesson Valley, ND 2020         | ey, ND 2020                   |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|----------------------------------|------------------|---------------------------|-----------------------|--------------------------------------|-------------------------------|
|                                                                                                  |                                                                                     |                                     |                                  | la culta cult                    |                  |                           |                       | Yield                                |                               |
| Variety                                                                                          | Days to<br>Maturity<br>(DAP*)                                                       | Canopy<br>Height<br><sup>(in)</sup> | Lodging<br>(0 - 9 <sup>+</sup> ) | Hunarea<br>Seed<br>Weight<br>(g) | Seeds /<br>Pound | Test<br>Weight<br>(Ib/bu) | <b>2020</b><br>(lb/a) | <b>2-Yr Avg</b><br>(lb/a)            | <b>3-Yr Avg</b><br>(Ib/a)     |
| PINTO BEAN                                                                                       |                                                                                     |                                     |                                  |                                  |                  |                           |                       |                                      |                               |
| La Paz                                                                                           | 96                                                                                  | 14                                  | -                                | 31                               | 1455             | 63.2                      | 4259                  | 2842                                 | 2736                          |
| ND Palomino                                                                                      | 97                                                                                  | 11                                  | 7                                | 35                               | 1286             | 59.9                      | 3405                  | 2680                                 | 2680                          |
| Lariat                                                                                           | 96                                                                                  | 13                                  | 2                                | 33                               | 1365             | 61.5                      | 3579                  | 2641                                 | 2563                          |
| Monterrey                                                                                        | 97                                                                                  | 14                                  | ↽                                | 32                               | 1413             | 63.1                      | 3069                  | 2379                                 | 2480                          |
| Stampede                                                                                         | 95                                                                                  | 11                                  | -                                | 32                               | 1427             | 60.2                      | 3262                  | 2400                                 | 2271                          |
| Windbreaker                                                                                      | 95                                                                                  | 12                                  | -                                | 37                               | 1221             | 60.1                      | 2120                  | 2031                                 | 1981                          |
| Torreon                                                                                          | 96                                                                                  | 14                                  | ~                                | 34                               | 1332             | 62.1                      | 3799                  | 2846                                 | •                             |
| Vibrant                                                                                          | 66                                                                                  | -                                   | -                                | 31                               | 1441             | 63.3                      | 2708                  | 2290                                 | ,                             |
| ND Falcon                                                                                        | 100                                                                                 | 13                                  | 0                                | 33                               | 1391             | 58.3                      | 2284                  | 1927                                 |                               |
| NAVY BEAN                                                                                        |                                                                                     |                                     |                                  |                                  |                  |                           |                       |                                      |                               |
| T9905                                                                                            | 98                                                                                  | 12                                  | -                                | 18                               | 2579             | 65.5                      | 2533                  | 1918                                 | 1723                          |
| Blizzard                                                                                         | 97                                                                                  | 12                                  | 0                                | 17                               | 2639             | 64.3                      | 2327                  | 1774                                 |                               |
| <b>BLACK BEAN</b>                                                                                |                                                                                     |                                     |                                  |                                  |                  |                           |                       |                                      |                               |
| Eclipse                                                                                          | 95                                                                                  | 12                                  | 0                                | 19                               | 2425             | 64.3                      | 2053                  | 1798                                 | 1797                          |
| Black Tails                                                                                      | 96                                                                                  | 13                                  | 0                                | 19                               | 2395             | 65.7                      | 2706                  | 2247                                 |                               |
| SMALL RED                                                                                        |                                                                                     |                                     |                                  |                                  |                  |                           |                       |                                      |                               |
| Merlot                                                                                           | 97                                                                                  | 10                                  | 2                                | 30                               | 1504             | 62.2                      | 2287                  | 2134                                 | 1911                          |
| Viper                                                                                            | 95                                                                                  | 14                                  | ~                                | 24                               | 1880             | 62.5                      | 3768                  | 2754                                 | •                             |
| <b>GREAT NORTHERN</b>                                                                            |                                                                                     |                                     |                                  |                                  |                  |                           |                       |                                      |                               |
| ND Pegasus                                                                                       | 98                                                                                  | 16                                  | ~                                | 30                               | 1496             | 61.9                      | 3834                  | 2817                                 |                               |
| MEAN                                                                                             | 96.7                                                                                | 12.5                                | 0.9                              | 28.5                             | 1702.9           | 62.38                     | 2999.5                | 2342.4                               | 2238.1                        |
| C.V. (%)                                                                                         | 1.3                                                                                 | 14.3                                | 94.2                             | 3.5                              | 4.0              | 1.78                      | 14.4                  | ,                                    | ,                             |
| LSD (5%)                                                                                         | 2.1                                                                                 | 3.0                                 | 1.4<br>4.0                       | 1.6                              | 113.4            | 1.85                      | 720.3                 | ,                                    | ,                             |
| LSD (10%)<br>* Dava offer electing                                                               | + 0: no lodain                                                                      | 2.5<br>D: alonto                    | 1.2<br>Mina flat an th           | 1.4<br>or or or or of            | 94.Z             | 1.54                      | 598.4                 |                                      |                               |
|                                                                                                  |                                                                                     |                                     |                                  |                                  |                  |                           |                       | i                                    |                               |
| Location: Latitude 48 9.9222'N; Longitude 103 6.132'W                                            | N.ZZZN; LONG                                                                        | jitude 103 6.1                      | 32.W                             |                                  |                  |                           |                       | Eleva                                | Elevation: 1902 II            |
| Soil test (0-6 in.): P=20 ppm; K=134 ppm; pH=7.7; OM=1.9%                                        | ) ppm; K=134                                                                        | ppm; pH=7.7                         | '; OM=1.9%                       |                                  |                  |                           | Pr                    | Previous crop: Winter Wheat          | Vinter Wheat                  |
| (0-24 in.): NO3-N=29 lb/a                                                                        | o/a                                                                                 |                                     |                                  |                                  |                  |                           |                       | Plante                               | Planted: 5/29/2020            |
| Yield goal: 2,500 lb/a                                                                           |                                                                                     |                                     |                                  |                                  |                  |                           |                       | Harveste                             | Harvested: 9/22/2020          |
| Planting population: 125,000 seeds/a                                                             | 5,000 seeds/                                                                        | a<br>a                              |                                  |                                  |                  |                           | Soil typ              | Soil type: Lihen Loamy Fine Sand     | ly Fine Sand                  |
| Fertilizer applied: 223 lb/a of Urea (46-0-0) [5/29]                                             | b/a of Urea (4                                                                      | 6-0-0) [5/29]                       |                                  |                                  |                  |                           |                       | Ϊd                                   | Plot size: 51 ft <sup>2</sup> |
| Herbicides applied: Cornerstone (32oz/a), Class Act NG (1qt/100gal) [5/29], Section 3(5.33oz/a), | rnerstone (32                                                                       | oz/a), Class /                      | Act NG (1qt/1                    | 00gal) [5/29],                   | Section 3(5.3    | (3oz/a),                  | Rainf                 | Rainfall: 4.9 inches [5/29 - 9/22]   | [5/29 - 9/22]                 |
| Superb                                                                                           | Superb (1qt/100gal) [6/26], and Varisto (21oz/a), Raptor (4oz/a), Basagran (1pt/a), | 6/26], and V <i>a</i>               | aristo (21oz/a)                  | ), Raptor (4oz                   | /a), Basagran    | i (1pt/a),                | Irrigatic             | Irrigation: 17.8 inches [5/29 -9/22] | \$ [5/29 -9/22]               |
| and Su                                                                                           | and Superb HC (1.5pt/a) [6/26]                                                      | t/a) [6/26]                         |                                  |                                  |                  |                           |                       |                                      |                               |
| Fungicide applied: Priaxor (8 oz/a) [7/21]                                                       | ixor (8 oz/a) [7                                                                    | 7/21]                               |                                  |                                  |                  |                           |                       |                                      |                               |

| Corn Dryland V                      | Corn Dryland Variety Trial - NDSU                                                        | U              |                           |             | 8         | WREC, Williston, ND 2020               | on, ND 2020             |
|-------------------------------------|------------------------------------------------------------------------------------------|----------------|---------------------------|-------------|-----------|----------------------------------------|-------------------------|
|                                     |                                                                                          | Polativo       | Dave to Silk              | Ear         | Test      | Yield <sup>#</sup>                     | Yield                   |
| Variety                             | Company                                                                                  | Maturity       | (DAP <sup>1</sup> )       | Height      | Weight    | 2020                                   | 2-Yr Avg                |
|                                     |                                                                                          | •              |                           | (III)       | (na/ai)   | (bu/a)                                 | (bu/a)                  |
| 1974                                | Proseed                                                                                  | 74             | 72                        | 21.9        | 57.3      | 71.8                                   | 89.4                    |
| 3009 VT2P RIB                       | Wilbur Ellis                                                                             | 79             | 71                        | 22.0        | 54.5      | 59.4                                   | 77.2                    |
| 1980 VT2P                           | Proseed                                                                                  | 80             | 72                        | 26.3        | 53.2      | 56.2                                   | 75.9                    |
| <b>3282 VT2P RIB</b>                | Wilbur Ellis                                                                             | 82             | 77                        | 31.1        | 53.3      | 36.3                                   | 60.9                    |
| 1B750                               | REA Hybrids                                                                              | 75             | 72                        | 23.1        | 54.8      | 48.4                                   |                         |
| 1B821                               | REA Hybrids                                                                              | 82             | 74                        | 25.8        | 51.4      | 43.6                                   |                         |
| 2B851                               | REA Hybrids                                                                              | 85             | 73                        | 29.5        | 49.3      | 53.8                                   |                         |
| 3431 VT2P RIB                       | Wilbur Ellis                                                                             | 84             | 76                        | 23.7        | 51.8      | 58.1                                   |                         |
| 2078 GT                             | Proseed                                                                                  | 78             | 75                        | 28.4        | 51.4      | 43.2                                   | I                       |
| 1882 VT2P                           | Proseed                                                                                  | 82             | 76                        | 29.9        | 54.2      | 35.0                                   | ı                       |
| Mean                                |                                                                                          |                | 74                        | 26          | 53        | 51                                     |                         |
| CV (%)                              |                                                                                          |                | 2.1                       | 13.1        | 1.7       | 17.7                                   |                         |
| LSD (5%)                            |                                                                                          |                | 2.2                       | 5.0         | 1.3       | 13.0                                   |                         |
| LSD (10%)                           |                                                                                          |                | 1.9                       | 4.1         | 1.1       | 10.8                                   | ı                       |
| Location: WREC                      | -ocation: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft               | ; Longitude 10 | <u>33° 44' W; Elevati</u> | on 2105 ft. |           | Previous cro                           | Previous crop: soybeans |
| Planted: 5/21/20                    |                                                                                          |                |                           |             |           | Harvested                              | Harvested: 10/07/2020   |
| Soil test to 6" in p                | Soil test to 6" in ppm: P=22 ppm; K=285 ppm; OM=2.0%; pH=6.4                             | (=285 ppm; O   | M=2.0%; pH=6.4            |             | Soil type | Soil type: Williams-Bowbells loam      | wbells loam             |
| Soil test to 24" in lb/a: N=17 lb/a | lb/a: N=17 lb/a                                                                          |                |                           |             | 1         | <sup>1</sup> DAP = Davs after planting | after planting          |
| Applied fertilizers in              | s in Ib/a: N=74; P <sub>2</sub> O <sub>5</sub> =32; K <sub>2</sub> O=0; S=8              | O₅=32; K₂O=0   | ; S=8                     |             |           |                                        |                         |
| Yield was very <b>p</b>             | Yield was very poor do to lack of moisture and early freeze. Froze September 8th @ $26F$ | noisture and ∈ | early freeze. Froz        | e September | 8th @ 26F |                                        |                         |

Rainfall total during season = 4.38" Herbicide Application: PowerMax @ 32 oz/a (5/21/20 and 6/15/20)



| Corn Irrigated variety I rial - NDSU                                                                                   | Iai - NUSU                                                      |                      |                 |               |                                                 |                | WREC,      | WREC, Nesson Valley, ND 2020         | <u>sy, NU zuzu</u>             |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|-----------------|---------------|-------------------------------------------------|----------------|------------|--------------------------------------|--------------------------------|
|                                                                                                                        |                                                                 |                      |                 |               |                                                 |                |            | Yield ‡                              |                                |
| Variatv                                                                                                                | Company / Brand                                                 | Relative<br>Maturity | Days to<br>Silk | Ear<br>Heicht | Harvest<br>Moisture ¥                           | Test<br>Weight | 0000       | 2-Yr Avo                             | 3-Yr Avn                       |
|                                                                                                                        |                                                                 |                      | (DAP*)          | (ui)          | (%)                                             | (nq/ql)        | (p/nq)     | (bu/a)                               | (bu/a)                         |
| 1B780                                                                                                                  | REA Hybrids                                                     | 29                   | 74              | 42            | 12.6                                            | 53.3           | 183.4      | 171.7                                | 180.6                          |
| 3718 VT2P RIB                                                                                                          | INTEGRA                                                         | 87                   | 77              | 44            | 14.1                                            | 53.7           | 183.3      | 168.8                                |                                |
| 1974                                                                                                                   | Proseed                                                         | 74                   | 73              | 33            | 12.9                                            | 56.9           | 143.2      | 152.3                                |                                |
| 3537 VT2P RIB                                                                                                          | INTEGRA                                                         | 85                   | 78              | 44            | 13.0                                            | 53.7           | 153.5      | 144.6                                |                                |
| 3282 VT2P RIB                                                                                                          | INTEGRA                                                         | 82                   | 17              | 44            | 12.7                                            | 54.0           | 137.5      | 135.4                                |                                |
| 1980 VT2P                                                                                                              | Proseed                                                         | 80                   | 72              | 39            | 13.3                                            | 56.3           | 192.5      | •                                    |                                |
| 2B851                                                                                                                  | REA Hybrids                                                     | 85                   | 75              | 41            | 12.8                                            | 53.8           | 181.8      |                                      | ·                              |
| 1B821                                                                                                                  | REA Hybrids                                                     | 82                   | 75              | 39            | 12.7                                            | 53.8           | 178.5      |                                      | ı                              |
| 3431 VT2P RIB                                                                                                          | INTEGRA                                                         | 84                   | 76              | 44            | 13.0                                            | 54.5           | 172.4      | ·                                    | ı                              |
| CX20181 VC / D21VC81                                                                                                   | Dyna-Gro                                                        | 81                   | 75              | 42            | 12.8                                            | 54.4           | 160.1      |                                      | ·                              |
| D22QZ42                                                                                                                | Dyna-Gro                                                        | 82                   | 75              | 42            | 14.5                                            | 54.3           | 155.8      |                                      | ı                              |
| D27VC87RIB                                                                                                             | Dyna-Gro                                                        | 87                   | 22              | 36            | 13.1                                            | 53.8           | 150.8      |                                      | ı                              |
| 1882 VT2P                                                                                                              | Proseed                                                         | 82                   | 76              | 43            | 12.7                                            | 55.2           | 137.5      | •                                    | ı                              |
| 2078 GT                                                                                                                | Proseed                                                         | 78                   | 76              | 45            | 12.2                                            | 52.0           | 138.1      | ı                                    | ·                              |
| 1B750                                                                                                                  | REA Hybrids                                                     | 75                   | 74              | 34            | 12.5                                            | 56.4           | 127.4      |                                      | ı                              |
| MEAN                                                                                                                   |                                                                 |                      | 75.2            | 40.8          | 12.98                                           | 54.41          | 159.73     | 154.58                               | 180.60                         |
| C.V. (%)                                                                                                               |                                                                 |                      | 1.9             | 8.0           | 3.16                                            | 1.43           | 12.57      | ı                                    | ı                              |
| LSD (5%)                                                                                                               |                                                                 |                      | 2.1             | 4.6           | 0.59                                            | 1.11           | 33.23      |                                      | ı                              |
| LSD (10%)                                                                                                              |                                                                 |                      | 1.7             | 3.9           | 0.49                                            | 0.93           | 27.69      | ı                                    |                                |
| * Days after planting + 0                                                                                              | <sup>+</sup> 0: no lodging - 9: plants lying flat on the ground | ig flat on the       |                 | rield adjust  | <pre>‡ Yield adjusted to harvest moisture</pre> | noisture       |            |                                      |                                |
| ¥ Killing frost occurred on September 7, 2020. Corn did not reach physiological maturity or development of black layer | September 7, 2020. Corn                                         | did not reach        | physiologic     | al maturity c | or developmen                                   | t of black lay | /er.       |                                      |                                |
| Location: Latitude 48 9.9222'N; Longitude 103 6.132'W                                                                  | 22'N; Longitude 103 6.132                                       | M                    |                 |               |                                                 |                |            | Eleva                                | Elevation: 1902 ft             |
| Soil test (0-6 in.): P=20 ppm; K=134 ppm; pH=7.7; OM=1.9%                                                              | m; K=134 ppm; pH=7.7; C                                         | M=1.9%               |                 |               |                                                 |                | Prev       | Previous crop: Winter Wheat          | inter Wheat                    |
| (0-24 in.): NO3-N=29 lb/a                                                                                              |                                                                 |                      |                 |               |                                                 |                |            | Plante                               | Planted: 5/14/2020             |
| Yield goal: 190 bu/a                                                                                                   |                                                                 |                      |                 |               |                                                 |                |            | Harveste                             | Harvested: 11/4/2020           |
| Planting population: 38,000 seeds/a                                                                                    | 0 seeds/a                                                       |                      |                 |               |                                                 |                | Soil type  | Soil type: Lihen Loamy Fine Sand     | y Fine Sand                    |
| Fertilizer applied: 450 lb/a of Urea (46-0-0) [5/19]                                                                   | of Urea (46-0-0) [5/19]                                         |                      |                 |               |                                                 |                |            | Plot                                 | Plot size: 105 ft <sup>2</sup> |
| Herbicides applied: Cornerstone (24oz/a) and Class Act NG (3oz/a) [6/5], [6/10], & [6/26]                              | rstone (24oz/a) and Class                                       | Act NG (3oz/         | /a) [6/5], [6/1 | 0], & [6/26]  |                                                 |                | Rainf      | Rainfall: 5.4 inches [5/14-11/4]     | s [5/14-11/4]                  |
| Fungicide applied: none applied                                                                                        | pplied                                                          |                      |                 |               |                                                 |                | Irrigation | Irrigation: 18.8 inches [5/14 -11/4] | [5/14 -11/4]                   |
|                                                                                                                        |                                                                 |                      |                 |               |                                                 |                |            |                                      |                                |

#### **LENTIL VARITY DESCRIPTIONS**

| VARIETY        |        | SEED COLOR | RELATIVE | RELATIVE | SEED SIZE   | Resis     | TANCE TO <sup>2</sup> |
|----------------|--------|------------|----------|----------|-------------|-----------|-----------------------|
| VARIETY        | ORIGIN | SEED COLOR | MATURITY | HEIGHT   | SEED SIZE   | ASCOCHYTA | ANTHRACNOSE           |
| AVONDALE       | USDA   | GREEN      | MEDIUM   | TALL     | MEDIUM      | NA        | NA                    |
| CDC DAZIL*     | CANADA | RED        | M EARLY  | NA       | SMALL       | R         | R                     |
| CDC GREENLAND  | CANADA | GREEN      | EARLY    | MEDIUM   | V LARGE     | R         | S                     |
| CDC IMIGREEN*  | CANADA | GREEN      | MEDIUM   | MEDIUM   | LARGE       | R         | S                     |
| CDC IMPALA*    | CANADA | RED        | EARLY    | SHORT    | EXTRA SMALL | R         | R                     |
| CDC IMPACT*    | CANADA | RED        | LATE     | SHORT    | SMALL       | NA        | NA                    |
| CDC IMPRESS*   | CANADA | GREEN      | M LATE   | SHORT    | LARGE       | R         | NA                    |
| CDC IMVINCIBLE | CANADA | GREEN      | EARLY    | MEDIUM   | SHORT       | R         | R                     |
| CDC LEMAY      | CANADA | GREEN      | EARLY    | SHORT    | SMALL       | MS        | S                     |
| CDC MAXIM*     | CANADA | RED        | M EARLY  | MEDIUM   | SMALL       | R         | R                     |
| CDC PERIDOT*   | CANADA | GREEN      | EARLY    | NA       | SMALL       | R         | NA                    |
| CDC PROCLAIM*  | CANADA | RED        | M EARLY  | NA       | SMALL       | R         | R                     |
| CDC REDBERRY   | CANADA | RED        | MEDIUM   | MEDIUM   | SMALL       | R         | R                     |
| CDC REDCOAT    | CANADA | RED        | M LATE   | TALL     | LARGE       | R         | R                     |
| CDC RED RIDER  | CANADA | RED        | M EARLY  | MEDIUM   | SMALL       | MR        | MS                    |
| CDC RICHLEA    | CANADA | GREEN      | M LATE   | MEDIUM   | MEDIUM      | S         | S                     |
| CDC ROSETOWN   | CANADA | RED        | EARLY    | SHORT    | SMALL       | MR        | MR                    |
| CDC ROULEAU    | CANADA | RED        | MEDIUM   | MEDIUM   | SMALL       | MR        | MS                    |
| CDC VICEROY    | CANADA | GREEN      | M EARLY  | MEDIUM   | SMALL       | R         | MR                    |
| CRIMSON        | USDA   | RED        | EARLY    | M SHORT  | SMALL       | S         | S                     |
| ESSEX          | USDA   | GREEN      | MEDIUM   | M TALL   | MEDIUM      | NA        | S                     |
| ESTON          | CANADA | GREEN      | EARLY    | MEDIUM   | SMALL       | S         | S                     |
| MERRITT        | USDA   | GREEN      | M LATE   | MEDIUM   | LARGE       | NA        | NA                    |
| MORENA         | USDA   | BROWN      | EARLY    | TALL     | SMALL       | NA        | S                     |
| ND EAGLE       | NDSU   | GREEN      | EARLY    | MEDIUM   | SMALL       | NA        | NA                    |
| PARDINA        | SPAIN  | BROWN      | EARLY    | SHORT    | SMALL       | NA        | NA                    |
| PENNELL        | USDA   | GREEN      | MEDIUM   | MEDIUM   | LARGE       | NA        | S                     |
| RIVELAND       | USDA   | GREEN      | M LATE   | TALL     | V LARGE     | NA        | S                     |

<sup>1</sup>Refers to developer: NDSU = North Dakota State University; USDA = United States Department of Agriculture; CANADA and SPAIN represent developers from respective countries. <sup>2</sup>MR = Moderately resistant; NA= Data not available; R = Resistant; S = Susceptible.

\*Clearfield lentil with imidazolinone tolerance.

#### Lentil Dryland Variety Trial - NDSU

| Lenth Dryland Variety      | That - NDSU |                  |         |                  |         | V       | REC, WI | mston, i    | ND 2020     |
|----------------------------|-------------|------------------|---------|------------------|---------|---------|---------|-------------|-------------|
|                            | Days to     | Days to          | Plant   | 1000             |         | Test    |         | Yield       |             |
| Variety                    | Flowering   | Maturity         | height  | Kernel<br>Weight | Protein | weight  | 2020    | 2-Yr<br>Avg | 3-Yr<br>Avg |
|                            | (DAP)       | (DAP)            | (in)    | (g)              | (%)     | (lb/bu) |         | (lb/a)      |             |
| Large Green                |             |                  |         |                  |         |         |         |             |             |
| CDC Greenstar              | 55          | 95               | 15      | 131.4            | 26.0    | 59.7    | 1260.0  | -           | -           |
| Medium Green               |             |                  |         |                  |         |         |         |             |             |
| CDC Richlea                | 54          | 94               | 12      | 108.3            | 24.9    | 60.6    | 1260.0  | 1932.0      | 1662.0      |
| Avondale                   | 53          | 93               | 12      | 103.5            | 24.9    | 61.3    | 1254.0  | 1956.0      | 1620.0      |
| Small Green                |             |                  |         |                  |         |         |         |             |             |
| ND Eagle                   | 51          | 92               | 12      | 82.8             | 25.9    | 62.3    | 984.0   | 1782.0      | 1500.0      |
| CDC Kermit                 | 56          | 92               | 11      | 67.3             | 26.4    | 62.6    | 1062.0  | -           | -           |
| CDC Invincible CL          | 55          | 92               | 13      | 73.3             | 27.0    | 62.4    | 1038.0  | -           | -           |
| Small Red                  |             |                  |         |                  |         |         |         |             |             |
| CDC Impala CL              | 55          | 91               | 12      | 65.5             | N/A     | 63.1    | 1266.0  | -           | -           |
| CDC Maxim CL               | 54          | 93               | 12      | 83.9             | N/A     | 62.2    | 1248.0  | -           | -           |
| Mean                       | 54          | 93               | 12      | 89.5             | 25.9    | 61.8    | 1170.0  | -           | -           |
| CV (%)                     | 1.7         | 0.6              | 8.2     | 2.0              | 2.3     | 0.4     | 11.9    | -           | -           |
| LSD (5%)                   | 1.6         | 1.0              | 1.8     | 3.1              | 1.1     | 0.5     | 246.0   | -           | -           |
| LSD (10%)                  | 1.3         | 0.9              | 1.5     | 2.5              | 0.9     | 0.4     | 198.0   | -           | -           |
| Less the MDEO Letterde 400 |             | AALVAL ELSUS Com | 0105 () |                  | Davis   |         |         |             |             |

Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft.

Soil test to 6" in ppm: P = 22 ppm; K = 264 ; OM = 1.9%; pH= 5.6 Soil test to 24" in Ib/a: N = 10 Ib/a

N=0; P=0; K=0; S=0 Applied fertilizers in lb/a:

Herbicide Application: Valor @ 3oz/a (10/21/19); Clethodim @ 8 oz/a (6/15/2020) ; Assure II @ 8 oz/a (7/6/2020)

WRFC Williston ND 2020

Previous crop: wheat Harvested: 08/17/2020

Soil type: Williams-Bowbells loam.

Planted: 04/29/2020

#### Irrigated Lentil Variety Evaluation - MSU

Sidney, MT 2020

| Variety     | Days to Flower     | Plant Height | Test Weight | 1000 Seed<br>Weight | Adjusted<br>Grain Yield |
|-------------|--------------------|--------------|-------------|---------------------|-------------------------|
|             | (DAP) <sup>1</sup> | (cm)         | (lb/bu)     | (g)                 | (lb/a)                  |
| Avondale    | 54                 | 15.5         | 62.3        | 48.7                | 3332                    |
| CDC Impala  | 60                 | 15.8         | 64.9        | 31.7                | 3182                    |
| CDC Impress | 55                 | 16.7         | 62.2        | 55.3                | 3031                    |
| CDC Richlea | 56                 | 15.4         | 61.1        | 51.3                | 3210                    |
| CDC Viceroy | 56                 | 15.5         | 64.4        | 34.6                | 3230                    |
| NDL090170L  | 54                 | 15.6         | 60.0        | 74.3                | 2860                    |
| NDL090185R  | 54                 | 16.1         | 61.8        | 52.4                | 3259                    |
| NDL120600R  | 54                 | 16.7         | 61.0        | 55.0                | 2887                    |
| Sage        | 54                 | 14.8         | 64.0        | 36.8                | 3638                    |
| Mean        | 55                 | 15.8         | 62.4        | 48.9                | 3181                    |
| P-Value     | <0.0001            | 0.48         | <0.0001     | <0.0001             | 0.001                   |
| LSD         | 1.4                | NS           | 0.3         | 1.3                 | 312.1                   |
| CV (%)      | 1.7                | 8.1          | 0.4         | 1.8                 | 6.7                     |

Location: EARC; Sidney, MT Planted: April 23, 2020 Applied fertilizers in Ib/a: None Yield adjusted to 13% moisture content Herbicide: Outlook at 12 oz/ac preemergence DAP<sup>1</sup> = Days after planting Previous crop: Sugarbeet Harvested: Aug. 6, 2020 Soil type: Savage Silty Clay Loam

| Dryland Lentil Var | iety Evaluation - N | ISU         | Ric                 | hland, MT 2020          |
|--------------------|---------------------|-------------|---------------------|-------------------------|
| Variety            | Plant Height        | Test Weight | 1000 Seed<br>Weight | Adjusted<br>Grain Yield |
|                    | (inch)              | (lb/bu)     | (g)                 | (lb/a)                  |
| Avondale           | 15.9                | 63.7        | 46.9                | 3433                    |
| CDC Greenstar      | 15.8                | 61.2        | 65.3                | 2813                    |
| CDC Impala         | 16.0                | 66.4        | 25.9                | 2923                    |
| CDC Impress        | 14.5                | 63.2        | 47.0                | 2712                    |
| CDC Imvincible     | 15.9                | 65.6        | 28.3                | 2896                    |
| CDC Kermit         | 14.1                | 66.3        | 26.2                | 3151                    |
| CDC Maxim CL       | 15.6                | 65.3        | 36.1                | 3102                    |
| CDC Richlea        | 15.6                | 62.7        | 49.2                | 3189                    |
| CDC Viceroy        | 15.2                | 65.8        | 29.0                | 2840                    |
| NDL090170L         | 15.9                | 61.9        | 64.2                | 2735                    |
| NDL090185R         | 16.7                | 63.5        | 45.3                | 3338                    |
| NDL120600R         | 14.9                | 62.3        | 50.5                | 2412                    |
| Sage               | 13.9                | 65.7        | 35.3                | 3139                    |
| Mean               | 15.4                | 64.1        | 42.2                | 2976                    |
| P-Value            | 0.4                 | <0.0001     | <0.0001             | <0.0001                 |
| LSD                | NS                  | 0.4         | 1.8                 | 304.6                   |
| CV (%)             | 5.9                 | 0.4         | 3.1                 | 7.1                     |

Location: Richland, MT

Planted: May 6, 2020

Applied fertilizers in Ib/a: None

Yield adjusted to 13% moisture content

Previous crop: Spring Wheat Harvested: Aug. 27, 2020 Soil type: Farnuf-Reeder Loam

| Variety <sup>1</sup> | ORIGIN <sup>2</sup> | YEAR<br>RELEASED | iety Descrip<br>RELATIVE<br>MATURITY <sup>3</sup> | SEED<br>COLOR | PLANT<br>HEIGHT <sup>3</sup> | RESISTANCE<br>TO WILT⁴ |
|----------------------|---------------------|------------------|---------------------------------------------------|---------------|------------------------------|------------------------|
| ACC Bright           | Canada              | 2016             | LATE                                              | YELLOW        | M TALL                       | MR                     |
| Bison                | NDSU                | 1926             | MEDIUM                                            | BROWN         | MEDIUM                       | MR                     |
|                      |                     |                  |                                                   |               |                              |                        |
| Carter               | NDSU                | 2004             | MEDIUM                                            | YELLOW        | MEDIUM                       | MR                     |
| CDC Bethume          | Canada              | 1999             | M LATE                                            | BROWN         | M TALL                       | MR                     |
| CDC Glas             | Canada              | 2012             | M LATE                                            | BROWN         | M TALL                       | MR                     |
| CDC Melyn            | Canada              | 2016             | M LATE                                            | YELLOW        | MEDIUM                       | MR                     |
| CDC Neela            | Canada              | 2013             | M LATE                                            | BROWN         | MEDIUM                       | MR                     |
| CDC Plava            | Canada              | 2015             | MEDIUM                                            | BROWN         | MEDIUM                       | MR                     |
| CDC Sanctuary        | Canada              | 2012             | MEDIUM                                            | BROWN         | M TALL                       | MR                     |
| CDC Sorrel           | Canada              | 2007             | M LATE                                            | BROWN         | M TALL                       | MR                     |
| Gold ND              | NDSU                | 2014             | MEDIUM                                            | YELLOW        | M TALL                       | MR/R                   |
| ND Hammond           | NDSU                | 2018             | NA                                                | BROWN         | NA                           | MS                     |
| Nekoma               | NDSU                | 2002             | LATE                                              | BROWN         | MEDIUM                       | MR                     |
| Omega                | NDSU                | 1989             | MEDIUM                                            | YELLOW        | MEDIUM                       | MS                     |
| Pembina              | NDSU                | 1998             | MEDIUM                                            | BROWN         | MEDIUM                       | MR                     |
| Prairie Blue         | Canada              | 2003             | M LATE                                            | BROWN         | MEDIUM                       | NA                     |
| Prairie Grande       | Canada              | 2008             | M EARLY                                           | BROWN         | MEDIUM                       | MR                     |
| Prairie Sapphire     | Canada              | 2012             | MEDIUM                                            | BROWN         | MEDIUM                       | MR                     |
| Prairie Thunder      | Canada              | 2006             | MEDIUM                                            | BROWN         | SHORT                        | NA                     |
| Webster              | SDSU                | 1998             | LATE                                              | BROWN         | TALL                         | MR                     |
| York                 | NDSU                | 2002             | LATE                                              | BROWN         | MEDIUM                       | R                      |

<sup>2</sup>Refers to developer: CANADA represents developers from that country; NDSU = North Dakota State University; SD = South Dakota State University.

<sup>3</sup>M = Medium. <sup>4</sup>MR = Moderately resistant; MS = Moderately susceptible; NA = Data not available; R = Resistant; S = Susceptible.

#### Flax Dryland Variety Trial – NDSU

#### Yield Days to Days to Test Plant Variety Stand\* Oil Heading Flowering Height Weight 2020 2-Yr Avg 3-Yr Avg (lb/bu) (bu/a) (DAP) (DAP) (in) (%) (%) (bu/a) (bu/a) CDC Buryu 50 20 43.8 17.3 22.1 22.1 94 65 52.9 53 95 22 Omega 50 43.2 53.0 15.0 18.4 19.2 CDC Glas 51 94 23 58 44.6 51.9 16.3 18.8 17.6 York 50 22 43.6 53.0 17.0 16.6 17.1 94 66 Prairie 52 95 23 60 43.1 53.2 18.5 18.9 16.3 Thunder **CDC** Neela 52 96 21 45 44.2 51.7 14.6 15.4 15.9 Bison 50 93 21 69 43.7 52.7 17.8 15.2 15.3 21 Webster 51 94 68 44.4 52.8 18.7 15.9 15.1 97 22 14.7 Carter 50 54 43.5 52.3 14.2 14.0 23 ND Hammond 51 95 42.5 52.5 16.2 14.6 64 16.1 Gold ND 52 96 23 41 44.4 52.4 12.7 13.3 14.3 **CDC** Plava 52 94 20 61 44.5 53.0 19.9 24.3 -CDC Dorado 46 92 19 85 44.0 52.3 18.2 --AAC Bright 51 94 20 58 46.2 50.7 14.9 Mean 51 95 22 58 43.7 52.5 16.3 \_ -CV (%) 8.3 22.4 19.0 1.9 1.8 0.7 1.0 LSD (5%) 0.5 0.8 0.8 6.0 0.1 0.2 1.4

 LSD (10%)
 0.4
 0.7
 0.7
 5.1
 0.1

 Location: WREC; Latitude 48° 8' N; Longitude 103° 44' W; Elevation 2105 ft

Planted: 5/5/2020

Soil test to 6" in ppm: P= 22 ; K = 264, OM = 1.9%; pH = 5.6

Soil test to 24" in lb/a: N = 10

Applied Fertilizer in Ibs/a: N = 80; P = 20; K = 0; S = 5

Herbicide Application: Valor @ 3oz/a (10/21/19); Clethodim @ 8 oz/a (6/15/2020); Assure II @ 8 oz/a (7/6/2020)

\*Poor stands were established, due to dry soil and previous crop residue

Previous crop: Wheat Harvested: 08/25/2020 Soil type: Williams-Bowbells loam

0.2

1.2

WREC, Williston, ND 2020

| Flax Irrigated Variety Trial - NDSU                 | ial - NDSU                                           |                     |                 |                                                     |              |                                       |             |                | WREC, Ne     | WREC, Nesson Valley, ND 2020         | ', ND 2020                    |
|-----------------------------------------------------|------------------------------------------------------|---------------------|-----------------|-----------------------------------------------------|--------------|---------------------------------------|-------------|----------------|--------------|--------------------------------------|-------------------------------|
|                                                     |                                                      |                     |                 |                                                     |              | Oil⁺                                  |             |                |              | Yield                                |                               |
| Variatv                                             | Days to<br>Flower                                    | Days to<br>Maturity | Plant<br>Heicht |                                                     | 0000         | 2-Vr Avn                              | 3-Vr Avid   | Test<br>Wainht | 2020         | 2-Vr Avr                             | 3-Vr Avr                      |
|                                                     | (DAP*)                                               | (DAP*)              | (in)            | (-6 - 0)                                            | (%)          | (%)                                   | (%)         | (Id/dl)        | (bu/a)       | (bu/a)                               | (bu/a)                        |
| Bison                                               | 54                                                   | 95                  | 29              | 0                                                   | 38.7         | 38.5                                  | 38.4        | 51.4           | 44.7         | 41.7                                 | 35.1                          |
| ND Hammond                                          | 53                                                   | 96                  | 27              | 0                                                   | 39.4         | 39.0                                  | 38.5        | 51.7           | 41.6         | 38.4                                 | 33.4                          |
| Prairie Thunder                                     | 55                                                   | 96                  | 30              | 0                                                   | 38.1         | 37.7                                  | 37.6        | 52.0           | 41.9         | 40.0                                 | 33.2                          |
| York                                                | 54                                                   | 94                  | 28              | <del>.                                    </del>    | 39.0         | 39.0                                  | 38.6        | 52.2           | 41.9         | 37.3                                 | 32.5                          |
| Gold ND                                             | 59                                                   | 96                  | 30              | 0                                                   | 40.7         | 40.5                                  | 39.7        | 52.7           | 41.1         | 36.1                                 | 31.5                          |
| CDC Glas                                            | 57                                                   | 94                  | 29              | 0                                                   | 38.6         | 39.3                                  | 39.0        | 50.1           | 45.3         | 33.2                                 | 30.1                          |
| CDC Buryu                                           | 51                                                   | 91                  | 28              | -                                                   | 39.1         | 1                                     |             | 50.8           | 46.3         |                                      |                               |
| CDC Plava                                           | 54                                                   | 91                  | 26              | ~                                                   | 39.6         | ı                                     |             | 51.1           | 44.9         |                                      |                               |
| CDC Neela                                           | 54                                                   | 93                  | 28              | 0                                                   | 38.8         | ı                                     | ı           | 51.7           | 44.2         | ı                                    | I                             |
| CDC Durado                                          | 52                                                   | 91                  | 24              | 0                                                   | 39.8         | ı                                     | ı           | 51.4           | 42.0         | ,                                    | ı                             |
| AAC Bright                                          | 55                                                   | 93                  | 28              | 0                                                   | 41.0         | •                                     |             | 49.9           | 41.6         |                                      |                               |
| Omega                                               | 54                                                   | 94                  | 25              | 0                                                   | 39.8         | ı                                     | ı           | 52.7           | 41.5         | ·                                    |                               |
| Webster                                             | 56                                                   | 96                  | 31              | 1                                                   | 39.2         | •                                     | I           | 52.0           | 38.5         |                                      | I                             |
| MEAN                                                | 54.3                                                 | 93.6                | 28.0            | 0.3                                                 | 39.36        | 38.99                                 | 38.62       | 51.51          | 42.72        | 37.79                                | 32.61                         |
| C.V. (%)                                            | 4.8                                                  | 2.7                 | 5.1             | 159.1                                               | 2.02         | •                                     |             | 1.27           | 8.84         | ı                                    | ı                             |
| LSD (5%)                                            | 3.7                                                  | 3.7                 | 2.1             | 0.6                                                 | 1.34         | •                                     |             | 1.10           | 5.42         |                                      |                               |
| LSD (10%)                                           | 3.1                                                  | 3.0                 | 1.7             | 0.5                                                 | 1.11         |                                       | ı           | 0.91           | 4.51         |                                      | ı                             |
| * Days after planting                               | * 0: no lodging - 9: plants lying flat on the ground | - 9: plants ly      | ing flat on     | the ground                                          | † Oil cor    | † Oil content adjusted to 9% moisture | ed to 9% mo | isture         |              |                                      |                               |
| б                                                   | 222'N; Longit                                        | ude 103 6.13        | 32'W            |                                                     |              |                                       |             |                |              | Elevat                               | Elevation: 1902 ft            |
| Soil test (0-6 in.): P=24 ppm; K=158 ppm; pH=7      | pm; K=158 pl                                         | om; pH=7.9;         | .9; OM=2.9 %    | 0                                                   |              |                                       |             |                |              | Previous c                           | Previous crop: Durum          |
| (0-24 in.): NO3-N=29 lb/a                           |                                                      |                     |                 |                                                     |              |                                       |             |                |              | Plante                               | Planted: 5/5/2020             |
| Yield doal: 50 bu/a                                 |                                                      |                     |                 |                                                     |              |                                       |             |                |              | Harvested                            | Harvested: 8/24/2020          |
|                                                     |                                                      |                     |                 |                                                     |              |                                       |             |                | 1            |                                      |                               |
| Planting population: 1.1 million seeds/a            | nillon seeds/                                        | m                   |                 |                                                     |              |                                       |             |                | soll type: L | soil type: Linen Loamy Fine Sand     | / Fine Sand                   |
| Fertilizer applied: 110 lb/a of Urea (46-0-0) [5/11 | a of Urea (46                                        | -0-0) [5/11]        |                 |                                                     |              |                                       |             |                |              | Plot                                 | Plot size: 61 ft <sup>2</sup> |
| Herbicides applied: Spartan Charge (2oz/a) [5/      | an Charge (2                                         |                     | Section 3       | 11], Section 3 (5.33oz/a) and Superb (1qt/a) [6/16] | nd Superb    | (1qt/a) [6/1                          | 6]          |                | Rainfall     | Rainfall: 4.6 inches [5/5 - 8/24]    | [5/5 - 8/24]                  |
| Fungicide applied: Proline 480SC (5oz/a) [7/6]      | e 480SC (5oz                                         | :/a) [7/6]          |                 |                                                     |              |                                       |             |                | Irrigation:  | Irrigation: 10.2 inches [5/5 - 8/24] | [5/5 - 8/24]                  |
|                                                     |                                                      |                     |                 |                                                     |              |                                       |             |                |              |                                      |                               |
|                                                     |                                                      |                     |                 | Earm-or (fahr-mor).                                 | fahr_mor     |                                       |             |                |              |                                      |                               |
|                                                     |                                                      |                     |                 | noun<br>1 A nerson who is                           | who is       | <u>.</u>                              |             |                |              |                                      |                               |
|                                                     |                                                      |                     |                 | outstanding in his field.                           | in his field | ň                                     |             |                |              |                                      |                               |

### FIELD PEA VARIETY DESCRIPTIONS

| VARIETY               | ORIGIN OR<br>SUPPLIER | VINE<br>HABIT <sup>1</sup> | GROWTH<br>HABIT <sup>2</sup> | VINE<br>LENGTH | RELATIVE<br>MATURITY | SEED<br>SIZE   | RESISTANCE <sup>3</sup><br>TO POWDERY<br>MILDEW |
|-----------------------|-----------------------|----------------------------|------------------------------|----------------|----------------------|----------------|-------------------------------------------------|
| YELLOW COTYLEDON      |                       |                            |                              |                |                      |                |                                                 |
| AAC CARVER            | CANADA                | NA                         | NA                           | MEDIUM         | EARLY                | MEDIUM         | R                                               |
| AAC CHROME            | LEGUME LOGIC          | SL                         | NA                           | MEDIUM         | MEDIUM               | <b>M LARGE</b> | R                                               |
| AAC PROFIT            | BIRDSALL GRAIN        | NA                         | NA                           | NA             | M LATE               | MEDIUM         | R                                               |
| AGASSIZ               | CANADA                | SL                         | SD                           | TALL           | MEDIUM               | MEDIUM         | R                                               |
| BRIDGER               | LEGUME LOGIC          | SL                         | SD                           | MEDIUM         | MEDIUM               | MEDIUM         | MS                                              |
| CDC AMARILLO          | CANADA                | SL                         | SD                           | MEDIUM         | MEDIUM               | MEDIUM         | R                                               |
| CDC INCA              | MERIDIAN SEEDS        | NA                         | NA                           | NA             | MEDIUM               | MEDIUM         | R                                               |
| CDC LEROY             | CANADA                | SL                         | SD                           | M SHORT        | MED LATE             | SMALL          | R                                               |
| CDC MEADOW            | CANADA                | SL                         | SD                           | MEDIUM         | EARLY                | MEDIUM         | R                                               |
| CDC SAFFRON           | CANADA                | SL                         | SD                           | MEDIUM         | MEDIUM               | MEDIUM         | R                                               |
| CDC TREASURE          | BIRDSALL GRAIN        |                            |                              |                | EARLY                |                | R                                               |
|                       |                       | SL                         | SD                           | MEDIUM         |                      | SMALL          |                                                 |
|                       |                       | SL                         | SD                           | MEDIUM         | MEDIUM               | MEDIUM         | MR                                              |
| DS ADMIRAL            | DANISCO               | SL                         | SD                           | TALL           | MEDIUM               | LARGE          | R                                               |
| DURWOOD               | PULSE USA             | SL                         | SD                           | M SHORT        | M LATE               | MEDIUM         | NA                                              |
| EARLYSTAR             | MERIDIAN SEEDS        | SL                         | SD                           | TALL           | EARLY                | MEDIUM         | R                                               |
| HAMPTON               | NDCIA                 | NA                         | NA                           | M SHORT        | MEDIUM               | MEDIUM         | R                                               |
| HYLINE                | LEGUME LOGIC          | SL                         | NA                           | NA             | MEDIUM               | MEDIUM         | R                                               |
| JETSET                | MERIDIAN              | SL                         | SD                           | MEDIUM         | MEDIUM               | M SMALL        | R                                               |
| KORANDO               | PULSE USA             | SL                         | SD                           | MEDIUM         | EARLY                | MEDIUM         | R                                               |
| LG AMIGO              | PULSE USA             | SL                         | NA                           | NA             | M EARLY              | MEDIUM         | R                                               |
| LG SUNRISE            | PULSE USA             | SL                         | NA                           | TALL           | MEDIUM               | S MEDIUM       | R                                               |
| LGPN4909              | LIMAGRAIN             | NA                         | NA                           | NA             | NA                   | NA             | NA                                              |
| LGPN4913              | LIMAGRAIN             | NA                         | NA                           | NA             | NA                   | NA             | NA                                              |
| LGPN4915 (LG STUNNER) | LIMAGRAIN             | NA                         | NA                           | NA             | NA                   | NA             | NA                                              |
| MONTECH 4152          | MONTECH               | SL                         | SD                           | MEDIUM         | EARLY                | LARGE          | NA                                              |
| MYSTIQUE              | PULSE USA             | SL                         | SD                           | M SHORT        | M LATE               | M SMALL        | MR                                              |
| NAVARRO               | GREAT NORTHERN AG     | SL                         | NA                           | M TALL         | EARLY                | LARGE          | MS                                              |
| NDP121587             | NDSU                  | NA                         | NA                           | M SHORT        | MEDIUM               | M SMALL        | R                                               |
| NETTE 2010            | PULSE USA             | SL                         | NA                           | SHORT          | M EARLY              | M SMALL        | NA                                              |
| PSTSP27               | PHOTOSYNTECH          | SL                         | SD                           | SHORT          | EARLY                | MEDIUM         | MR                                              |
| PSTSP34               | PHOTOSYNTECH          | NA                         | NA                           | NA             | NA                   | NA             | NA                                              |
| PSTSPS32              | PHOTOSYNTECH          | SL                         | SD                           | MEDIUM         | MEDIUM               | MEDIUM         | MR                                              |
| SALAMANCA             | GREAT NORTHERN AG     | SL                         | NA                           | MEDIUM         | EARLY                | MEDIUM         | MS                                              |
| SPIDER                | NICKERSON             | SL                         | SD                           | MEDIUM         | MEDIUM               | LARGE          | R                                               |
| SW MIDAS              | SWEDEN                | SL                         | SD                           | SHORT          | M LATE               | SMALL          | R                                               |
| SW TRAPEZE            | SWEDEN                | SL                         | SD                           | M SHORT        | MEDIUM               | MEDIUM         | NA                                              |
| VEGAS                 | PULSE USA             | SL                         | SD                           | SHORT          | M LATE               | LARGE          | NA                                              |
|                       |                       | 0L                         | 00                           | GHOICI         | MEATE                | EAROL          | NA .                                            |
| GREEN COTYLEDON       |                       |                            |                              |                |                      | 1.45.05        | -                                               |
| AAC COMFORT           | MERIDIAN SEEDS        | NA                         | NA                           | MEDIUM         | MEDIUM               | LARGE          | R                                               |
| ARAGORN               | PROGENE               | SL                         | SD                           | M SHORT        | M EARLY              | M LARGE        | NA                                              |
| ARCADIA               | PULSE USA             | SL                         | SD                           | MEDIUM         | EARLY                | SMALL          | MS                                              |
| CDC GREENWATER        | MERIDIAN SEEDS        | NA                         | NA                           | M TALL         | LATE                 | MEDIUM         | R                                               |
| CDC STRIKER           | CANADA                | SL                         | SD                           | MEDIUM         | MEDIUM               | M LARGE        | S                                               |
| CRUISER               | WA                    | SL                         | SD                           | MEDIUM         | MEDIUM               | M SMALL        | S                                               |
| DAYTONA               | MERIDIAN              | SL                         | SD                           | MEDIUM         | LATE                 | MEDIUM         | R                                               |
| GINNY                 | PROGENE               | NA                         | NA                           | M SHORT        | MEDIUM               | SMALL          | NA                                              |
| GREENWOOD             | PROGENE               | NA                         | NA                           | MEDIUM         | MEDIUM               | SMALL          | MR                                              |
| K-2                   | LEGUME LOGIC          | SL                         | SD                           | MEDIUM         | EARLY                | M SMALL        | S                                               |
| LG KODA               | PULSE USA             | SL                         | NA                           | MEDIUM         | MEDIUM               | MEDIUM         | R                                               |
| MAJORET               | SWEDEN                | SL                         | SD                           | MEDIUM         | M LATE               | MEDIUM         | S                                               |
| SHAMROCK              | GREAT NORTHERN AG     | SL                         | NA                           | NA             | LATE                 | NA             | S                                               |
| STIRLING              | WA                    | SL                         | SD                           | SHORT          | EARLY                | MEDIUM         | R                                               |
| VIPER                 | PULSE USA             | SL                         | SD                           | M SHORT        | M EARLY              | MEDIUM         | MR                                              |

<sup>1</sup>NA = Data not available; SL = Semi-leafless; <sup>2</sup>SD = Semi-dwarf; <sup>3</sup>MR = Moderately resistant; MS = Moderately susceptible; R = Resistant, S = Susceptible.

|                              |       | Days to   | Days to  |        |         | 1000 Kernel | Test    | 2020   | 2-YR   | 3-YR   |
|------------------------------|-------|-----------|----------|--------|---------|-------------|---------|--------|--------|--------|
| Variety                      | Stand | Flowering | Maturity | Height | Protein | Weight      | Weight  | Yield  | Avg    | Avg    |
| · · · · · -                  | (%)   | (DAP)     | (DAP)    | (in)   | (%)     | (g)         | (lb/bu) | (bu/a) | (bu/a) | (bu/a) |
| <u>Vellow Cotyledon Type</u> | 00    |           | 05       | 45     | 04.4    | 004.0       | 64.4    | 00.0   | 50.0   | 45.0   |
| AC Chrome                    | 86    | 55        | 85       | 15     | 24.1    | 291.0       | 64.4    | 26.9   | 50.9   | 45.3   |
| DC Saffron                   | 94    | 54        | 81       | 15     | 25.0    | 253.3       | 64.6    | 30.9   | 45.8   | 42.7   |
| AC Carver                    | 97    | 53        | 82       | 17     | 24.0    | 257.3       | 64.4    | 28.4   | 48.0   | 42.2   |
| AC Profit                    | 93    | 53        | 82       | 16     | 25.0    | 267.5       | 64.3    | 22.9   | 44.5   | 41.1   |
| gassiz                       | 90    | 52        | 83       | 16     | 25.4    | 278.1       | 64.7    | 26.0   | 44.1   | 40.6   |
| DC Inca                      | 96    | 54        | 83       | 18     | 25.7    | 253.5       | 64.5    | 26.8   | 46.3   | 40.1   |
| etset                        | 97    | 50        | 81       | 17     | 26.5    | 247.3       | 64.3    | 26.1   | 44.2   | 39.0   |
| GPN 4915                     | 95    | 50        | 82       | 18     | 29.8    | 244.2       | 64.6    | 27.9   | 42.3   | 38.7   |
| DC Amarillo                  | 95    | 56        | 84       | 18     | 25.3    | 264.4       | 64.4    | 28.3   | 43.8   | 38.1   |
| lyline                       | 91    | 54        | 82       | 18     | 25.6    | 282.9       | 64.8    | 24.1   | 43.3   | 38.0   |
| )urwood                      | 92    | 52        | 83       | 18     | 27.0    | 261.7       | 64.2    | 22.2   | 41.9   | 36.8   |
| G Sunrise                    | 83    | 51        | 82       | 17     | 26.0    | 264.4       | 64.8    | 20.9   | 39.2   | 36.5   |
| alamanca                     | 90    | 52        | 83       | 18     | 29.4    | 281.3       | 64.0    | 22.2   | 40.1   | 36.5   |
| S Admiral                    | 91    | 50        | 82       | 15     | 25.8    | 266.6       | 65.1    | 23.7   | 39.1   | 36.4   |
| orando                       | 88    | 49        | 85       | 14     | 31.3    | 287.4       | 63.7    | 19.2   | 38.2   | 36.2   |
| ID Dawn                      | 91    | 51        | 81       | 17     | 24.9    | 262.3       | 63.9    | 17.8   | 36.6   | -      |
| ite (PS07100925)             | 91    | 50        | 80       | 13     | 26.3    | 254.2       | 64.2    | 17.1   | 36.7   | -      |
| STSP27                       | 89    | 50        | 82       | 16     | 31.5    | 293.8       | 64.4    | 19.1   | 38.0   | -      |
| Peregrine                    | 89    | 48        | 78       | 13     | 26.1    | 257.0       | 64.5    | 21.4   | 39.3   | -      |
| S16100102                    | 83    | 52        | 83       | 14     | 24.6    | 246.7       | 65.4    | 18.6   | 40.3   | -      |
| DL Apollo                    | 88    | 52        | 83       | 19     | 29.1    | 246.8       | 64.7    | 22.4   | 41.2   | -      |
| 13029-10                     | 90    | 50        | 81       | 19     | 26.7    | 293.9       | 64.1    | 23.0   | 41.7   | -      |
| S1710N 0016                  | 89    | 52        | 82       | 15     | 26.5    | 275.0       | 64.8    | 19.5   | 43.0   | -      |
| 113068-1                     | 96    | 51        | 82       | 18     | 26.7    | 313.2       | 63.8    | 23.7   | 44.3   | -      |
| DC Spectrum                  | 93    | 54        | 86       | 17     | 26.8    | 272.6       | 64.2    | 25.8   | 44.9   | -      |
| S17100022                    | 97    | 52        | 81       | 17     | 24.6    | 266.3       | 65.4    | 22.3   | 46.0   | -      |
| DC Dakota                    | 89    | 59        | 85       | 19     | 29.0    | 239.2       | 64.9    | 28.5   | -      | -      |
| 1S-20YP4                     | 92    | 56        | 85       | 16     | 25.2    | 280.4       | 64.2    | 28.5   | -      | -      |
| AC Asher                     | 97    | 52        | 82       | 13     | 25.9    | 290.6       | 64.1    | 26.9   | -      | -      |
| IS-19YP3                     | 94    | 51        | 82       | 16     | 26.1    | 248.1       | 65.8    | 26.5   | -      | -      |
| STSP43                       | 95    | 53        | 84       | 17     | 26.2    | 294.9       | 64.2    | 24.7   | -      | -      |
| PSTSP41                      | 93    | 50        | 81       | 17     | 28.1    | 279.7       | 65.1    | 24.5   | -      | -      |
| STSP39                       | 97    | 54        | 83       | 19     | 27.5    | 263.5       | 64.3    | 22.2   | -      | -      |
| PSTSP44                      | 91    | 52        | 81       | 16     | 22.8    | 234.2       | 65.3    | 22.1   | -      | -      |
| Orchestra                    | 94    | 50        | 86       | 17     | 31.2    | 281.8       | 63.7    | 20.2   | -      | -      |
| lette 2010                   | 91    | 50        | 83       | 17     | 25.8    | 273.7       | 65.3    | 20.0   | -      | -      |
| G Equator                    | 93    | 50        | 86       | 15     | 29.5    | 239.1       | 63.8    | 18.2   | -      | -      |
| Cronos                       | 94    | 48        | 83       | 16     | 31.5    | 268.6       | 62.2    | 13.4   | -      | -      |
| Green Cotyledon Type         |       |           |          |        |         |             |         |        |        |        |
| rcadia                       | 93    | 51        | 82       | 14     | 25.1    | 227.1       | 65.0    | 25.2   | 43.3   | 39.5   |
| DC Striker                   | 88    | 54        | 85       | 18     | 29.5    | 263.0       | 64.6    | 22.9   | 43.6   | 39.5   |
| AC Comfort                   | 95    | 59        | 88       | 15     | 25.0    | 319.3       | 62.9    | 26.6   | 46.6   | 38.8   |
| DC Greenwater                | 93    | 54        | 85       | 16     | 25.3    | 266.0       | 64.0    | 27.2   | 42.0   | 37.1   |
| hamrock                      | 96    | 54        | 81       | 16     | 25.0    | 267.3       | 64.5    | 18.4   | 40.5   | 34.8   |
| liper                        | 85    | 50        | 82       | 17     | 29.4    | 261.3       | 63.7    | 18.5   | 36.0   | 33.0   |
| STSP38                       | 97    | 49        | 82       | 17     | 26.7    | 276.9       | 64.4    | 23.1   | 42.2   | -      |
| mpire                        | 94    | 55        | 83       | 21     | 26.5    | 262.3       | 65.2    | 24.5   | 40.2   | -      |
| ampton                       | 93    | 54        | 86       | 17     | 29.4    | 263.7       | 63.8    | 22.6   | 39.2   | -      |
| 13073-17                     | 88    | 53        | 85       | 15     | 28.4    | 301.9       | 63.5    | 18.2   | 39.0   | -      |
| DP100144G                    | 93    | 57        | 87       | 20     | 24.1    | 235.3       | 64.6    | 27.8   | -      | -      |
| STSP42                       | 94    | 54        | 83       | 16     | 24.0    | 265.4       | 65.1    | 27.3   | -      | -      |
| IS-20GP5                     | 93    | 54        | 83       | 18     | 25.3    | 268.5       | 64.2    | 25.3   | -      | -      |
| aytona                       | 95    | 53        | 83       | 17     | 28.9    | 288.3       | 64.1    | 21.2   | -      | -      |
| reenwood                     | 89    | 50        | 77       | 15     | 25.2    | 217.3       | 64.5    | 16.1   | -      | -      |
| ragorn                       | 89    | 50        | 76       | 15     | 27.3    | 228.8       | 62.6    | 15.7   | -      | -      |
| laple Cotyledon Type         |       |           |          |        |         |             |         |        |        |        |
| STSP40                       | 95    | 53        | 90       | 17     | 26.9    | 254.3       | 64.8    | 28.4   | -      | -      |
| lean                         | 92    | 52        | 83       | 17     | 26.7    | 266.2       | 64.4    | 23.1   | -      | -      |
| SV %                         | 5.0   | 2.1       | 3.6      | 12.3   | 2.5     | 3.5         | 0.7     | 16.2   | -      | -      |
| SD 0.05                      | 6.4   | 1.5       | 4.1      | 2.8    | 0.9     | 13.0        | 0.6     | 5.2    | -      | -      |
| SD 0.10                      | 5.3   | 1.3       | 3.5      | 2.4    | 0.8     | 10.9        | 0.5     | 4.4    | _      | -      |

Location of the WREC: Latitude 48 8'; Longitude 103 44'W; Elevation 2105 ft

Planting Date: 4/27/2020

Soil test to 6" in ppm: P = 22; K = 264; OM = 1.9%; pH = 5.6

Soil test to 24" in Ib/a: N= 10

Applied fertilizers in lb/a: none

Herbicide Application: Valor @ 3oz/a (10/21/19)Clethodim @ 8 oz/a (6/15/2020); Assure II @ 8 oz/a (7/6/2020)

Previous Crop: wheat Harvest Date: 7/31/2020

Harvest Date: 7/31/2020 Soil type: Williams-Bowbells loam

| Field Pea Irrigated Variety Trial - NDSU                                                                  | ty Trial - ND\$             | SU<br>SU                      |                          |                                                                                       |                        |                                           |                           | WREC                  | WREC, Nesson Valley, ND 2020        | ey, ND 2020                   |
|-----------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------------------------|------------------------|-------------------------------------------|---------------------------|-----------------------|-------------------------------------|-------------------------------|
|                                                                                                           |                             |                               |                          |                                                                                       | Pro                    | Protein <sup>†</sup>                      |                           |                       | Yield                               |                               |
| Variety                                                                                                   | Days to<br>Flower<br>(DAP*) | Days to<br>Maturity<br>(DAP*) | Canopy<br>Height<br>(in) | Lodging<br>(0 - 9 <sup>+</sup> )                                                      | <b>2020</b><br>(%)     | 2-Yr Avg<br>(%)                           | Test<br>Weight<br>(Ib/bu) | <b>2020</b><br>(bu/a) | <b>2-Yr Avg</b><br>(bu/a)           | <b>3-Yr Avg</b><br>(bu/a)     |
| YELLOW COTYLEDON                                                                                          | ~                           | ~                             | ~                        |                                                                                       |                        | ~                                         |                           |                       |                                     |                               |
| Agassiz                                                                                                   | 53                          | 06                            | 28                       | 5                                                                                     | 29.6                   | 27.7                                      | 63.0                      | 63.3                  | 58.3                                | 58.9                          |
| DS Admiral                                                                                                | 52                          | 85                            | 26                       | 4                                                                                     | 25.1                   | 24.6                                      | 65.2                      | 81.1                  | 63.1                                |                               |
| CDC Amarillo                                                                                              | 57                          | 91                            | 31                       | ო                                                                                     | 27.3                   | ·                                         | 63.9                      | 67.8                  |                                     |                               |
| ND Dawn                                                                                                   | 49                          | 88                            | 25                       | 5                                                                                     | 26.2                   |                                           | 63.1                      | 67.3                  | ·                                   |                               |
| GREEN COTYLEDON                                                                                           | L<br>L                      | ä                             | 60                       | ~                                                                                     | C ac                   | <u>ле г</u>                               | 272                       | д<br>И Л              | с<br>Э<br>К                         | 53 J                          |
|                                                                                                           | 00<br>1                     | 00                            | 0.4                      | 1 1                                                                                   | 20.0                   | 20.3<br>7                                 | 0.4.0<br>4.40             | 0.4.0<br>7 7 7        | 02.2<br>67 6                        | 7.00                          |
| Arcadia                                                                                                   | 54<br>40                    | 80                            | 4                        | ~ r                                                                                   | 9.02<br>0.02           | 25.4                                      | 64.1<br>00.0              | 67.5<br>74.7          | 0.7C                                |                               |
| Aragorn                                                                                                   | 49                          | δ0                            | 14                       | ~                                                                                     | 20.8                   | 1                                         | 02.8                      | C.10                  |                                     |                               |
| MEAN                                                                                                      | 54.1                        | 87.6<br>2                     | 24.6                     | 4.5                                                                                   | 27.17                  | 26.08                                     | 64.13<br>0.01             | 66.85<br>10.00        | 57.91                               | 56.07                         |
| C.V. (%)                                                                                                  | 0. r                        | 3.2                           | 18.6<br>0.1              | 14.5                                                                                  | 3.97                   | ı                                         | 0.91                      | 12.36                 | ·                                   | ı                             |
| LSD (5%)<br>LSD (10%)                                                                                     | 0.1<br>0.7                  | 4.2<br>5.5                    | 6.4<br>9.0               | 1.1                                                                                   | 1.59<br>1.31           |                                           | 0.86<br>0 71              | 12.16<br>10.04        |                                     |                               |
| * Davs after planting + 0: no lodging - 9: plants lying flat on the ground                                | D: no lodaina               | - 9: plants lvin              | a flat on the            |                                                                                       | rotein conten          | + Protein content adjusted to 0% moisture | % moisture                |                       |                                     |                               |
| Location: Latitude 48 9.9222'N; Longitude 103 6.132'W                                                     | 22'N; Longitu               | ide 103 6.132                 | Ņ                        | 1                                                                                     |                        |                                           |                           |                       | Elev                                | Elevation: 1902 ft            |
| Soil test (0-6 in.): P=24 ppm; K=158 ppm; pH=7.9;                                                         | im; K=158 pp                | m; pH=7.9; O                  | OM=2.9 %                 |                                                                                       |                        |                                           |                           |                       | Previous                            | Previous crop: Durum          |
| (0-24 in.): NO3-N=29 lb/a                                                                                 |                             |                               |                          |                                                                                       |                        |                                           |                           |                       | Plan                                | Planted: 5/6/2020             |
|                                                                                                           |                             |                               |                          |                                                                                       |                        |                                           |                           |                       |                                     |                               |
| Yield goal: 50 bu/a                                                                                       |                             |                               |                          |                                                                                       |                        |                                           |                           |                       | Harvest                             | Harvested: 8/1 2/2020         |
| Planting population: 400,000 seeds/a                                                                      | 000 seeds/a                 |                               |                          |                                                                                       |                        |                                           |                           | Soil ty               | Soil type: Lihen Loamy Fine Sand    | ny Fine Sand                  |
| Fertilizer applied: seed innoculated                                                                      | noculated                   |                               |                          |                                                                                       |                        |                                           |                           |                       | Ф.                                  | Plot size: 55 ft <sup>2</sup> |
| Herbicides applied: Prowl H2O (1.5pt/a) [5/8], Section Three (5.33oz/a) and Superb HC (1pt/100gal) [6/16] | H2O (1.5pt/a                | ) [5/8], Sectiol              | n Three (5.33            | soz/a) and Sup                                                                        | oerb HC (1pt           | /100gal) [6/16]                           |                           | Rai                   | Rainfall: 4.4 inches [5/6 - 8/12]   | ss [5/6 - 8/12]               |
| Fungicide applied: Proline 480SC (5oz/a) [7/2]                                                            | 480SC (5oz/                 | a) [7/2]                      |                          |                                                                                       |                        |                                           |                           | Irriga                | Irrigation: 9.3 inches [5/6 - 8/12] | es [5/6 - 8/12]               |
|                                                                                                           |                             |                               |                          |                                                                                       |                        |                                           |                           |                       |                                     |                               |
|                                                                                                           |                             |                               | You kno                  | You know you're a farmer when                                                         | ırmer when.            | :                                         |                           |                       |                                     |                               |
|                                                                                                           |                             |                               | you<br>weath             | you know more about the weather than the weather than the weather than the meatherman | tbout the<br>eatherman |                                           |                           |                       |                                     |                               |
|                                                                                                           |                             |                               | More abo                 | More about tractors than a mechanic                                                   | ian a mecha            | anic                                      |                           |                       |                                     |                               |

AND MORE ABOUT YOUR LAND THAN ANYONE ELSE.

#### Irrigated Green Dry Pea Variety Evaluation - MSU

EARC, Sidney, MT 2020

| Variety     | Days to Flower     | Plant Height | Test Weight | 1000 Seed<br>Weight | Protein | Adjusted<br>Grain Yield |
|-------------|--------------------|--------------|-------------|---------------------|---------|-------------------------|
|             | (DAP) <sup>1</sup> | (inch)       | (lb/bu)     | (g)                 | (%)     | (lb/a)                  |
| Aragorn     | 53                 | 25.0         | 62.9        | 201                 | 22.6    | 3926                    |
| CDC Striker | 57                 | 25.7         | 65.1        | 238                 | 22.5    | 3864                    |
| Hampton     | 54                 | 24.5         | 63.6        | 217                 | 22.3    | 4368                    |
| Majoret     | 55                 | 26.2         | 65.8        | 229                 | 22.3    | 4024                    |
| NDP100144G  | 57                 | 28.0         | 64.3        | 196                 | 22.8    | 4063                    |
| NDP160028   | 56                 | 27.1         | 66.0        | 216                 | 21.6    | 4667                    |
| PSO877MT457 | 52                 | 27.6         | 63.3        | 224                 | 24.2    | 3837                    |
| Mean        | 55                 | 26.3         | 64.4        | 217.3               | 22.6    | 4107                    |
| P-Value     | <0.0001            | 0.1          | 0.0007      | <0.0001             | <0.0001 | <0.0001                 |
| LSD (0.05)  | 1.4                | NS           | 1.4         | 6.4                 | 0.6     | 280.1                   |
| CV (%)      | 1.7                | 6.8          | 1.5         | 2.0                 | 1.9     | 4.6                     |

#### Irrigated Yellow Dry Pea Variety Evaluation - MSU

EARC, Sidney, MT 2020

| Variety     | Days to Flower     | Plant Height | Test Weight | 1000 Seed<br>Weight | Protein | Adjusted<br>Grain Yield |
|-------------|--------------------|--------------|-------------|---------------------|---------|-------------------------|
|             | (DAP) <sup>1</sup> | (inch)       | (lb/bu)     | (g)                 | (%)     | (lb/a)                  |
| Delta       | 53                 | 24.1         | 64.8        | 233                 | 21.3    | 4305                    |
| DS-Admiral  | 53                 | 27.9         | 65.3        | 235                 | 20.9    | 4468                    |
| ND Dawn     | 54                 | 28.7         | 64.5        | 235                 | 21.3    | 4602                    |
| PS0877MT632 | 54                 | 24.1         | 63.3        | 215                 | 22.6    | 3729                    |
| Mean        | 54                 | 26.2         | 64.5        | 229.4               | 21.5    | 4276                    |
| P-Value     | 0.008              | 0.0004       | 0.001       | <0.0001             | <0.0001 | <0.0001                 |
| LSD (0.05)  | 0.5                | 1.8          | 0.7         | 6.6                 | 0.4     | 253.6                   |
| CV (%)      | 0.6                | 4.3          | 0.7         | 1.8                 | 1.2     | 3.7                     |

Location: EARC; Sidney, MT Planted: April 23, 2020 Applied fertilizers in Ib/a: None Yield adjusted to 13% moisture content Herbicide: Outlook at 12 oz/ac preemergence DAP<sup>1</sup> = Days after planting



Previous crop: Sugarbeet Harvested: July 31, 2020 Soil type: Savage Silty Clay Loam

**Dryland Green Dry Pea Variety Evaluation - MSU** 

Richland, MT 2020

| Variety        | Plant Height | Test Weight | 1000 Seed<br>Weight | Protein | Adjusted<br>Grain Yield |
|----------------|--------------|-------------|---------------------|---------|-------------------------|
|                | (inch)       | (lb/bu)     | (g)                 | (%)     | (lb/a)                  |
| AAC Comfort    | 35.6         | 64.4        | 269                 | 24.1    | 4815                    |
| Aragorn        | 29.6         | 63.2        | 236                 | 24.8    | 3886                    |
| Bluemoon       | 30.5         | 64.1        | 264                 | 24.4    | 4194                    |
| CDC Greenwater | 35.9         | 64.8        | 244                 | 23.6    | 4333                    |
| CDC Striker    | 34.1         | 64.8        | 251                 | 25.2    | 4018                    |
| Daytona        | 31.5         | 64.3        | 279                 | 23.9    | 4867                    |
| Empire         | 37.0         | 66.3        | 232                 | 24.8    | 4277                    |
| Ginny 2        | 29.3         | 63.7        | 244                 | 25.1    | 4031                    |
| Hampton        | 27.4         | 63.5        | 239                 | 25.4    | 4773                    |
| Majoret        | 31.3         | 64.5        | 248                 | 25.4    | 3962                    |
| NDP100144G     | 36.5         | 63.8        | 198                 | 24.9    | 4469                    |
| NDP160028      | 32.3         | 66.3        | 235                 | 24.1    | 4548                    |
| Pro 141-6258   | 28.7         | 64.6        | 233                 | 24.4    | 4043                    |
| PSO877MT457    | 34.1         | 63.6        | 253                 | 26.1    | 4252                    |
| Shamrock       | 35.6         | 66.3        | 250                 | 23.8    | 4204                    |
| Mean           | 32.6         | 64.6        | 244.5               | 24.7    | 4300                    |
| P-Value        | <0.0001      | <0.0001     | <0.0001             | <0.0001 | 0.1000                  |
| LSD            | 3.8          | 0.6         | 8.6                 | 0.6     | NS                      |
| CV (%)         | 7.9          | 0.6         | 2.4                 | 1.5     | 10.9                    |

#### **Dryland Yellow Dry Pea Variety Evaluation - MSU**

Richland, MT 2020

| Variety      | Plant Height | Test Weight | 1000 Seed | Protein | Adjusted    |
|--------------|--------------|-------------|-----------|---------|-------------|
|              | -            | -           | Weight    |         | Grain Yield |
|              | (inch)       | (lb/bu)     | (g)       | (%)     | (lb/a)      |
| AAC Asher    | 29.9         | 64.6        | 274       | 24.0    | 5079        |
| AAC Carver   | 33.9         | 64.9        | 247       | 22.6    | 5209        |
| AAC Chrome   | 32.1         | 64.2        | 245       | 23.3    | 5068        |
| AC Agassiz   | 30.8         | 64.2        | 248       | 24.2    | 4538        |
| AC Earlystar | 34.7         | 64.7        | 228       | 22.5    | 5151        |
| CDC Amarillo | 35.9         | 64.8        | 233       | 23.4    | 4824        |
| CDC Dakota   | 33.4         | 66.3        | 201       | 26.6    | 4372        |
| CDC Inca     | 36.5         | 64.9        | 240       | 24.5    | 4742        |
| CDC Saffron  | 31.9         | 65.0        | 263       | 24.7    | 4721        |
| CDC Spectrum | 32.7         | 64.3        | 249       | 25.0    | 4647        |
| Delta        | 31.5         | 65.0        | 258       | 24.5    | 3674        |
| DL Apollo    | 35.0         | 65.2        | 240       | 25.0    | 4847        |
| DS-Admiral   | 33.6         | 65.3        | 256       | 23.5    | 4717        |
| Durwood      | 35.0         | 64.6        | 257       | 24.4    | 4359        |
| Goldenwood   | 27.6         | 64.9        | 183       | 26.2    | 4029        |
| Hyline       | 31.3         | 64.8        | 259       | 22.8    | 4881        |
| Jetset       | 33.0         | 64.2        | 254       | 24.8    | 4759        |
| Korando      | 31.8         | 65.0        | 285       | 25.4    | 4548        |
| LG Amigo     | 30.2         | 63.7        | 245       | 24.1    | 4520        |
| LG Sunrise   | 36.5         | 65.3        | 248       | 23.1    | 4735        |
| Majestic     | 34.5         | 65.0        | 270       | 24.6    | 4429        |
| MS-19YP3     | 33.7         | 66.4        | 250       | 24.2    | 4746        |
| ND Dawn      | 31.8         | 63.8        | 252       | 23.2    | 4514        |
| Nette 2010   | 30.9         | 65.2        | 252       | 23.4    | 4831        |
| Orchestra    | 36.7         | 65.0        | 288       | 25.8    | 5194        |
| Pro 093-7410 | 33.4         | 64.9        | 236       | 22.7    | 4865        |
| Pro 133-6243 | 31.8         | 65.0        | 306       | 24.5    | 4738        |
| Pro 143-6220 | 31.2         | 63.6        | 232       | 25.2    | 3546        |
| Pro 143-6230 | 31.8         | 63.8        | 227       | 25.3    | 4266        |
| Pro 153-7409 | 29.8         | 63.7        | 264       | 24.8    | 3898        |
| PSO877MT632  | 29.4         | 64.8        | 237       | 26.0    | 3901        |
| Salamanca    | 33.8         | 64.8        | 276       | 24.5    | 4348        |
| Mean         | 32.7         | 64.7        | 249.8     | 24.3    | 4593        |
| P-Value      | <0.0001      | <0.0001     | <0.0001   | <0.0001 | <0.0001     |
| LSD          | 3.7          | 0.5         | 9.0       | 0.5     | 595.0       |
| CV (%)       | 7.8          | 0.6         | 2.5       | 1.4     | 9.0         |

Location: Richland, MT Planted: May 6, 2020 Applied fertilizers in Ib/a: None Yield adjusted to 13% moisture content Previous crop: Spring Wheat Harvested: Aug. 18, 2020 Soil type: Farnuf-Reeder Loam

| Irrigated Chickpea Varie | ety Evaluation - MSU                    | EARC, Sidney, MT 2020 |
|--------------------------|-----------------------------------------|-----------------------|
| Variety                  | Seed sizes greater than 22/64<br>inches | Adjusted Grain Yield  |
|                          | (%)                                     | (lb/a)                |
| CDC Frontier             | 47.0                                    | 5539                  |
| CDC Orion                | 79.1                                    | 5590                  |
| Myles                    | 0.0                                     | 3226                  |
| Nash                     | 90.4                                    | 4359                  |
| ND Crown                 | 76.7                                    | 4738                  |
| Royal                    | 88.7                                    | 4380                  |
| Sawyer                   | 60.1                                    | 4252                  |
| Sierra                   | 87.8                                    | 3888                  |
| Mean                     | 66.2                                    | 4497                  |
| P-Value                  | <0.0001                                 | <0.0001               |
| LSD                      | 5.9                                     | 384.2                 |
| CV (%)                   | 6.1                                     | 5.8                   |

Location: EARC; Sidney, MT

Planted: April 23, 2020

Applied fertilizers in lb/a: None

Previous crop: Sugarbeet Harvested: Aug. 26, 2020 Soil type: Savage Silty Clay Loam

Yield adjusted to 13% moisture content Herbicide: Outlook at 12 oz/ac preemergence

Fungicide: Miravis Top @ 14 oz/ac on 6/24/20 and 7/15/20

| <b>Dryland Chickpea Variety Ev</b> |                                         | Richland, MT 2020           |  |  |
|------------------------------------|-----------------------------------------|-----------------------------|--|--|
| Variety                            | Seed sizes greater than 22/64<br>inches | Adjusted Grain Yield        |  |  |
|                                    | (%)                                     | (lb/a)                      |  |  |
| CDC Frontier                       | 17.3                                    | 2244                        |  |  |
| CDC Leader                         | 36.3                                    | 2793                        |  |  |
| CDC Orion                          | 63.1                                    | 2714                        |  |  |
| CDC Palmer                         | 60.6                                    | 2757                        |  |  |
| Kasin                              | 2.3                                     | 1119                        |  |  |
| Myles                              | 0.0                                     | 2301                        |  |  |
| Nash                               | 82.1                                    | 719                         |  |  |
| ND Crown                           | 66.1                                    | 1358                        |  |  |
| Royal                              | 82.9                                    | 809                         |  |  |
| Sawyer                             | 45.5                                    | 1819                        |  |  |
| Sierra                             | 83.8                                    | 787                         |  |  |
| Mean                               | 49.1                                    | 1742                        |  |  |
| P-Value                            | <0.0001                                 | <0.0001                     |  |  |
| LSD                                | 7.7                                     | 533.9                       |  |  |
| CV (%)                             | 10.9                                    | 20.9                        |  |  |
| Location: Richland, MT             |                                         | Previous crop: Spring Wheat |  |  |

Planted: May 6, 2020

Applied fertilizers in lb/a: None

Yield adjusted to 13% moisture content

Previous crop: Spring Wheat Harvested: Sept. 3, 2020 Soil type: Farnuf-Reeder Loam

Note: Ascochyta disease pressure was significant, adversely affecting yields of susceptible varieties

## Dryland Crop Performance Comparisons – Williston, ND 2020

| Сгор            | Туре                         | Variety                | Yield<br>3 Year<br>Avg* | Market<br>Price <sup>†</sup> | Gross<br>Return | + or -<br>spring<br>wheat |
|-----------------|------------------------------|------------------------|-------------------------|------------------------------|-----------------|---------------------------|
|                 |                              |                        | (bu/a)                  | (\$/bu)                      | (\$/a)          | <u>(\$/a)</u>             |
| HR Spring Wheat |                              | ND VitPro              | 37.0                    | 5.03                         | 185.94          | 0.00                      |
| HR Winter Wheat |                              | Jerry                  | 48.1                    | 4.93                         | 237.06          | 51.12                     |
| Durum Wheat     |                              | ND Riveland            | 41.8                    | 6.00                         | 251.00          | 65.06                     |
| Barley          | (Feed)                       | ND Genesis             | 69.8                    | 2.25                         | 157.05          | -28.89                    |
| Oats            |                              | Jury                   | 106.1                   | 2.09                         | 221.15          | 35.21                     |
| Corn            |                              | Average <sup>‡</sup>   | 70.0                    | 3.70                         | 258.926         | 72.98                     |
| Soybeans        | (Conventional <sup>#</sup> ) | ND Benson <sup>#</sup> | 21.4                    | 11.19                        | 239.73          | 53.78                     |
| Soybeans        | (Roundup Ready)              | ND 17009GT             | 26.0                    | 11.19                        | 290.57          | 104.62                    |
| Field Peas      | (Green)                      | Arcadia                | 36.4                    | 6.25                         | 227.19          | 41.25                     |
|                 | (Yellow)                     | Agassiz                | 36.4                    | 5.25                         | 191.00          | 5.05                      |
| Flax            |                              | Average <sup>‡</sup>   | 14.7                    | 12.00                        | 176.52          | -9.42                     |
|                 |                              |                        | lb/a                    | (¢/lb)                       |                 |                           |
| Lentils         | (Medium green)               | Avondale               | 1653.0                  | 21.00                        | 347.13          | 161.19                    |
| Chickpeas       | (Large Kabuli)               | CDC Frontier           | 1520.0                  | 24.62                        | 374.22          | 188.28                    |
| Canola          | (Roundup Ready)              | Star 402               | 946.7                   | 17.95                        | 169.94          | -16.00                    |
| Safflower       |                              | MonDak                 | 1391.0                  | 21.00                        | 292.11          | 106.17                    |
| Sunflower       | (Oil)                        | Camaro II              | 1758.0                  | 18.00                        | 316.44          | 130.50                    |

Gautam Pradhan, Jerald Bergman, Kyle Dragseth

\*The average yield of a crop was based on a three-year average yield (2017, 2019, 220) from dryland varietal trials.

<sup>†</sup>The market price was obtained in the third week of November 2020 from different grain elevators in and around Williston.

<sup>‡</sup>Average of several varieties and/or types within the crop.

<sup>#</sup>May command a premium.

#### YES, I'M A Farmer OF COURSE I TALK TO MYSELF WHEN I FARM SOMETIMES I NEED EXPERT ADVICE

## Use of Lime Banded in Seed Row to Remediate Soil Surface Acidification

Jim Staricka, Jerry Bergman, and Cameron Wahlstrom – Williston Research Extension Center

Repeated surface application of urea or ammonium-based fertilizers without subsequent incorporation, such as in the case of no-till farming systems, has resulted in acidification of the soil surface. This acidification is detrimental to crop growth through the release of toxic elements such as aluminum and the tie-up of essential elements such as phosphorus. In humid and sub-humid regions where the entire soil profile is naturally acidic, the application of agricultural lime to reduce the soil acidity level has a long history. However, the rates recommended for use in these areas may be excessive for semi-arid regions where the artificially acidified soil surface overlies a subsoil that remains non-acidic. Alternative methods of lime application, such as applications in bands corresponding to the seed row, may be sufficient to maintain crop root growth through the acidic surface soil until the roots can reach the neutral or alkali subsoil. In addition, some crop varieties may be sufficiently acid-tolerant to grow in soils where the acidity is limited to the soil surface.

The objective of this study is to investigate the growth and yield of spring wheat and durum with and without a banded application of pelletized limestone, when grown in soil having an acidified surface.

#### **Methods and Materials**

The experiment looked at the effect of three lime rates on the performance of four crop varieties. The three lime rates were 0, 50, and 100 lb/a in the form of pelletized limestone applied in the seed row at planting. The four varieties were Lanning and Reeder hard red spring wheat and Mountrail and Riveland durum. Lanning is acid-tolerant whereas Reeder is not. Acid tolerance has not been identified among durum varieties. The experimental design was a randomized complete block design with four replications utilizing plots 15 feet wide by 20 feet long.

Soil samples were taken in October 2019 and analyzed for nutrient availability (Table 1).

Crops were seeded and lime applied on 5 May 2020. Additional fertilizer applications during planting were 50 lb/a of Microessentials® S10 (12-40-0-10S) with the seed and 215 lb/a of urea mid-row banded.

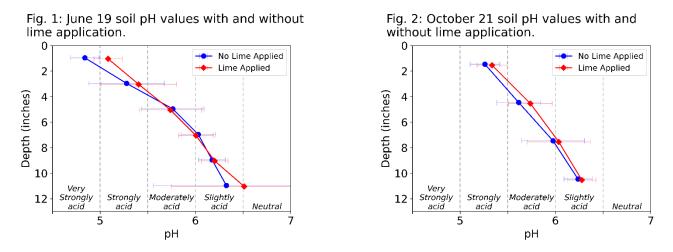
A mid-season soil sampling was performed on June 19. Extremely dry soil conditions resulted in limiting the sampling to the 0 and 100 lb/a treatments of Reeder HRSW. Soil cores to the 12-inch depth were obtained directly in the crop row using a hand sampler. Cores were divided into 2-inch

| Table 1: Soil test values (Oct. 2019). |                               |         |  |  |  |  |
|----------------------------------------|-------------------------------|---------|--|--|--|--|
| Nutrient                               | Nutrient Depth (inches) Value |         |  |  |  |  |
| Ν                                      | 0 to 24                       | 10 lb/a |  |  |  |  |
| Р                                      | 0 to 6                        | 42 ppm  |  |  |  |  |
| K                                      | 0 to 6                        | 257 ppm |  |  |  |  |
| рН                                     | 0 to 6                        | 5.4     |  |  |  |  |
| OM 0 to 6 2.8%                         |                               |         |  |  |  |  |
|                                        |                               |         |  |  |  |  |

increments for measurement of pH. Soil pH measurement was conducted at the WREC using a handheld pH meter and a 1:1 soil:water mixture.

Plots were harvested on August 19 for grain yield and quality determination.

A post-harvest soil sampling was performed on October 21. Soil cores to the 12-inch depth were obtained directly in the crop row using a truck-mount hydraulic-assisted sampler and divided into 3-inch increments for measurement of pH. As with the mid-season soil sampling, sampling was limited to the 0 and 100 lb/a treatments of Reeder HRSW due to the persistent dry soil conditions.


#### Soil pH Results

At the June soil sampling, soil pH of the 0 to 2-inch depth zone was 4.8 where lime was not applied and 5.1 where lime was applied (Fig. 1). These values are classified as "*very strongly acid*" and "*strongly acid*", respectively, by the USDA-Natural Resources Conservation Service (NRCS). Many crops commonly grown in the MonDak region, including wheat, barley, pea, lentil, and alfalfa, will have reduced yields when soil pH is less than 5.3.

The application of lime did not affect the soil pH below the 2-inch depth. This is likely due to the dry soil conditions that inhibited the lime from dissolving or moving deeper in the soil. Intact lime particles were observed in the 0 to 2-inch soil even six weeks after lime application. Soil pH increased (i.e., the

soil became less acidic) with depth. At the 10 to 12-inch depth the soil pH was 6.4, which the NRCS classifies as "*slightly acid*".

At the October soil sampling, soil pH values differed little from those measured in June when accounting for the differences in sample depths (Fig. 2). The application of lime did not affect the soil pH at any depth. The soil pH of the 0 to 3-inch depth zone was 5.3, which the NRCS considers to be "*strongly acid*". The pH increased with depth and at the 9 to 12-inch depth was 6.3 ("*slightly acid*" in the NRCS classification). The dry soil conditions experienced during the early growing season persisted into October. Intact lime particles were still visible in the upper-most sampling depth, albeit not as prevalent as during the June soil sampling.



#### **Crop Performance Results**

Crop grain yield, test weight, and protein were not affected by lime application, but yield and test weight did differ among crop varieties (Table 2). Spring wheat out yielded durum. The test weight of Reeder spring wheat was greater than that of the other three varieties. Grain protein did not differ among varieties. It is interesting to note that the acid-tolerant variety, Lanning, did not perform significantly better than the non-acid-tolerant variety Reeder.

#### Discussion

The 2020 growing season was characterized by well below normal precipitation. In April, soil moisture was ample. However, only 3.94 inches of rain occurred between planting (May 5) and harvest (August 19).

| , <b>,</b>                                                                                                                        | This resulted in the plant                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plant available soil<br>moisture levels in<br>the upper foot of soil:<br>• 85% on May 6<br>• 31% on June 17<br>• 13% on August 19 | available soil moisture<br>levels steadily decreasing<br>during the growing season<br>(see sidebar). ( <i>Note: All</i><br><i>soil moisture values were</i><br><i>obtained from durum plots</i> |
|                                                                                                                                   | in a neighboring study).                                                                                                                                                                        |

Table 2: Crop grain yield, test weight, and protein among varieties. TestWt Variety Yield Protein % lb/bu bu/a 33.4 a\_ 61.8 \_b 18.1 a Lanning Reeder 62.2 a\_ 18.0 a 32.4 a\_ Mountrail 29.1 b 61.6 b 18.2 a 27.3 \_b 61.6 \_b Riveland 18.3 a Within a column, numbers followed by the same letter are not significantly different at the 5% probability level.

Dry soil this year likely limited the dissolution and dispersion of the lime, thus reducing its effectiveness. In a preliminary study conducted last year, 100 lb/a of pelletized limestone applied in the seed row during planting was more effective. In that study, the pH of the 0 to 2-inch depth was increased by 0.95 units versus only 0.25 units this year.

This study will be repeated next year to further evaluate the effectiveness of banded application of pelletized limestone and acid-tolerant varieties to remediate soil surface acidification.

# Sustainable Agroecosystem for Soil Health in the Northern Great Plains (Williston, ND - 2020)

Gautam Pradhan, Jim Staricka, Audrey Kalil, Jerry Bergman, Cameron Wahlstrom, Kyle Dragseth, Meridith Miller, Taheni Gargouri Jbir, Kate Pearson, David Weltikol NDSU Williston Research Extension Center, Williston, ND



#### Introduction

This long-term dryland research project was initiated in 2013 with the objectives of developing agricultural systems that improve soil health, crop production, precipitation use, and economic sustainability of no-till dryland farming systems in the Northern Great Plains of the USA. In this project, there were five fixed and six dynamic rotations. Every year, each phase of every fixed rotation has been included. The experimental design is a randomized complete block with four replications. The plot size is 60 ft. x 200 ft. In 2019/2020, based on the results from the previous five years, the treatment structure was modified to seven fixed rotations and two dynamic rotations, which are as follows:

| Rotation # | 2019          | 2020          | 2021            | 2022          | 2023          | 2024          |
|------------|---------------|---------------|-----------------|---------------|---------------|---------------|
| 1          | Durum         | Fallow        | Durum           | Fallow        | Durum         | Fallow        |
| 2          | Durum         | Durum         | Durum           | Durum         | Durum         | Durum         |
| 3          | Cover Crop    | Sunflower     | Pea             | Durum         | Safflower     | Cover Crop    |
| 4          | HRWW          | Safflower     | Pea             | Durum         | Sunflower     | HRSW          |
| 5          | Lentil        | Durum         | Pea             | Durum         | Lentil        | TBD           |
| 6          | Durum + SC    | SC            | Durum + SC      | SC            | Durum + SC    | TBD           |
| 7          | Deroppiel Mix | Boroppiol Mix | Boroppiel Cross | Boroppiol Miv | Derophial Mix | Porophial Mix |

#### **Fixed Rotations from 2019**

7 Perennial Mix Perennial Mix Perennial Grass Perennial MixPerennial MixPerennial MixPerennial Mix Note: Cover crop is a mixture of turnip, soybean, flax, sorghum sudangrass, and oats. HRWW = hard red winter wheat, which was replaced by hard red spring wheat (HRSW) in 2020 as HRWW was winter killed; SC = sweet clover. SC + Durum = sweet clover is companion cropped with durum.

#### **Dynamic Rotations from 2019**

| Rotation # | 2019      | 2020      | 2021 | 2022 | 2023 | 2024 |
|------------|-----------|-----------|------|------|------|------|
| 8          | Durum     | Safflower | TBD  | TBD  | TBD  | TBD  |
| 9          | Safflower | HRSW      | TBD  | TBD  | TBD  | TBD  |

- Crops in the dynamic rotations will be determined each year based on weather and market conditions and using the following tools:
  - The USDA-ARS Crop Sequence Calculator (An interactive program for viewing crop sequencing information and calculating returns; <u>www.mandan.ars.usda.gov</u>)
  - The NDSU Projected Crop Budgets for Northwest North Dakota (<u>www.ag.ndsu.edu/publications</u> /<u>farm-economics-management</u>).

### **Materials and Methods**

The experimental design was a randomized complete block design with four replications. The treatment number and corresponding rotation and crops are given in Table 1. Seeding date, seeding rate, varieties, and harvest dates are indicated in Table 2. Crops were differentially fertilized based on soil tests and crop history. Durum and safflower received 50 lb of MEZ (12-40-0-10S-1Zn). Regarding N fertilization, durum and hard red spring wheat were fertilized based on a 130 lb/ac target minus a 50 lb no-till credit and a 40 lb/ac legume credit. Safflower was fertilized based on an 80 lb/ac target minus a 30 lb/ac no-till credit. The cover crop was fertilized based on 120 lb/ac. Pea, sweet clover, and the perennial mix did not receive any fertilizer. The soil test N and starter fertilizer N, where applicable, were deducted in calculating the amount of N fertilizer for each crop. No fungicides were applied to durum, hard red spring wheat, peas, lentils, sunflower, sweet clover, cover crops, and perennial mix. Safflower was treated with a foliar fungicide (azoxystrobin, 9 oz/ac) at early bloom and mid-bloom for control of Alternaria blight.

| Treatment # | Rota    | tion | Crop and   | Year       |
|-------------|---------|------|------------|------------|
|             | Туре    | #    | 2019       | 2020       |
| 1           | Fixed   | 1    | Durum      | Fallow     |
| 2           | Fixed   | 1    | Fallow     | Durum      |
| 3           | Fixed   | 2    | Durum      | Durum      |
| 4           | Fixed   | 3    | Cover Crop | Sunflower  |
| 5           | Fixed   | 3    | Pea        | Durum      |
| 6           | Fixed   | 3    | Durum      | Safflower  |
| 7           | Fixed   | 3    | Safflower  | Cover Crop |
| 8           | Fixed   | 3    | Canola     | Pea        |
| 9           | Fixed   | 4    | HRWW       | Safflower  |
| 10          | Fixed   | 4    | Pea        | Durum      |
| 11          | Fixed   | 4    | Durum      | Sunflower  |
| 12          | Fixed   | 4    | Safflower  | Pea        |
| 13          | Fixed   | 4    | Canola     | HRSW       |
| 14          | Fixed   | 5    | Lentil     | Durum      |
| 15          | Fixed   | 6    | Durum+SC   | (SC)       |
| 16          | Fixed   | 5    | Pea        | Durum      |
| 17          | Fixed   | 6    | (SC)       | Durum+SC   |
| 18          | Fixed   | 5    | Durum      | Lentil     |
| 19          | Fixed   | 5    | Durum      | Pea        |
| 20          | Fixed   | 7    | P. Mix     | P. Mix     |
| 21          | Dynamic | 8    | Durum      | Safflower  |
| 22          | Dynamic | 9    | Safflower  | HRSW       |

Table 1. Treatment number, rotation type, and Crops in 2019 and 2020.

Table 2. Seeding rate, seeding date, variety, and harvest date of different crops.

| Crop         | Variety/Type  | Seeding Rate       | Seeding Date | Harvest Date |
|--------------|---------------|--------------------|--------------|--------------|
| Durum        | ND Riveland   | 1.2 million PLS/ac | 04/27/2020   | 08/15/2020   |
| HRSW         | (Bolles)      | 1.2 million PLS/ac | 05/05/2020*  | 08/16/2020   |
| Sunflower    | Express/NuSun | 20,000 PLS/ac      | 05/28/2020   | 10/08/2020   |
| Safflower    | Rubis Red     | 25 lb/ac           | 05/04/2020   | 10/08/2020   |
| Peas         | Midas         | 375,000 PLS/ac     | 04/24/2020   | 08/03/2020   |
| Lentils      | Richlea       | 70 lb/ac           | 05/04/2020   | 08/17/2020   |
| Sweet Clover | Yellow        | 10 lb/ac           | 04/27/2020   | -            |

\*HRSW after canola (Treatment 13) was seeded on June 11, 2020, after burning down the winterkilled HRWW.

## **Results – Agronomic**

The effect of crop rotation was not observed on the plant height of the crops. The effect of crop rotation was not evident on the yield of durum, lentil, safflower, and sunflower. Averaged across the crop rotation, the yield of durum, lentil, safflower, and sunflower were 37.4 bu/ac, 29.2 bu/ac, 1208 lb/ac, and 469 lb/ac, respectively.

There was a significant effect of crop rotation on HRSW yield and test weight but not on protein. The yield of HRSW following safflower (Treatment 22) was 29.9 bu/ac, which was 100% higher than HRSW following canola (Treatment 13). HRSW following safflower had about 6 lb/bu higher test weight than HRSW following canola (Table 3). HRSW followed by canola (Treatment 13) was seeded very late (June 11, 2020), which may be one of the reasons for such a drastic decrease in yield and test weight.

| Treatment | Сгор      |      | Yield   | Test Weight | Protein |  |
|-----------|-----------|------|---------|-------------|---------|--|
| #         | 2019      | 2020 | (bu/ac) | (lb/bu)     | (%)     |  |
| 13        | Canola    | HRSW | 14.8B   | 56.2B       | 17.4A   |  |
| 22        | Safflower | HRSW | 29.9A   | 62.3A       | 16.6A   |  |

Table 3. Yield, test weight, and protein content of HRSW under different treatments.

Note: Different letters within a column indicates a significant difference at a *p*-value of < 0.05.

There was a significant effect of crop rotation on pea yield and protein but not on test weight. Pea following safflower (Treatment 12) and durum (Treatment 19) had statistically similar yield (about 39.9 bu/ac), which was 8.7 bu/ac higher than the pea following canola (Treatment 8; Table 4). Pea following safflower had the highest grain protein (21.9%) which was statistically similar to the pea following durum. The pea following canola had the lowest grain protein.

Table 4. Yield, test weight, and protein content of field peas under different treatments.

| Treatment | Cro       | р    | Yield   | Test Weight | Protein |
|-----------|-----------|------|---------|-------------|---------|
| #         | 2019      | 2020 | (bu/ac) | (lb/bu)     | (%)     |
| 8         | Canola    | Pea  | 31.2B   | 64.5A       | 20.6B   |
| 12        | Safflower | Pea  | 40.6A   | 64.3A       | 21.9A   |
| 19        | Durum     | Pea  | 39.2A   | 64.5A       | 20.9AB  |

Note: Different letters within a column indicates a significant difference at a p-value of < 0.05.

This year, the cover crop was swathed and baled and the averaged cover crop yield obtained by weighing the bales was 1487 lb/ac. This year, due to heavy weed infestation, sweet clover was not harvested.

#### **Results – Plant Pathology**

Foliar and head diseases of durum were monitored across the different crop rotation treatments. During the 2020 season, the primary foliar diseases of concern were the fungal leaf spotting diseases (tan spot, Septoria blotch). Foliar disease was rated at the initiation of tillering and at the flag leaf growth stage on 50 plants per plot. Data collected included severity (percent leaf area affected) and incidence (number of plants with disease). Fusarium head blight (FHB) severity and incidence was determined in a similar manner on 50 durum heads per plot at the soft dough stage and ergot incidence was recorded at maturity.

There was no significant difference among treatments in early season foliar disease and ergot was not observed. Late season foliar disease was highest in the durum/fallow (#2) and continuous durum (#3) rotations and lowest in the durum+sweet clover (#17) (Table 5). Given that the fungal leaf spot pathogens overwinter on durum residue, it is unsurprising that foliar disease was highest in the least diverse cropping systems. Fusarium head blight incidence was highest in the durum/fallow rotation (#2) (Table 5). Inclusion of a full season cover crop within the cropping system from 2016-2020 did not appear to mitigate foliar or head diseases of durum long term as there was no significant differences among treatments 5 and 10.

Table 5. Durum leaf spot incidence and severity rated on the flag leaf June 26<sup>th</sup> and Fusarium Head Blight (FHB) rated July 14<sup>th</sup>. SC = sweet clover.

| Treatment<br># | Crops<br>2016 - 2020                 | Leaf Spot<br>Incidence<br>(%) | Leaf Spot<br>Severity<br>(%) | FHB<br>Incidence<br>(%) | FHB<br>Severity<br>(%) |
|----------------|--------------------------------------|-------------------------------|------------------------------|-------------------------|------------------------|
| 2              | Fallow/Durum                         | 93.0 <i>a</i>                 | 7.4 a                        | 3.0 <i>ab</i>           | 0.755                  |
| 3              | Continuous Durum                     | 94.5 <i>a</i>                 | 5.4 ab                       | 0.0 <i>b</i>            | 0                      |
| 5              | Safflower/Durum/Cover Crop/Pea/Durum | 83.5 <i>ab</i>                | 3.4 b                        | 0.0 <i>b</i>            | 0                      |
| 10             | Safflower/Durum/HRWW/Pea/Durum       | 87.5 ab                       | 3.9 <i>b</i>                 | 0.0 <i>b</i>            | 0                      |
| 17             | Durum/Lentil/HRWW/SC/Durum+SC        | 76.5 b                        | 3.1 <i>b</i>                 | 0.5 <i>ab</i>           | 0.33                   |
|                | p-value(  0.05)                      | 0.0014                        | 0.0075                       | 0.0145                  | NS                     |

Note: Different letters within a column indicates a significant difference at a p-value of < 0.05. NS = not significant.



## Spring Canola Variety Evaluation in Eastern Montana EARC, Sidney, MT

Apurba Sutradhar, Chengci Chen, Simon Fordyce, Bill Franck, Thomas Gross, Ronald Brown, and W. Tanner Stevens

**Summary:** Eighteen canola varieties were evaluated at the Eastern Agricultural Research Center, Sidney, MT under irrigation in 2020. Significant differences in the growth and yield were observed on canola performance. Average seed yield and oil content across varieties were 2457 and 49.6%, respectively. The variety DKTFLL21SC produced the highest seed yield followed by StarFlex and DG 760TM. In terms of oil content, the variety StarFlex had the highest oil concentration followed by CP930RR and CP955RR.

#### **Materials and Methods**

| Location:            | Sidney                                                                                          | Previous crop:           | Sugarbeet                                                                              |
|----------------------|-------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------|
| Latitude:            | 47.7288 N                                                                                       | Soil type:               | Savage Silty Clay Loam                                                                 |
| Longitude:           | 104.1501 W                                                                                      | Harvested:               | 08/06/2020                                                                             |
| Elevation:           | 1949                                                                                            | Plot size:               | 5'×20'                                                                                 |
| Planted:             | 04/22/2020                                                                                      | Harvest type:            | Direct cut                                                                             |
| Tillage:             | Conventional                                                                                    | Replications:            | 4                                                                                      |
| Experimental design: | Randomized Complete Block                                                                       | Fertilizers (obtained):  | 60 lb. N/ac and 30 lb. P <sub>2</sub> O <sub>5</sub> /ac blend applied before planting |
| # Varieties:         | 18                                                                                              | Herbicide:               | Sonalan @ 2.5 pints/ac applied on 4/09/2020                                            |
| Pesticide:           | Sevin @ 16 oz./ac on 5/21/2020<br>Mustang Maxx sprayed @ 4 oz./ac on<br>5/27/2020 and 6/11/2020 | Rainfall:<br>Irrigation: | 5.42" (April to September)<br>5.81"                                                    |

**Comments:** Grain yield was adjusted to 8% moisture.

| Table 1. Initial soil test results. A composite soil sample was collected prior to planting | canola. |
|---------------------------------------------------------------------------------------------|---------|
|---------------------------------------------------------------------------------------------|---------|

| Depth | рН  | OM  | NO3-N | P-Olsen | К   |
|-------|-----|-----|-------|---------|-----|
| Inch  |     | %   |       | ppm     |     |
| 0-12  | 8.4 | 1.8 | 10.5  | 15      | 186 |



|                    | I able 2. Summary of Agronomic Data of Canor | ola varieties lested. | ested.       |         |             |                        |            |
|--------------------|----------------------------------------------|-----------------------|--------------|---------|-------------|------------------------|------------|
| Cultivar           | Distributor                                  | Plant Stand           | Plant Height | Lodging | Test Weight | Grain Yield<br>/Ih/ac) | Oil<br>(%) |
| BY19-6284CI        | BrettYound                                   | 404997                | 51.0         | 15      | 50.1        | 2049                   | 49.2       |
| BY 6204TF          | BrettYoung                                   | 404997                | 52.1         | 0       | 52.3        | 2267                   | 48.9       |
| CP930RR            | WinField United                              | 532803                | 44.9         | 26      | 51.7        | 2639                   | 51.6       |
| CP955RR            | WinField United                              | 431554                | 49.9         | 13      | 52.2        | 2670                   | 51.0       |
| CP9919RR           | WinField United                              | 380099                | 42.3         | 20      | 46.9        | 2108                   | 48.4       |
| CP9978TF           | WinField United                              | 453131                | 47.3         | 16      | 52.5        | 2406                   | 50.8       |
| DG 200CL D         | Dyna-Grow-Seed                               | 519524                | 54.5         | 11      | 50.9        | 2276                   | 49.2       |
|                    | Dyna-Grow-Seed                               | 496287                | 49.9         | 6       | 51.8        | 2859                   | 50.2       |
|                    | Jyna-Grow-Seed                               | 506246                | 54.4         | 13      | 52.0        | 2349                   | 50.5       |
| DKTF91SC           | Dekalb/Bayer                                 | 677207                | 46.1         | S       | 50.9        | 2537                   | 50.5       |
| DKTF96SC           | Dekalb/Bayer                                 | 486328                | 48.4         | ო       | 52.0        | 2337                   | 49.8       |
| DKTFLL21SC         | Dekalb/Bayer                                 | 537782                | 47.0         | 5       | 51.5        | 2902                   | 49.2       |
| Experimental#1     | BASF                                         | 517865                | 52.8         | 20      | 50.7        | 2456                   | 46.3       |
| InVigor L233P      | BASF                                         | 408316                | 50.1         | 9       | 51.5        | 2414                   | 50.0       |
| InVigor L345PC     | BASF                                         | 614134                | 50.3         | 9       | 51.3        | 2372                   | 48.5       |
| NCC101S            | Photosyntech                                 | 514545                | 43.0         | 10      | 51.5        | 2385                   | 46.0       |
| StarFlex Sta       | Star Speciality Seed                         | 501266                | 49.3         | S       | 51.3        | 2880                   | 52.5       |
| Stat 402 Sta       | Star Speciality Seed                         | 492967                | 50.3         | 11      | 51.8        | 2366                   | 50.6       |
| Mean               |                                              | 493336                | 49.1         | 14      | 51.3        | 2457                   | 49.6       |
| P > F              |                                              | 0.02                  | <0.0001      | <0.0001 | <0.0001     | <0.0001                | <0.0001    |
| LSD ( $P = 0.05$ ) |                                              | 144868                | 3.11         | 19.3    | 1.51        | 327                    | 1.34       |
| CV (%)             |                                              | 20.6                  | 4.45         | 96.7    | 2.06        | 9.28                   | 1.90       |



## Spring Canola Yield and Quality as Affected by Planting Date, Variety, and Seed Rate under Dryland Management EARC, Sidney, MT

Apurba Sutradhar, Chengci Chen, Bill Franck, Thomas Gross, Ronald Brown, and W. Tanner Stevens

## Materials and Methods:

| Dryland         |                            |                   |                                 |
|-----------------|----------------------------|-------------------|---------------------------------|
| Location:       | Sidney                     | Previous crop:    | Pea                             |
| Latitude:       | 47.781239 N                | Soil type:        | Williams Clay Loam              |
| Longitude:      | 104.241995 W               | Harvesting dates: | Early: 08/05/2020               |
| Elevation:      | 2254 ft.                   |                   | Mid: 08/05/2020                 |
| Planting dates: | Early: 04/16/2020          |                   | Late: 08/12/2020                |
|                 | Mid: 04/29/2020            | Pesticide:        | Sevin @ 16 oz./ac on 5/21/2020  |
|                 | Late: 05/12/2020           |                   | Mustang Maxx sprayed @ 4 oz./ac |
| Seeding rate:   | 3 seeds/sq. ft.            |                   | on 5/27/2020 and 6/11/2020      |
|                 | 6 seeds/sq. ft.            | Plot size:        | 5'×20'                          |
|                 | 9 seeds/sq. ft.            | Harvest type:     | Direct cut                      |
| Tillage:        | Conventional               | Replications:     | 4                               |
| Experimental    | Randomized Complete Block  | Herbicide:        | Sonalan @ 2.5 pints/ac on       |
| design:         |                            |                   | 4/09/2020                       |
| Cultivars:      | 45M35                      |                   | Powermax 32 oz./ac pre-plant on |
|                 | 46H75                      |                   | 4/29/2020                       |
| Rainfall:       | 5.42" (April to September) | Irrigation:       | Dryland                         |
|                 |                            |                   |                                 |

**Comments:** Grain yield was adjusted to 8% moisture.

Table 1. Initial dryland soil test results. A composite soil sample was collected prior to planting canola.

| Depth | рН  | OM  | NO3-N | P-Olsen | К   |
|-------|-----|-----|-------|---------|-----|
| Inch  |     | %   |       | ppm     |     |
| 0-12  | 7.9 | 1.9 | 10.5  | 21      | 162 |

| Table 2. Summary of agronomic data of canola growth, yield and quality as affected by cultivar | , |
|------------------------------------------------------------------------------------------------|---|
| planting date, and seeding rate.                                                               |   |

| Source of Variation | Plant Population<br>(ac) | Plant Height<br>(inch) | Test Weight<br>(bu/ac) | Seed Yield<br>(lb/ac) | Oil<br>(%) |
|---------------------|--------------------------|------------------------|------------------------|-----------------------|------------|
| Cultivar            |                          |                        |                        |                       |            |
| 45M35               | 226842                   | 41.8 a                 | 53.0                   | 1719 a                | 46.6 a     |
| 46H75               | 234219                   | 40.4 b                 | 53.1                   | 1371 b                | 44.7 b     |
| Planting date       |                          |                        |                        |                       |            |
| Early               | 217713                   | 43.5 a                 | 54.1 a                 | 1694 a                | 46.4 a     |
| Mid                 | 226842                   | 42.7 a                 | 52.5 b                 | 1595 a                | 45.9 a     |
| Late                | 247037                   | 37.1 b                 | 52.6 b                 | 1345 b                | 44.5 b     |
| Seed rate/sq. ft.   |                          |                        |                        |                       |            |
| 3                   | 120890 c                 | 41.8 a                 | 53.2                   | 1372 b                | 45.7       |
| 6                   | 220203 b                 | 41.2 ab                | 53.3                   | 1619 a                | 45.6       |
| 9                   | 350499 a                 | 40.3 b                 | 52.8                   | 1645 a                | 45.5       |
| Statistics          |                          |                        | <i>P</i> > F           |                       |            |
| Cultivar (C)        | 0.57                     | 0.001                  | 0.81                   | <0.0001               | <0.0001    |
| Planting date (D)   | 0.18                     | <0.0001                | <0.0001                | <0.0001               | <0.0001    |
| Seed rate (R)       | <0.0001                  | 0.02                   | 0.26                   | <0.0001               | 0.82       |
| C×D                 | 0.31                     | 0.0006                 | 0.002                  | 0.24                  | 0.06       |
| C×R                 | 0.47                     | 0.09                   | 0.27                   | 0.30                  | 0.85       |
| D×R                 | 0.47                     | 0.07                   | 0.79                   | 0.97                  | 0.14       |
| C×D×R               | 0.44                     | 0.47                   | 0.74                   | 0.57                  | 0.80       |

## NDSU and MSU Spring Canola Variety Evaluation in Eastern Montana on Dryland and Irrigated Environments EARC, Sidney, MT

Apurba Sutradhar, Chengci Chen, Bill Franck, Thomas Gross, Ronald Brown, and W. Tanner Stevens

## Materials and Methods

| Dryland                    |                                                                                      |                |                                                                                                            |
|----------------------------|--------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------|
| Location:                  | Sidney                                                                               | Previous crop: | Fallow                                                                                                     |
| Latitude:                  | 47.781239 N                                                                          | Soil type:     | Williams Clay Loam                                                                                         |
| Longitude:                 | 104.241995 W                                                                         | Harvested:     | 08/12/2020                                                                                                 |
| Elevation:                 | 1949                                                                                 | Plot size:     | 5'×20'                                                                                                     |
| Planted:                   | 04/29/2020                                                                           | Harvest type:  | Direct cut                                                                                                 |
| Tillage:                   | Conventional                                                                         | Replications:  | 4                                                                                                          |
| Experimental design:       | Randomized Complete Block                                                            | Herbicide:     | Sonalan @ 2.5 pints/ac applied on<br>4/09/2020<br>PowerMax 32 oz/ac preplant on                            |
| # Varieties:               | 18                                                                                   | Pesticide:     | 4/29/2020<br>Sevin @ 16 oz/ac on 5/21/2020<br>Mustang Maxx sprayed @ 4 oz/ac on<br>5/27/2020 and 6/11/2020 |
| Fertilizers<br>(obtained): | 50 lb N/ac and 30 lb P <sub>2</sub> O <sub>5</sub> /ac blend applied before planting | Rainfall:      | 5.42" (April to September)                                                                                 |
|                            |                                                                                      |                |                                                                                                            |

Comments: Grain yield was adjusted to 8% moisture.

Table 1. Initial dryland soil test results. A composite soil sample was collected prior to planting canola.

| Depth | рН  | ОМ  | NO <sub>3</sub> -N | P-Olsen | K   |
|-------|-----|-----|--------------------|---------|-----|
| Inch  |     | %   |                    | ppm     |     |
| 0-12  | 7.9 | 1.9 | 10.5               | 21      | 162 |

#### Materials and Methods:

| Irrigated            |                                                                                               |                          |                                                                                      |
|----------------------|-----------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------|
| Location:            | Sidney                                                                                        | Previous crop:           | Sugar Beet                                                                           |
| Latitude:            | 47.7288 N                                                                                     | Soil type:               | Savage Silty Clay Loam                                                               |
| Longitude:           | 104.1501 W                                                                                    | Harvested:               | 08/06/2020                                                                           |
| Elevation:           | 1949                                                                                          | Plot size:               | 5'×20'                                                                               |
| Planted:             | 04/22/2020                                                                                    | Harvest type:            | Direct cut                                                                           |
| Tillage:             | Conventional                                                                                  | Replications:            | 4                                                                                    |
| Experimental design: | Randomized Complete Block                                                                     | Fertilizers (obtained):  | 60 lb N/ac and 30 lb P <sub>2</sub> O <sub>5</sub> /ac blend applied before planting |
| # Varieties:         | 18                                                                                            | Herbicide:               | Sonalan @ 2.5 pints/ac applied on 4/09/2020                                          |
| Pesticide:           | Sevin @ 16 oz/ac on 5/21/2020<br>Mustang Maxx sprayed @ 4 oz/ac on<br>5/27/2020 and 6/11/2020 | Rainfall:<br>Irrigation: | 5.42" (April to September)<br>5.81"                                                  |

Comments: Grain yield was adjusted to 8% moisture.

Table 1. Initial irrigated soil test results. A composite soil sample was collected prior to planting canola.

| Depth | pН  | OM  | NO <sub>3</sub> -N | P-Olsen | К   |
|-------|-----|-----|--------------------|---------|-----|
| Inch  |     | %   |                    | ppm     |     |
| 0-12  | 8.4 | 1.8 | 10.5               | 15      | 186 |

| I able 2. Outimilary of Agronomic Data of Outoria Varieties Lested. |         |            |        |              |        |        |             |        |             |         |         |
|---------------------------------------------------------------------|---------|------------|--------|--------------|--------|--------|-------------|--------|-------------|---------|---------|
| Cultivar                                                            | Source  | Plant Star | Stand  | Plant Height | leight | Test V | Test Weight | Grain  | Grain Yield | Oil     |         |
|                                                                     |         | (ac        | (acre) | (inch)       | ch)    | (Ib/Bu | Bu)         | /qI)   | (lb/ac)     | (6)     | ()      |
|                                                                     |         | Dry†       | lrr‡   | Dry          | lrr    | Dry    | lrr         | Dry    | lrr         | Dry     | Irr     |
| 45M35                                                               | Pioneer | 313706     | 346903 | 42.8         | 50.6   | 52.3   | 51.7        | 1880   | 3204        | 45.7    | 51.3    |
| 46H75                                                               | Pioneer | 318686     | 348563 | 44.5         | 52.7   | 52.4   | 50.8        | 1634   | 2383        | 45.0    | 48.3    |
| NDSU-MSU-2020-01                                                    | NDSU    | 240674     | 315366 | 40.1         | 48.4   | 51.9   | 51.9        | 1160   | 1975        | 42.8    | 47.4    |
| NDSU-MSU-2020-02                                                    | NDSU    | 210797     | 312047 | 43.0         | 48.1   | 53.7   | 51.7        | 1188   | 1903        | 43.6    | 46.5    |
| NDSU-MSU-2020-03                                                    | NDSU    | 205818     | 326985 | 43.0         | 47.8   | 50.4   | 50.4        | 947    | 1805        | 43.0    | 46.6    |
| NDSU-MSU-2020-04                                                    | NDSU    | 202498     | 305407 | 40.6         | 48.4   | 52.9   | 51.6        | 905    | 1477        | 39.2    | 44.8    |
| NDSU-MSU-2020-05                                                    | NDSU    | 189220     | 303747 | 38.7         | 47.0   | 50.0   | 52.1        | 897    | 1835        | 42.1    | 47.6    |
| NDSU-MSU-2020-06                                                    | NDSU    | 170962     | 355202 | 43.6         | 52.0   | 50.0   | 49.1        | 839    | 1641        | 42.8    | 47.0    |
| NDSU-MSU-2020-07                                                    | NDSU    | 197519     | 247314 | 40.8         | 48.6   | 51.0   | 51.1        | 982    | 1591        | 42.7    | 46.5    |
| NDSU-MSU-2020-08                                                    | NDSU    | 207478     | 303747 | 42.0         | 50.2   | 48.1   | 48.9        | 957    | 1697        | 44.9    | 48.3    |
| NDSU-MSU-2020-09                                                    | NDSU    | 154363     | 262252 | 41.0         | 51.3   | 53.8   | 51.3        | 959    | 1616        | 41.8    | 46.3    |
| NDSU-MSU-2020-10                                                    | NDSU    | 227396     | 310387 | 43.1         | 50.5   | 52.5   | 51.4        | 1042   | 1720        | 44.1    | 48.2    |
| P501L                                                               | Pioneer | 235695     | 343583 | 44.8         | 53.5   | 54.5   | 50.7        | 1746   | 2759        | 43.1    | 47.1    |
| Mean                                                                |         | 221139     | 313962 | 42.1         | 49.9   | 51.8   | 51.0        | 1155   | 1970        | 43.1    | 47.4    |
| P > F                                                               |         | 0.01       | 0.59   | <0.0001      | 0.001  | <0.001 | 0.002       | <0.001 | <0.0001     | <0.0001 | <0.0001 |
| LSD ( $P = 0.05$ )                                                  |         | 84440      | 99655  | 1.98         | 3.02   | 1.84   | 1.53        | 214    | 354         | 1.42    | 1.70    |
| CV (%)                                                              |         | 26.6       | 22.1   | 3.27         | 4.22   | 2.41   | 2.10        | 12.6   | 12.5        | 2.24    | 2.50    |
| † Dryland<br>‡ Irrigated                                            |         |            |        |              |        |        |             |        |             |         |         |

| /arieties Tested.      |
|------------------------|
| f Canola V             |
| y of Agronomic Data of |
| Summar                 |
| ible 2. §              |



## Determining Soybean Planting Date and Soil Temperature for the No-Till Semi-Arid Conditions of Western North Dakota

Gautam P. Pradhan, James Staricka and Jerald W. Bergman NDSU Williston Research Extension Center Funding Agency: North Dakota Soybean Council

#### Introduction

Planting date plays a crucial role in the performance and success of a field crop. Early or late planting may decrease grain yield and quality of a crop due to increased biotic (insect, disease, weed), and abiotic (frost, drought, and high temperature) stress. Kandel (2013) noted that soybean is susceptible to frost and prolonged exposure to near-freezing conditions in the spring and fall, and he recommended that soybean be planted in North Dakota and Northwestern Minnesota when the soil temperature is >50°F. Western North Dakota has a cool semiarid climate with annual precipitation of <15 inches, which is at least 5 inches lower than the eastern part of the state. In this part of the state, generally, the last spring freeze occurs in the last week of April and the first fall freeze in October. There is a lack of information on optimal soybean planting dates and soil temperature for the western part of North Dakota.

## Objectives

- To find out the optimal soybean planting date for western ND.
- To determine an optimal soil temperature (at 4" depth) for planting soybean at western ND.

#### **Materials and Methods**

Two glyphosate-tolerant soybean varieties, 'ND17009GT' and 'ND18008GT' were seeded at Williston Research Extension Center, Williston, using a GPS based autosteered seven rows no-till plot seeder that maintained a row to row distance of 7". The treatments comprised of seven seeding dates: 2<sup>nd</sup>, 8<sup>th</sup>, 15<sup>th</sup>, 22<sup>nd</sup>, and 29<sup>th</sup> of May, and 5<sup>th</sup> and 11<sup>th</sup> of June 2020 as main plots; two varieties: as subplots, and two seed treatments (treated with Obvious @ 4.6 oz/100 lb seed, and not treated) as sub-sub plots. During plant growth, the soil moisture and temperature data at four inches depth were continuously recorded using soil sensors. Unmanned aircraft systems equipped with multispectral, thermal, or RGB cameras were flown over the experimental field to estimate Canopy Temperature (CT), Normalized Difference Vegetation Index (NDVI), Normalized Difference Red Edge (NDRE). At maturity, plant height was measured, biomass was collected from nine square feet, and the crop was harvested using a plot combine.

#### **Preliminary Results**

- 2020 is an extremely drought year. We received annual precipitation of seven inches (from October 1<sup>st</sup>, 2019 to September 30<sup>th</sup>, 2020), which was half of the precipitation compared to an average of the last 63 years (Fig 1). This year, the first fall killing freeze occurred on September 8<sup>th</sup>, 2020, a month earlier than in 2019 (Fig. 1).
- When averaged across other treatments, there was a significant effect of seeding date on plant height, yield, oil, and protein content, and a significant effect of variety on yield, oil, and protein content. An interaction effect of seeding date × variety was evident on grain yield and oil content. There was no effect of applied treatments on test weight, the average test weight across the treatments was 56.8 lb/bu. The effect of seed treatment was not evident on soybean growth, yield, and quality.
- Averaged across variety and seed treatment, soybean seeded from May 2<sup>nd</sup> to 22<sup>nd</sup>, 2020 was about 18" tall. The plant height decreased drastically when seeding was delayed to May 29<sup>th</sup> or June 2020 (Fig. 2).

Averaged across seed treatment, when soybean was seeded from May 2<sup>nd</sup> to May 22<sup>nd</sup>, 17009GT and 18008GT yielded about 11.4 and 10.1 bu/ac of grain, respectively. When seeding was delayed to May 29<sup>th</sup>, the yield of 17009GT decreased by 45% and that of 18008GT decreased by 24%. A further delay in seeding to June yielded no grain at all (Fig. 3). An early first fall freeze that occurred on September 8<sup>th</sup> killed all the plants and soybeans seeded in June could not produce grain.

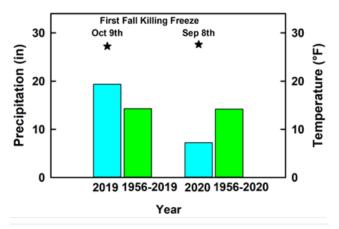



Figure 1. Precipitation and first fall killing freeze date and temperature.

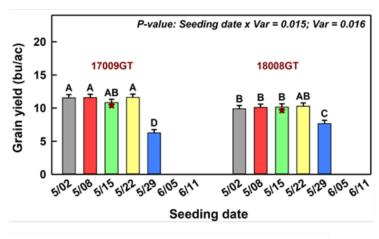



Figure 3. Differential responses of soybean varieties to seeding date for grain yield.

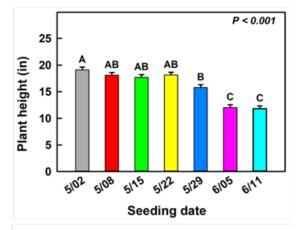



Figure 2. Effect of seeding date on plant height.

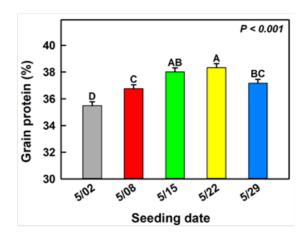



Figure 4. Effect of seeding date on grain protein content.

- Averaged across variety and seed treatment, soybean seeded from May 15<sup>th</sup> to 22<sup>nd</sup> had the highest grain protein content (~38%), which declined by 1 to 2.7% when the crop was seeded earlier or later in the month (Fig. 4). Averaged across other treatments, variety 17009GT had 1.8% more grain protein content than the variety 18008GT (Fig. 5).
- Averaged across seed treatment, 17009GT and 18008GT had about 22.8% grain oil content, when the crop was seeded from May 2<sup>nd</sup> to May 8<sup>th</sup>. When seeding was delayed, the oil content decreased by 0.64 to 1.75 % in 17009GT, and by 0.28 to 0.86 % in 18008GT (Fig. 6).

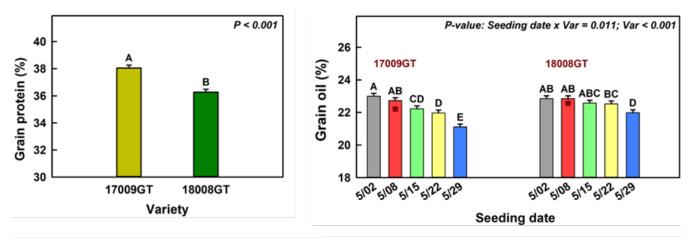



Figure 5. Effect of variety on grain protein content.

Figure 6. Differential responses of soybean varieties to seeding date for grain oil content.

## Summary

this is a severe drought year with a historic early freeze that occurred on the first week of September. These abiotic stresses tremendously affected soybean growth, yield, and quality. Soybean seeded from May 2<sup>nd</sup> to 29<sup>th</sup>, 2020 produced only about 10-11 bushels of grains per acre. When seeding was delayed to May 29<sup>th</sup>, the yield decreased to 6-7 bu/ac. A further delay in seeding to June yielded no grain at all.

## References

Kandel, Hans. 2013. Soybean production field guide for North Dakota and Northwestern Minnesota, A-1172.



Seeding soybean trial using a GPS based autosteered seven rows no-till plot seeder. (Photo by Gautam Pradhan)

## Flax Seeding Date Has Minimal Effect on Water Use Patterns

Jim Staricka and Gautam Pradhan – Williston Research Extension Center

Water is the most common limiting factor for crop growth in semiarid areas such as the MonDak region (western North Dakota and eastern Montana). The effect on water use efficiency is an important consideration when selecting crop management practices. An on-going, multiyear, project aimed at determining the optimal seeding date and rate for flax was started at the Williston Research Extension Center in 2019. As part of this experiment, soil water content has been measured weekly throughout the growing season. This provided data to evaluate the effect of seeding date on the crop water use of flax

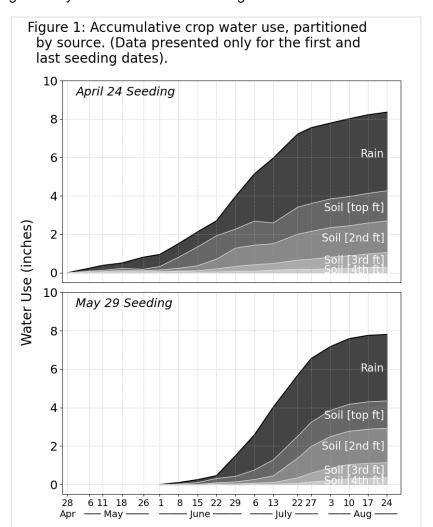
## **Methods and Materials**

In the experiment, six seeding dates (April 24, May 2, 8, 15, 22, and 29) and four seeding rates (15, 25, 35, and 45 lb/a) for flax were investigated. Additional agronomic details of the experiment are presented in another report of this publication. Soil water data were collected from a subset of the study plots, specifically the plots planted to Gold ND at the 25 or 45 lb/ac seeding rate. Soil water content was measured weekly using a non-destructive, minimal disturbance soil moisture gauge. Measurements were taken at depths of 6, 18, 30, 42, and 54 inches, representing 1-foot depth intervals of the 5-ft soil profile. The weekly measurements commenced 3 or 4 days after the seeding of each plot and continued in all plots until August 24 when water use of all seeding dates had ceased due to crop maturity or drought. Rainfall data was obtained from an NDAWN station located 1/2 mile northeast of the agronomic plots. Crop water use (i.e., the sum of the soil water depletion and rainfall) was determined for each interval between the soil water measurement dates. No water depletion from the 4-5 foot depth was observed, so soil water data from that depth was not included in the analysis. To provide additional information, the water source was partitioned into rainfall and each of the 1-ft soil increments. Crop water use amounts were accumulated over all the intervals to determine crop water use for the entire growing season. Water use efficiency was calculated as a ratio between flax yield and crop water use.

## Results

Greater than normal precipitation occurred in September 2019, resulting in ample soil moisture at the start of the 2020 growing season. However, only 4.15 inches of rain occurred between April 24 and August 24. Crop water use was greatest for flax planted on April 24 and decreased fairly steadily as the seeding date was delayed (Table 1). This decrease was primarily due to rainfall missed by delayed seeding. However, the amount and the fraction of water obtained from the soil increased for the last two seeding dates (Table 1) suggesting a compensation for decreased rainfall. As seeding date was delayed, the fractional decrease in water use was less than the fractional decrease in growing season length, so that the water use per week increased as seeding date was delayed (Table 1).

| Table 1: Crop water use amount, source, and rate; and water use efficiency. |       |          |       |          |        |       |            |
|-----------------------------------------------------------------------------|-------|----------|-------|----------|--------|-------|------------|
|                                                                             |       |          |       | Fraction | Water  |       |            |
|                                                                             | Crop  | Water    | Water | of water | use    |       | Water      |
| Seeding                                                                     | water | from     | from  | from     | per    | Flax  | use        |
| date                                                                        | use   | rain     | soil  | soil     | week   | yield | efficiency |
|                                                                             |       | - inches |       |          | inches | bu/a  | bu/inch    |
| April 24                                                                    | 8.36  | 4.09     | 4.27  | 51%      | 0.50   | 19.7  | 2.4        |
| May 1                                                                       | 7.97  | 3.94     | 4.03  | 51%      | 0.50   | 21.8  | 2.7        |
| May 8                                                                       | 7.78  | 3.83     | 3.95  | 51%      | 0.52   | 23.4  | 3.0        |
| May 15                                                                      | 7.86  | 3.81     | 4.05  | 52%      | 0.56   | 22.8  | 2.9        |
| May 22                                                                      | 7.82  | 3.46     | 4.36  | 56%      | 0.61   | 22.5  | 2.9        |
| May 29                                                                      | 7.81  | 3.46     | 4.35  | 56%      | 0.65   | 19.2  | 2.5        |


d rates and water ... .... - 1 -

Daily water use increased greatly after June 22 for all seeding dates (Fig. 1). This was the first time water use exceeded 0.1 inch per day for any of the treatments. Water use remained greater than 0.1 inch per day until July 22 for all seeding dates. After July 22, daily water use decreased to less than 0.1 inch per day for the first three seeding dates, however, daily water use by the last three seeding dates remained greater than 0.1 inch per day for one week longer. There did not appear to be sufficient differences in the soil water content among the seeding dates to account for the earlier decrease in water use by the earlier seeding dates. The decreased water use after July 22 for the first three seeding dates was likely due to the crop reaching maturity whereas the later seeding dates had not.

Daily water use was influenced much more by calendar date than by the number of days after seeding. All seeding dates had water use exceeding 0.1 inch per day between the June 22 and July 22 measurement dates, even though this was 59 to 89 days after seeding for the first seeding date and only 24 to 54 days after seeding for the last seeding date. This suggests that daily water use may be influenced more by weather conditions than by crop growth stage.

Flax yield first increased then decreased as seeding date was delayed (Table 1). Water use efficiency, in terms of bushels produced per inch of water used, followed a similar trend (Table 1).

The 2020 growing season was a drought year, with only 4.09 inches of rain between April 24 and August 24, the starting and ending dates of this study. The drought not only reduced the flax yield, it undoubtedly affected the water use patterns presented in this report. Greater rainfall likely would decrease the fraction of water obtained from the soil. However, greater rainfall also likely would have increased crop growth and thus increased water use, so that the



**Measurement Dates** 

amount of water obtained from the soil may have been similar to the amounts observed this year. Other research conducted at the Williston Research Extension Center has found that, in the majority of years, spring wheat depletes all plant available water in the upper three feet of soil by the end of the growing season. This happens regardless of the soil moisture level at the beginning of the growing season and occurs every year except for those with extremely rainy growing seasons. This suggests that the patterns of soil water use by wheat also may not be affected by seeding date.

Soil water use by various crops and how it is influenced by crop management practices will remain an on-going research topic at the Williston Research Extension Center.

## Quantifying Flax Phenology and Crop Health Using Unmanned Aircraft System

Gautam Pradhan and Paulo Flores Funding: NDAES Precision Agriculture GRA Grant

## Background

The ND Williston Research Extension Center, since its inception, has been evaluating varieties and breeding lines of >15 crop species for adaptation to the semiarid climate of western North Dakota and developing management practices suitable for this region. In these experiments, researchers have been using traditional methods (eye estimation, measurement with a ruler stick) to estimate plant stand, height, and heading/flowering date, which are time consuming and the accuracy depends upon the observers' skill and practice. Furthermore, due to resource constraints, researchers are seldom measuring physiological traits (NDVI, NDRE, CT) in these experiments. Therefore, there is a need for an application of Precision Agriculture. This year, two drones (DJI Matrice 600 Pro and DJI Mavic 2 Pro) were flown over 17 variety evaluation/breeding nursery trials on winter wheat, spring wheat, durum wheat, barley, oat, lentil, pea, chickpea, black gram, safflower, sunflower, canola, corn, and hemp. DJI Matrice 600 Pro was equipped with either a multispectral camera (MicaSense RedEdge M) or a thermal camera (DJI Zenmuse XT2), and Mavic 2 Pro had an inbuilt visual camera. The drones were also flown over four agronomic trials, namely, cropping sequence, pipeline reclamation, soybean planting date, and flax planting date and rate. Altogether, we flew the drones more than 100 times over experimental plots. In this article, we are reporting the outcomes of precision agriculture - unmanned aircraft systems - in quantifying phenology and crop health of flax seeding date and rate trial.

## **Objectives**

- To determine flax phenology, days to flowering, as affected by seeding date, variety, and rate under no-till semiarid conditions of western North Dakota.
- To assess the flax crop health, Normalized Difference Vegetation Index (NDVI) and Normalized Difference RedEdge (NDRE), under different seeding dates, varieties, and rates.

## **Materials and Methods**

- Flax was Seeded using a GPS based autosteered seven rows plot seeder: Row x Row = 7".
- The experimental design was a Split-split plot.
- The seeding date was the main plot: April 24, May 2, 8, 15, 22, and 29, 2020.
- The variety was subplot: Gold ND (V1) and ND Hammond (V2).
- Seeding rate was sub subplot: 15 (S1), 25 (S2), 35 (S3), and 45 (S4) lb pure live seeds/acre.
- Replications: Four.

## **Data Collection Processing and Analysis:**

Drones with RGB and multispectral cameras were flown over the research plots throughout the growing season.



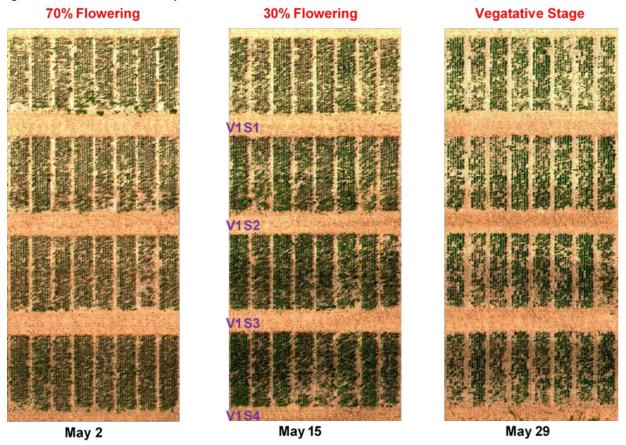


Gold ND

ND Hammond

- The aerial images were processed using Agisoft Metashape Professional (Version 1.6.2) to generate Orthomosaics (Rater Images).
- ArcGIS Pro 2.5.0 was used to create NDVI/NDRE orthomosaics and polygons for each plot. The software was also used to extract NDVI from each plot.
- The NDVI Density was calculated as follows:

 $dNDVI = \Sigma NDVI$  of a Plot / Plot Area


SAS PROC GLIMMIX procedure was used to analyze data and the Tukey-Kramer adjustment was used to separate the treatment means.



## **Preliminary Results**

## (A) Phenology:

There was a significant effect of seeding date, variety, and seeding date × variety on days to flowering. The effect of seeding rate was not evident on this trait. Figure 1 showed that flax seeded on May 2 and May 15 had 70% and 30% flowers, respectively; but flax seeded on May 29 was still at the vegetative stage when observed on July 10, 2020.



### Seeding dates

Figure 1. Raster image showing the effect of seeding dates on days to flowering. (Aerial Image Collected on July 10, 2020).

## (B) Crop Health:

Figure 2 showed examples of plotwise NDVI and NDRE generated from aerial images collected on July 17, 2020. From raster images collected throughout the growing period, plotwise NDVI values were extracted and analyzed. Average across seeding rate, there was a significant effect of variety on dNDVI. Gold ND had higher dNDVI compared to ND Hammond when seeded on and after May 2<sup>nd</sup>, 2020 (Figure 3). Averaged across the variety, there was a significant effect of seeding rates on dNDVI. In general, the higher seeding rates of 39 and 50 lb/ac had greater NDVI compared to the lower seeding rates.

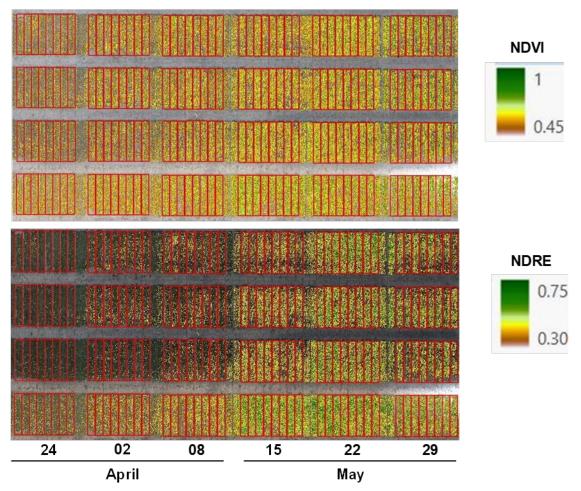



Figure 2. Examples of raster Images, NDVI (top) and NDRE (bottom), used to assess crop health (aerial images collected on July 17, 2020).

## Summaries

This study shows that an unmanned aircraft system equipped with visual and multispectral cameras can be used to determine flax phenology and crop health as affected by seeding date, seeding rate, and variety. We are developing algorithms, protocols, and procedures to quantify these parameters quickly and easily.

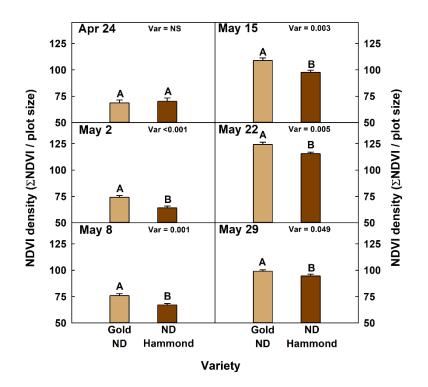



Figure 3. Effect of variety on dNDVI at different seeding dates.

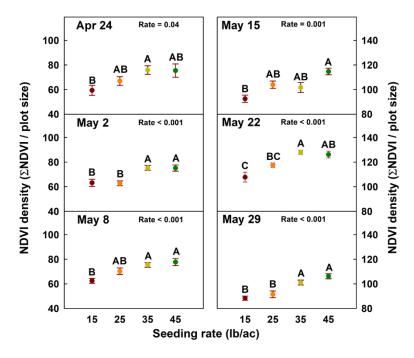



Figure 4. Effect of seeding rate on dNDVI at different seeding dates.

## Acknowledgments

I would like to thank Andrew Wherley, a graduate research assistant, for his help in flying drones, maintaining plots, and collecting data. Mention of trademark or proprietary product does not constitute a guarantee or warranty of the product by North Dakota State University and does not imply its approval to the exclusion of other products which may also be suitable.

## Flax Seeding Date and Rate for No-Till Semi-Arid Western North Dakota

Gautam P. Pradhan, Jerald W. Bergman, James Staricka Meridith Miller, Cameron Wahlstrom Funding Agency: AmeriFlax

## Introduction

North Dakota (ND) is the largest flax growing state in the nation. In ND, more than 40% of the flax acreage belonged to the northwestern region of the state (USDA/NASS 2018). This region is characterized by a cold semiarid climate and no-till production practices. There is a lack of information on suitable agronomic practices to enhance flax yield and quality under these conditions. Seeding date and rate play a significant role in field crop production. Early or late seeding may decrease grain yield and quality of a crop due to increased biotic (insect, disease, weed, and bird incidence), and/or abiotic stress (frost, drought, and high temperature). On the other hand, a higher seeding rate may decrease yield and quality due to competition for resources (water, solar radiation, soil nutrients), and a lower seeding rate may adversely affect plant growth and yield due to the scanty number of plants per unit area, heavy weed infestation, and nonuniform maturity.

## **Objectives**

- To determine suitable flax seeding date and rate for no-till semiarid western ND.
- To understand the responses of flax varieties to different seeding dates and rates.

## **Materials and Methods**

This experiment was conducted at NDSU Williston Research Extension Center, Williston, ND (Lat. 48.1346°, Lon. -103.7400°; Elevation 2105 ft). The soil type of the research site is Williams-Bowbells Loam. The experiment was seeded using a GPS based autosteered seven rows plot seeder that maintained a row to row distance of 7". The treatment comprised of six seeding dates: Apr 24<sup>th</sup>, May 2<sup>nd</sup>, 8<sup>th</sup>, 15<sup>th</sup>, 22<sup>nd</sup>, and 29<sup>th</sup> as main plots; two Varieties: Gold ND and ND Hammond as subplots; and four seeding rates: 15, 25, 35, 45 lb/ac as sub-sub plots. During plant growth, the physiological data were recorded using an unmanned aircraft system equipped with multispectral and thermal cameras. The soil moisture data were collected using a neutron probe. At maturity, plant height was measured, biomass was collected from nine square feet, and the crop was harvested using a plot combine.

## **Preliminary Results**

- 2020 is an extremely drought year. We received annual precipitation of seven inches (from October 1<sup>st</sup>, 2019 to September 30<sup>th</sup>, 2020), which is half of the precipitation compared to an average of the last 63 years (Fig. 1). This year, the first fall killing freeze occurred on September 8<sup>th</sup>, 2020, a month earlier than in 2019.
- There was a significant effect of seeding date, variety, and the interaction effect of seeding date x variety on days to flower. The trend for days to flower was similar to both varieties. Both Gold ND and ND Hammond took more days to flower when seeded on Apr 24<sup>th</sup> and May 2<sup>nd</sup> than on other seeding dates (Fig. 2). Comparing the same color bars, we found that Gold ND always needed more days to flower than ND Hammond irrespective of seeding dates.
- Averaged across other treatments, the effect of seeding date, variety, and seeding rate on plant height was highly significant. An advancement in seeding date increased plant height linearly. The rate of increase was 0.23 inches per day, with an R<sup>2</sup> value of 0.96 (Fig. 3). The Gold ND was about 1.7 inches taller than the ND Hammond (Fig. 3). An increase in seeding rate decreased plant height linearly. The rate of decrease was 0.07 inches for every lb of increase in seeding rate, with an R<sup>2</sup> value of 0.98 (Fig. 4).

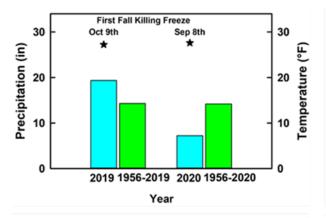



Figure 1. Precipitation and first fall killing freeze temperature and date.

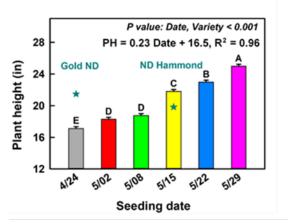
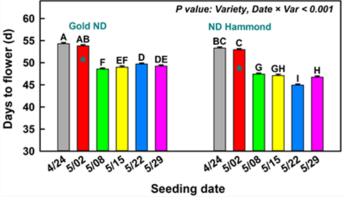
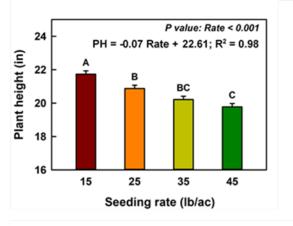
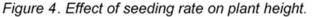
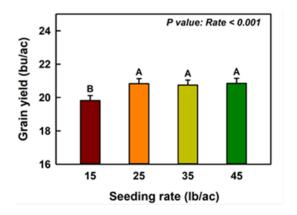
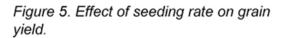



Figure 3. Effect of seeding date and variety on plant height.



Figure 2. Effect of variety and seeding date × variety on days to flowering.





- Averaged across other treatments, the effect of seeding rate on grain yield was highly significant. There was no difference among seeding rates of 25, 35, and 45 lb/ac for grain yield. These seeding rates produced about 20.8 bu/acre, which was 1 more bu/ ac of grain than a seeding rate of 15 lb/ac (Fig. 5).
- Averaged across other treatments, the effect of seeding date, variety, and the interaction effect of seeding date × variety on grain yield was highly significant. Comparing the same color bars, we found that Gold ND produced higher bushels of grain than ND Hammond at all seeding dates, except on May 22<sup>nd</sup> where the yield of two varieties was on par (Fig. 6). Gold ND, seeded from May 2<sup>nd</sup> to May 22<sup>nd</sup> produced a higher yield of up to 3.2 bu more grain than those planted on April 24<sup>th</sup> or May 29th. In the case of ND Hammond, seeding dates of May 22<sup>nd</sup> resulted in a yield of 22.2 bu/ac, which was 2 to 4.5 bushels more per acre than other seeding dates.
- Averaged across other treatments, the effect of seeding date and variety on test weight was highly significant. The seeding dates of May 22<sup>nd</sup> and 29<sup>th</sup> had higher test weight than other seeding dates with the exception that the April 24<sup>th</sup> seeded flax had a similar test weight as that of May 22<sup>nd</sup> seeded flax (Fig. 7). The variety Gold ND had a test weight of 48.6 lb/bu, which was about one lb more per bushel compared to ND Hammond.





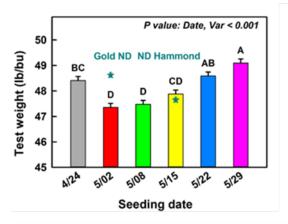



Figure 7. Effect of seeding date and variety on test weight.

## Summary

2020 is an extremely drought year with about seven inches of annual precipitation. The preliminary results from the study indicated that, for no-till semiarid western North Dakota, the optimum flax seeding rate is 25 lb/ac. This seeding rate may enhance farm profit either by decreasing input cost compared to higher seeding rate or by increasing grain yield compared to lower seeding rate. The study also revealed that the optimum flax seeding date for western North Dakota may depend upon a variety. Gold ND may be seeded from May 2<sup>nd</sup> to May 22<sup>nd</sup> without a yield penalty; however, in the case of ND Hammond, seeding dates other than May 22<sup>nd</sup> may result in a significant yield loss.



Seeding date and flax at different stages of development (Photo taken by Gautam Pradhan).

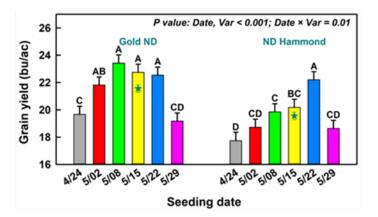



Figure 6. Effect of variety and seeding date × variety on grain yield.

## Intercropping Chickpea and Flax

## Clair Keene

Intercropping chickpea and flax continues to be a production practice of interest to chickpea growers in North Dakota and Montana. According to farmers who have tried intercropping, the main advantage observed is a reduction in the foliar disease Ascochyta blight of chickpea. Typically, 2-4 foliar fungicide applications are needed to control Ascochyta in chickpea and reducing the number of fungicide sprays is one of the most straight-forward ways to reduce chickpea production costs. Additionally, intercropping is an integrated pest management approach to controlling Ascochyta blight and reduces selection pressure on the pathogen for developing fungicide resistance.

This trial was conducted in 2020 at the WREC dryland farm. Kabuli-type Orion chickpea was treated with Obvious fungicide and was seeded targeting 4 seeds per foot at the same time as CDC Glas flax at varying rates using a small plot seeder. Chickpea seeding rate was held constant while flax seeding rate was 5, 10, 15, 20, or 40 lbs per acre. Each plot contained 3 rows of chickpea approximately 15" apart and 6 rows of flax with 2 rows of flax between the outer and inner chickpea rows and one flax row on each outside edge of the plot. Chickpea was seeded through the fertilizer banders and flax was seeded using the cone seeder. The trial was planted on May 12. Foliar fungicide applications were made on July 1, July 9, and July 24. The growing season started with subsoil moisture present from the wet fall of 2019, however, very little rain fell in May and June and the growing season was the 4<sup>th</sup> driest on record for Williams County. Total precipitation from planting through harvest on August 26 was 3.8".

## Ascochyta blight incidence and severity

Ascochyta blight was monitored by observing incidence and severity at three dates. Incidence was measured by picking 20 chickpea plants at random in the plot and carefully observing for presence of Ascochyta lesions; incidence numbers are number of plants with lesions out of 20. Severity was measured by visual assessment of the whole plot and rating on a scale of 1-9 with 1 being no or very few lesions present up to 9 indicating very high severity with many wilting and/ or dead plants.

|                       | Ascochyta Jul-1 |          | Ascochyta Jul-9 |          | Ascochyta Jul-24 |          |  |
|-----------------------|-----------------|----------|-----------------|----------|------------------|----------|--|
| Treatment             | Incidence       | Severity | Incidence       | Severity | Incidence        | Severity |  |
| Monocrop chickpea     | 7.1             | 1.3      | 10.5            | 2        | 15.3 A           | 4.8      |  |
| Chickpea + 5 lb flax  | 5.3             | 1        | 8.3             | 1.5      | 11.8 AB          | 3.8      |  |
| Chickpea + 10 lb flax | 5.5             | 1.3      | 8.3             | 1.3      | 11.3 B           | 3.5      |  |
| Chickpea + 15 lb flax | 5.5             | 1        | 8.3             | 1.3      | 12 AB            | 3.5      |  |
| Chickpea + 20 lb flax | 4.8             | 1        | 7.3             | 1.3      | 11.5 B           | 3.8      |  |
| Chickpea + 40 lb flax | 5.5             | 1        | 6.8             | 1        | 13.3 AB          | 3.8      |  |
| Significance          | NS              | NS       | NS              | NS       | p < 0.05         | NS       |  |

Ascochyta incidence (number of infected plants out of 20) and severity (scale 1-9).

At each sampling date, Ascochyta incidence had a trend of being higher in the monocrop chickpea than in the intercrop treatments. A significant difference was observed on Jul-24 when the monocrop chickpea had higher Ascochyta incidence than the 10 and 20 lbs of flax treatments. Severity also had a trend of Ascochyta being more severe in the monocrop chickpea than intercrop treatments at the Jul-9 and 24 sampling dates, but the difference was not significant.

## Chickpea dry down

Another potential advantage to intercropping chickpea and flax is more rapid and even chickpea dry down. I observed higher seeding rates of flax speeding up chickpea dry down when I conducted an intercropping trial in 2018. In 2020, the drought conditions caused chickpea to mature rapidly, but enhanced dry down with flax was still observed at earlier dates. This trial was not chemically desiccated prior to harvest and threshing went smoothly.

|                       | 4-Aug    | 10-Aug    | 14-Aug       | 18-Aug |
|-----------------------|----------|-----------|--------------|--------|
| Treatment             |          | % chickpe | ea dry color |        |
| Monocrop chickpea     | 30 C     | 65 B      | 77.5         | 93.3   |
| Chickpea + 5 lb flax  | 42.5 B   | 71.3 AB   | 78.8         | 93.8   |
| Chickpea + 10 lb flax | 46.3 AB  | 70 AB     | 81.3         | 94.5   |
| Chickpea + 15 lb flax | 48.8 AB  | 73.8 A    | 81.3         | 95     |
| Chickpea + 20 lb flax | 48.8 AB  | 72.5 A    | 81.8         | 95     |
| Chickpea + 40 lb flax | 56.3 A   | 76.3 A    | 84           | 96     |
| Significance          | p < 0.01 | p < 0.01  | NS           | NS     |

Chickpea dry down. Visual observation of % chickpea at dry, mature color.

### Yield, test weight, flax oil content, and chickpea seed size

In the drought conditions of 2020, intercropping significantly reduced chickpea yield compared to the monocrop chickpea. Chickpea yield decreased with increasing rates of flax. Interestingly, total yield in lbs per acre of chickpea plus flax did not decrease as flax seeding rate increased. Intercropping did not negatively affect chickpea test weight, flax test weight, or flax oil content. The monocrop chickpea test weight was similar to the intercrop 5, 15, and 20 lbs of flax treatments and intercropped chickpea + 40 lbs flax had the highest flax test weight. Flax oil content was similar across all treatments except the intercrop with 40 lbs of flax which had lower oil content. Chickpea seed size was not negatively affected by intercropping with the intercrop at 10, 15, and 40 lbs of flax having more seeds > 8.7 mm in diameter than the monocrop chickpea.

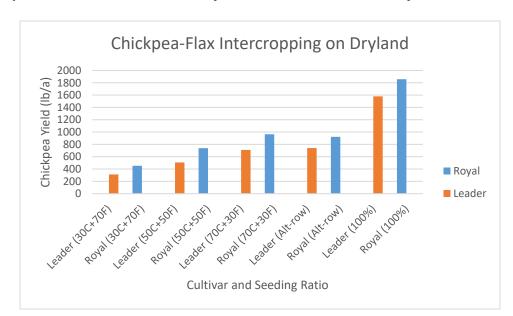
| Treatment         | Chickpe<br>a yield | Flax<br>yield | Total<br>yield | CP test<br>weight | Flax test weight | Flax<br>oil | Chickpea | seed size |
|-------------------|--------------------|---------------|----------------|-------------------|------------------|-------------|----------|-----------|
|                   | lb/a               | lb/a          | lb/a           | lb/bu             | lb/bu            | %           | %<8.7mm  | %>8.7mm   |
| Monocrop chickpea | 1070               | -             | 1070           | 60.7              | -                | -           | 87.1     | 12.9      |
| CP + 5 lb flax    | 691                | 300           | 991            | 60                | 48.6             | 42.8        | 89.8     | 10.3      |
| CP + 10 lb flax   | 528                | 424           | 952            | 59.8              | 50.4             | 42.8        | 84.3     | 15.7      |
| CP + 15 lb flax   | 460                | 522           | 982            | 60.6              | 50.8             | 43.1        | 86.7     | 13.4      |
| CP + 20 lb flax   | 439                | 507           | 946            | 60.4              | 50.6             | 43.2        | 90       | 10.1      |
| CP + 40 lb flax   | 328                | 682           | 1010           | 59.6              | 51               | 41.2        | 86.6     | 13.4      |
| Monocrop flax     | -                  | 779           | 779            | -                 | 50.6             | 42.6        | -        | -         |
| Mean              | 586                | 536           | 961            | 60.2              | 50.3             | 42.6        | 87.4     | 12.6      |
| LSD 5%            | 91                 | 69            | 105            | 0.8               | 1.6              | 0.4         | 3.1      | 5         |
| LSD 10%           | 70                 | 53            | 81             | 0.6               | 1.2              | 0.3         | 2.3      | 3         |

Acknowledgements: Thank you to Christy Sperling and Cameron Wahlstrom for helping plant this trial, to Kyle Dragseth for applying fungicide, and to Christy Sperling again for help with harvest.

#### 2020 Chickpea-Flax Intercropping under Dryland (Sidney) and Irrigated (Huntley) Environments EARC, Sidney, MT

Chengci Chen, William Franck, Qasim Khan, Kent McVay, and Sooyoung Franck

## Materials and Methods:


| Previous crop: Spring Wheat                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil type: Williams Clay Loam                                                                                                                            |
| Harvesting Date: 8/25/2020                                                                                                                               |
| Plot size: 5' x 20'                                                                                                                                      |
| Replications: 4                                                                                                                                          |
| Cultivars: CDC Leader and Royal chickpea, CDC Glas<br>flax<br>Fertilizers: None<br>Herbicide: Panther SC @ 2 oz/ac applied 10/21/2019<br>Pesticide: None |
| Irrigation: Dryland                                                                                                                                      |
|                                                                                                                                                          |

Rainfall: April to September: 5.42"

Table 1. Initial dryland soil test results. A composite soil sample was collected prior to planting the intercrops.

| Depth | рН  | OM  | NO <sub>3</sub> -N | P-Olsen | К   |
|-------|-----|-----|--------------------|---------|-----|
| Inch  |     | %   |                    | ppm     |     |
| 0-12  | 7.9 | 1.9 | 10.5               | 21      | 162 |

### **Results:**



## 1. Chickpea and Flax Yields under Dryland Environment in Sidney, MT

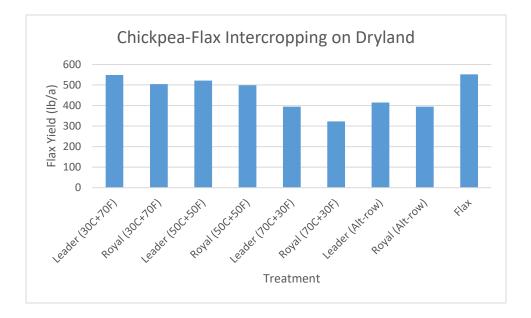
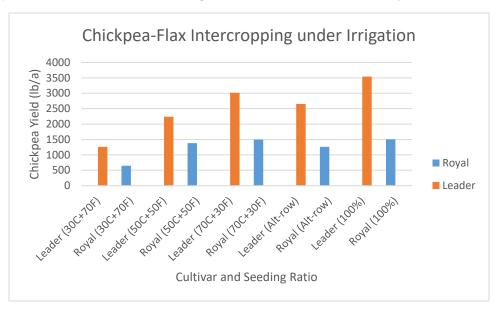



Fig. 1. The yield of chickpea (top) and flax (bottom) in a chickpea-flax intercropping with different chickpea and flax seeding ratios on a dryland environment in Sidney, MT in 2020.


**Summary:** Chickpea yield decreased with the increased flax proportion in the intercrops. Royal chickpea performed slightly better than leader under dryland environment. Flax yields were similar between 100% sole crop and 70% flax seeding rates, but decreased when the flax seeding rate was reduced to 30% of sole crop in chickpea-flax intercrops. The flax yield was lower in the 50%-50% mixture than in 50%-50% of flax and chickpea planted in alternate rows, which is opposite to the chickpea yield.

### Materials and Methods: Irrigated at Huntley, MT

Location: Huntley Latitude: 45.92113 N; Longitude: 108.24462 W; Elevation: 3022 ft. Planting Date: 4/27/2020 Tillage: Disc Experimental design: Randomized Complete Block Treatments: 100% chickpea, 100% flax, 70% chickpea-30% flax mixture, 50% chickpea-50% flax mixture, 50% chickpea-50% flax in alternate rows, 30% chickpea-70% flax mixture

Rainfall: April to September: 7.12"

Previous crop: Barley Soil type: Lohmiller Silty Clay Loam Harvesting Date: 8/24/2020 Plot size: 1.5 x 7 m Replications: 4 Cultivars: CDC Leader and Royal chickpea, CDC Glas flax Fertilizers: None Herbicide: Sprayed Spartan @ 4oz/a +rt3 32 oz/a preplant on 4/24/2020 Pesticide: None Irrigation: 1.5" on 6/3; 1.5" on 6/22; 1.5" on 7/17



## 2. Chickpea and Flax Yield under Irrigated Environment in Huntley, MT.

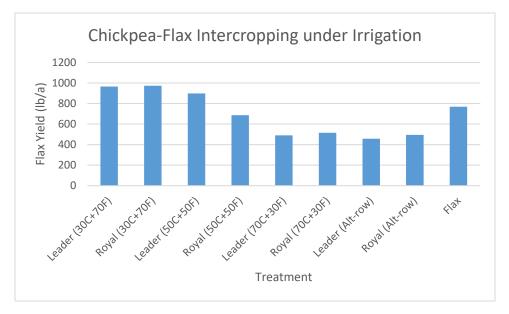



Fig. 1. The yield of chickpea (top) and flax (bottom) in a chickpea-flax intercropping with different chickpea and flax seeding ratios under an irrigated environment in Huntley, MT in 2020.

**Summary:** Leader yielded higher than Royal under irrigated condition at Huntley which is opposite to the results from dryland environment. The better performance of Leader at Huntley was partly attributed to better Ascochyta blight tolerance than Royal, and the Ascochyta disease pressure is very high under irrigated environment in Huntley. Leader yield decreased with the increased flax proportion in the intercrops, but the seeding ratio did not significantly affect Royal yield except the 30%-70% chickpea-flax ratio (Fig. 2). Flax yields were greater in 30%-70% chickpea-flax ratio than in other seeding ratios.





## Effects of Cropping Sequence, Ripping, and Manure on Pipeline Reclamation in Western North Dakota

Meridith Miller<sup>1</sup>, Tom DeSutter<sup>2</sup>, Jim Staricka<sup>1</sup>, Kevin Sedivec<sup>3</sup>, Jerry Bergman<sup>1</sup>, Chris Augustine<sup>4</sup>, Kevin Horsager<sup>2</sup>, Kyle Dragseth<sup>1</sup>, Nick Birkhimer<sup>2</sup>, Cameron Wahlstrom<sup>1</sup>

<sup>1</sup>NDSU Williston Research Extension Center, Williston, ND; <sup>2</sup>NDSU Dept. of Soil Science, Fargo, ND; <sup>3</sup>NDSU Range Program, Fargo, ND; <sup>4</sup>NDSU Extension Service, Dickinson, ND Funding provided by the ND Industrial Commission – Oil & Gas Research Program



## Summary

Soil disturbance during the construction of pipelines, roadways and well pads has become a serious issue in western North Dakota. Within cropland, soil health and yields need to be restored during the reclamation process. Reclamation of pipelines in a cropland setting has not been extensively researched and little is known about the best management practices for restoring crop yields. During the spring of 2015, installation of a 36" water pipeline was completed at the Williston REC. We took advantage of this opportunity by planting a long-term experiment with five annual crop rotations and two perennial covers in pipeline, roadway, and undisturbed (control) areas. In addition to cropping sequence, ripping/manure is being tested as the subplot in a split plot design in efforts to decrease compaction and add organic matter. This study is designed to address barriers to successful pipeline reclamation. More specifically, this study aims to provide long-term management strategies for landowners to restore productivity to cropland. If economical reclamation options are available to stakeholders, more effective reclamation plans can be composed and more efficient pipeline installations will be possible. Preliminary results indicate soil compaction and crop yields are significantly different between disturbance areas. Additional soil and plant data collection will determine differences between ripping, ripping/manure, and no-till subplots.

## **Experiment Design & Methods**

A long-term experiment was designed with five annual crop rotations and two perennial covers in three different disturbance areas -the pipeline, the roadway and an undisturbed area (Figure 1). The final two years of the study all five rotations were planted to the same crops to compare yields across rotations and sub-treatments. In addition to the cropping rotations, sub-treatments were used to look at the effects of soil treatment methods- ripping and ripping with the edition of manure (Figure 2). Ripping was completed using an 18 inch deep ripping implement and manure was spread on the surface after ripping (Figure 3).

Each season, a variety of agronomic measurements were completed including stand counts, plant flowering and heading dates, and maturity dates. At harvest, biomass samples were collected and weighed and yields were calculated. Yields, test weights, and oil and protein content was analyzed for each plot, as well. The soil conditions were observed to measure the effects of the soil treatments and cropping rotations. Soil samples were collected and bulk density was measured and nutrient analysis completed for each plot every year. A truck mounted dynamic-cone penetrometer was used annually to measure penetration resistance, a way to quickly and easily measure soil compaction and resistance to roots.

| Rotation | 2015       | 2016       | 2017       | 2018       | 2019       | 2020       |
|----------|------------|------------|------------|------------|------------|------------|
| 1        | Durum      | Durum      | Durum      | Durum      | Durum      | Safflower  |
| 2        | Durum      | Peas       | Barley     | Safflower  | Durum      | Safflower  |
| 3        | Peas       | Barley     | Safflower  | Durum      | Durum      | Safflower  |
| 4        | Cover Crop | Durum      | Cover Crop | Durum      | Durum      | Safflower  |
| 5        | Durum      | Cover Crop | Durum      | Cover Crop | Durum      | Safflower  |
| 6        | Alfalfa    | Alfalfa    | Alfalfa    | Alfalfa    | Alfalfa    | Alfalfa    |
| 7        | Per. Grass |

Figure 1. Cropping Rotations. A total of seven cropping rotations were used, with five annual crop rotations and two perennial covers. The cover crop mix consists of Pearl Millet, Sorghum, Sudan, Turnip, Radish, Burseem Clover, Sunflower, Soybean, Cow Pea, Flax, Hairy Vetch, Phacelia, Mammoth Red Clover, Italian Ryegrass.

| Undisturbed - Ripped                                   | Road - Ripped        | Pipeline - Ripped        |  |  |  |
|--------------------------------------------------------|----------------------|--------------------------|--|--|--|
| Undisturbed – Ripped+Manure                            | Road – Ripped+Manure | Pipeline – Ripped+Manure |  |  |  |
| Undisturbed – No Till Road – No Till Pipeline- No Till |                      |                          |  |  |  |
| Figure 2 Design of each gropping and                   |                      |                          |  |  |  |

Figure 2. Design of each cropping sequence.



Figure 3. Deep ripping and manure was applied to individual plots.

## **Soil Compaction and Subsidence**

Soil compaction is a serious problem along pipelines and reclaimed well pads. The heavy equipment traffic and mixing of topsoil and subsoil leads to varying degrees of soil compaction, decreased water infiltration and holding capacity. Compacted soil can severely impact soil health and reduce crop yields. In figure 4, the soil compaction is visible as a loss of the native soil structure, where plant roots are unable to penetrate downward. In figure 5, turnips from the cover crop planted in 2016 show how the roots are impacted by the compaction. The root from an undisturbed plot was able to grow deep, while the roadway and pipeline roots were unable to break through the compacted layer and the plants were much smaller.

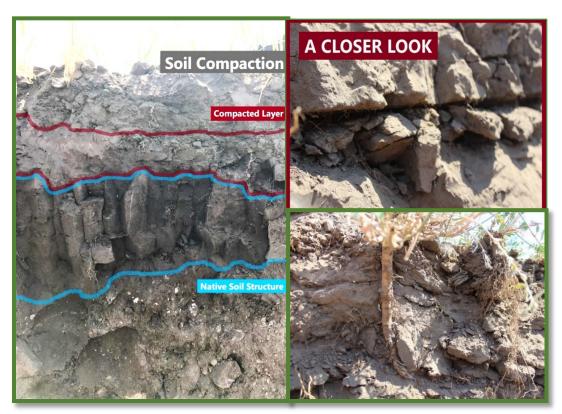



Figure 4. In the left image, the native soil structure is outlined in blue, while the compacted layer is shown above. The compacted layer doesn't have any of the structure of the native soil. The upper right image shows a close up of compacted soil in the roadway area of this project. The bottom right image is of a taproot unable to penetrate the compaction, which restricts its growth.



Figure 5. Soil compaction has a big impact on the ability of plants to grow and roots to penetrate to deeper depths. Soil subsidence is another problem that is frequently encountered following pipeline installations. The soil can compress and sink down along the pipeline, increasing the compaction of the soil in that area. This can lead to low spots and crevices in the field which can be hazardous for farm equipment. The need to fill in the subsided areas leads to further compaction from additional heavy equipment traffic and soil fertility issues. Following a significant rain event in July 2018, much of the pipeline disturbance area subsided. In some areas, crevices as deep as 30 inches occurred (Figure 6). In 2018, we were not able to harvest the subsided plots, this demonstrates the potential impacts that similar occurrences could have on producer's yields.



Figure 6. Images of subsidence along the pipeline disturbance area. The upper two images were taken after the subsidence occurred in July 2018. The aerial image was taken in March of 2019, the sunken area is outlined in white.

A truck mounted dynamic cone penetrometer was used to measure compaction throughout the three disturbance areas. During the first two years of the project, no reduction in compaction occurred. In 2017, the ripping and manure treatments were introduced. These treatments appear to reduce compaction more effectively than full-season tap-rooted cover crops in the roadway disturbance area (the most compacted of the three areas).

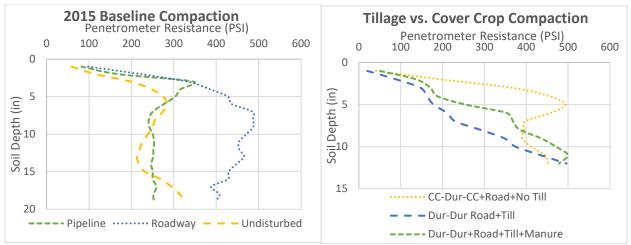



Figure 7. The baseline compaction in the first year of the study (2015) is on the left. The roadway is considerably more compacted than both the undisturbed and pipeline disturbance area. Any compaction in excess of 300 PSI is considered extremely compacted and begins to impact plant growth. The graph on the right shows the roadway compaction in Year Three (2017) after ripping and manure additions. The compaction was reduced more on the ripped plots than on the no-till plots that had deep tap-rooted cover crops planted for two of the three years.

## **Preliminary Agronomic Results**

- In Years One and Two, annual crops yielded significantly less in road and pipeline areas, the roadway areas had the lowest small grain yields both years (P .05).
- In Year Three (2017), all three areas had reduced yields in the annual crops due to the drought conditions.
- Year Four (2018) had increased yields in all three disturbance areas, but the compacted roadway still had lower yields.
- In Year Two, alfalfa yielded significantly higher in the pipeline area (P .05).
- In Year Three, alfalfa did not yield significantly different between disturbance areas (P .05).

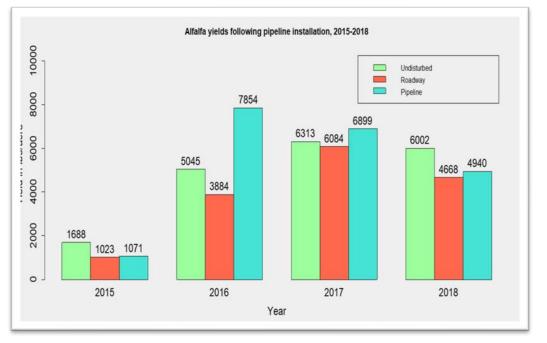



Figure 8. Alfalfa vields in the three disturbance areas from 2015 to 2018. In Year One, the alfalfa was just beginning to be established in all areas. In Year Two. the alfalfa yielded highest in the pipeline area and in Year Three, there was no significant difference in yields across the disturbance areas.

 In Year Five (2019), all annual crop plots were planted to durum. The roadway plots yielded less (40.3 bu/ac in the roadway vs. 52.5 bu/ac in undisturbed) than the pipeline or undisturbed plots. In all three disturbance areas, the deep-ripped and ripping with manure had higher yields than the plots without additional tillage treatments. In Year Six (2020), all cropping rotations plots were planted to safflower. The pipeline and roadway plots yielded 200 pounds/acre less than the undisturbed plots. In all treatment areas, the plots with additional soil treatments (ripping and ripping plus manure) had higher yields than the no till areas.

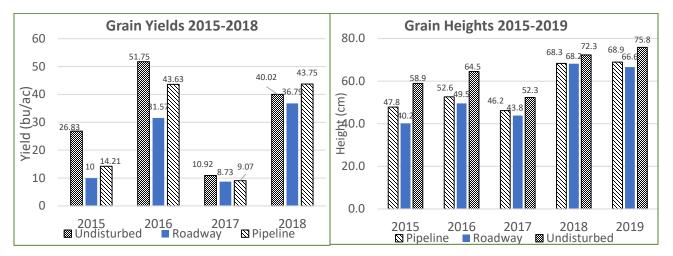



Figure 9. Grain Yields for Year One through Four (on the left) and Grain Heights for Years One through Five (on the right). In Year One (2017), spring wheat was planted, the other years durum was planted.

## **Conclusions and Future Work**

Preliminary results show that the most important reclamation choice for croplands following pipeline construction is treating the soil to reduce compaction. Deep-ripping or tilling is essential for breaking up the compacted layer that occurs around 6 inches below the surface to allow roots to penetrate deeper. Adding manure also appears to be an effective reclamations step, as it restores organic matter to the soil. In this study, in both 2019 and 2020, the plots that were ripped had significantly higher yields than plots with no additional soil treatments. The plots that were ripped and had additional manure added, had even higher yields.

Cropping choices do not appear to have a significant impact on reducing compaction and restoring soil health following a pipeline, however crops that leave significant amounts of residue and are deep rooted seem to be good choices.

Future pipeline reclamation studies planned at WREC will be looking at other soil treatments for new pipeline installations, as well as looking for cost-effective ways for producers to improve yields on older pipelines.





## Irrigated Canola Production: Population and Fertilizer

Justin Jacobs and Andrina Turnquist NDSU - Willston Research Extension Center

#### Objective

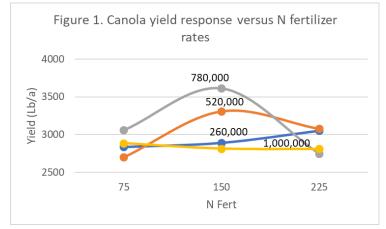
Canola is becoming an important crop in northwestern North Dakota. The majority of canola acres are grown on dryland, however there has been an increased interest in growing canola under irrigation. The Nesson Valley Irrigation Research and Development Project (NVIRDP) has been testing canola varieties in an annual variety trial since 2015 with an average yield of 2,891 lb/a. As a result of the ongoing variety trial testing, irrigated producers across North Dakota have contacted the NVIRDP regarding the best practices for growing canola under irrigation. Information regarding canola production in an irrigated system is not readily available and not pertinent to our region and environment. Canola planting populations and fertilizer rates have been well researched for dryland environments, but not for irrigated production in North Dakota.

Irrigation is not the dominant form of farm production in North Dakota, however northwestern North Dakota has the majority of the irrigated acres in the state. With the northwest increasing in canola production, several producers are seeking best management practices for irrigated production of canola. Will certain aspects of dryland canola production relate to irrigated production practices? What practices can be implemented in planting and fertilizer rates to increase yield?

#### **Materials and Methods**

Table 1. Planting populations in canola

| Target Plant<br>Pop | Pounds /<br>Acre | Planted Pop | Actual Plant<br>Pop |
|---------------------|------------------|-------------|---------------------|
| 260,000             | 3                | 278,800     | 278,000             |
| 520,000             | 5                | 557,600     | 518,400             |
| 780,000             | 8                | 836,400     | 653,400             |
| 1,000,000           | 10               | 1,115,100   | 862,500             |


| Soil Residual = 29 lb N/a |        |      |      |  |  |  |  |
|---------------------------|--------|------|------|--|--|--|--|
| Urea AMS                  |        |      |      |  |  |  |  |
| N Fert                    | S Fert | Lb/a | Lb/a |  |  |  |  |
| 75                        | 15     | 71   | 63   |  |  |  |  |
| 75                        | 30     | 43   | 125  |  |  |  |  |
| 150                       | 15     | 234  | 63   |  |  |  |  |
| 150                       | 30     | 206  | 125  |  |  |  |  |
| 225                       | 15     | 397  | 63   |  |  |  |  |
| 223                       | 30     | 369  | 125  |  |  |  |  |

Four populations were observed; 260,000, 520,000, 780,000, and 1,000,000 seeds/a. In order to account for percent emergence loss, higher populations were planted compared to the established stand (Table 1). The four planting rates were seeded into six different fertilizer ratios. Three rates of nitrogen (N) and two rates of sulfur (S) were investigated (Table 2). The N fertilizer rates were adjusted for the fall 2019 soil test of 29 pound per acre result of N. Ammonium Sulfate (AMS) was used as the source of sulfur. The amount of Urea was decreased to compensate for the N received from the AMS application. Previous research has shown that 150 pounds of nitrogen per acre is the recommended rate for dryland canola production in a cool, wet environment, with a recommended a planting rate of 520,000 seeds per acre.

The trial was planted May 6, 2020 using a precision plot planter. Seven rows were planted with a spacing of 7.5 inches between rows. Seed was planted 0.5 inches deep. HyClass 930RR was the

canola variety used. Sonolan HFP was applied as a preemergent herbicide and Cornerstone Plus was applied for post emergent weed control. In-season measurements were taken on lodging, flowering date, plant height, and maturity date. Harvest occurred August 19, 2020. After harvest, yield, oil content, and test weight were recorded on the harvested seed.

#### **Results and Discussion**



Several visual observations were made within the growing season. The plots that were fertilized with highest rates of nitrogen displayed a darker green color than those fertilized with the lowest rates. In addition to the fertilizer being easily identifiable, the lowest population, 260,000 seeds/a, was the easiest to identify from the other planting rates, as a result of having fewer plants per square foot. As the planting rate surpassed 520,000 seeds/a the different populations were harder to distinguish from one another visually. The lowest population

had less plants per acre, but had more branching per plant. As the population rate increased past 780,000 seeds/a, the stems became visually smaller, but very little lodging was observed across all populations and fertilizer rates.

Less than 5 inches of natural precipitation throughout the growing season resulted in a dry year. Irrigation began after planting and was stopped after plants started flowering. Nearly 10 inches of overhead irrigation was applied. No disease was identified in the trial, however an application of Priaxor D to control white mold was made during the flowering period. Flea beetle damage was noted during the growing season, however no application of insecticide was made, as it did not reach the economic threshold.

In previous research with dryland canola production, yield did not increase when N fertilizer rates exceeded 150 pounds. The treatment of 225 pounds of N decreased yield significantly compared to the 75-pound

and 150-pound treatments (Figure 1). Plant population also affected the yield. As the population increased from 260,000 to 780,000 the yield increased. However, as plant population exceeded 780,000, yield decreased. Similarily, plant populations showed an interaction with the fertilizer rate. The increase of nitrogen across populations showed an increase in yield as well. The 780,000 population responded the greatest to nitrogen and sulfur, and had the greatest yield at 150 pounds per acre (Table 3). Overall the addition of sulfur increased yields, however the effect was not consistent across plant population or N fertilizer rates (Table 4).

#### **Summary**

Population 260.000 520.000 780.000 1.000

Table 3. Canola yield across populations and nitrogen fertilizer rate

|        | 260,000 | 520,000 | 780,000 | 1,000,000 |
|--------|---------|---------|---------|-----------|
| N Fert | Lb/a    | Lb/a    | Lb/a    | Lb/a      |
| 75     | 2,389   | 2,703   | 3,060   | 2,887     |
| 150    | 2,894   | 3,309   | 3,616   | 2,816     |
| 225    | 3,052   | 3,080   | 2,752   | 2,812     |

Table 4. Canola yield across populations, nitrogen, and sulfur fertilizer rate

|        |        | Population |         |         |           |  |  |
|--------|--------|------------|---------|---------|-----------|--|--|
|        |        | 260,000    | 520,000 | 780,000 | 1,000,000 |  |  |
| N Fert | S Fert | Lb/a       | Lb/a    | Lb/a    | Lb/a      |  |  |
| 75     | 15     | 2,790      | 2,720   | 3,115   | 2,647     |  |  |
| 15     | 30     | 2,889      | 2,687   | 3,005   | 3,124     |  |  |
| 150    | 15     | 2,799      | 3,405   | 3,105   | 2,677     |  |  |
| 150    | 30     | 2,989      | 3,213   | 4,126   | 2,956     |  |  |
| 225    | 15     | 2,863      | 3,049   | 2,878   | 2,688     |  |  |
| 225    | 30     | 3,242      | 3,110   | 2,626   | 2,935     |  |  |

Additional years of testing need to be conducted in order to create a complete plant population and fertility rate recommendation, however some recommendations can be made based on the current research. For North Dakota, irrigated canola production, the optimal rates of actual N and S appear to be 150 pounds of N per acre and 30 pounds of S per acre. Since the soil test results for sulfur are not very dependable, a full rate of sulfur at 30 pounds is recommended for optimal yield. However, the applied nitrogen should be adjusted based on available soil N and previous crop history. Similarly, the data suggests that planting populations above 780,000 seeds per acre will not result in a higher yield. Further research will be conducted in order to test these recommendations.

## **DON Accumulation in Durum Varieties**

Audrey Kalil, Taheni Jbir, Evana Somlyay, Meridith Miller, Cameron Wahlstrom, Eric Eriksmoen Funding provided by the ND Wheat Commission

## Introduction

Fusarium Head Blight (FHB), or scab, is a disease of durum caused by the fungal pathogen *Fusarium graminearum*. This pathogen produces a toxin, Deoxynivalenol (DON), which contaminates wheat grain. Durum varieties are all generally considered susceptible to FHB compared to resistant varieties of Hard Red Spring Wheat, however some varieties have slightly improved FHB tolerance. The goal of this project was to assess DON levels in the harvested grain of durum varieties grown at several locations in western and central North Dakota to identify the varieties that consistently accumulate the least DON.

## Methods

Variety trials were conducted at seven locations in 2020. Trials were set up in a randomized complete block design, with 5 x 14 ft. plots and three replicated plots per variety. Fungicides for the management of scab were applied at the Nesson Valley site. No other locations were treated with fungicides. Grain from each plot was analyzed for DON using the Reveal Q+ mycotoxin extraction kit and AccuScan II GOLD reader (Neogen). Results presented are an average of data from three replications per variety.

## Results

DON was highest at the Mohall site. Among the varieties planted at that location, Tioga had the highest DON and Lebsock and Divide had the lowest. Low levels of DON were detected at the Keene site. At that location AAC Stronghold had the highest DON, while Divide and Joppa were among the varieties with the lowest DON. Data from the Keene site suggests that AAC Stronghold and AAC Spitfire perform according to their variety descriptions, S and MS respectively (Table 1). Low levels of DON were detected in varieties grown at Rugby and Corinth sites, however all varieties accumulated similar levels of DON at these sites. There was little to no DON detected in any durum varieties at the Nesson Valley, Williston, or Garrison locations.

|                | Scab   | DON (ppm) |     |     |        |           |          |       |     |      |
|----------------|--------|-----------|-----|-----|--------|-----------|----------|-------|-----|------|
|                | Rating |           |     |     | Nesson |           |          |       |     |      |
| Variety        | (1-9)* | Corinth   | Kee | ene | Valley | Williston | Garrison | Rugby | Мо  | hall |
| Divide         | 5      | 0.5       | 0.2 | b   | <0.3   | <0.3      | <0.3     | 0.2   | 2.4 | b    |
| Joppa          | 5      | 0.6       | 0.3 | b   | <0.3   | <0.3      | <0.3     | 0.4   | 3.5 | ab   |
| Carpio         | 5      | 0.3       | 0.4 | b   | <0.3   | <0.3      | <0.3     | 0.2   | 2.9 | ab   |
| Lebsock        | 6      | 0.3       | 0.5 | b   | <0.3   | <0.3      | <0.3     | 0.2   | 2.0 | b    |
| ND Riveland    | 5      | 0.5       | 0.5 | b   | <0.3   | <0.3      | <0.3     | 0.2   | 3.1 | ab   |
| Alkabo         | 6      | 0.2       | 0.6 | b   | <0.3   | <0.3      | <0.3     | 0.2   | 4.1 | ab   |
| ND Grano       | 6      | 0.4       | 0.8 | ab  | <0.3   | 0.2       | <0.3     | 0.2   | 4.2 | ab   |
| Grenora        | 6      | 0.2       | 0.9 | ab  | <0.3   | <0.3      | <0.3     | 0.2   | 3.6 | ab   |
| Tioga          | 6      | 0.5       | 1.0 | ab  | 0.2    | <0.3      | <0.3     | 0.2   | 4.7 | а    |
| Mountrail      | 8      | 0.4       | 1.0 | ab  | <0.3   | <0.3      | <0.3     | 0.2   | 3.3 | ab   |
| AAC Stronghold | S*     | 1.0       | 1.8 | а   | <0.3   | <0.3      |          |       |     |      |
| AAC Spitfire   | MS*    | 0.4       | 0.7 | ab  |        | <0.3      |          |       |     |      |
| mean           |        | 0.4       | 0   | .7  | < 0.3  | <0.3      | <0.3     | 0.2   | 3   | .4   |
| p-value ( 0.5) |        | NS        | 0.0 | 020 | NS     | NS        | NS       | NS    | 0.0 | 078  |

Table 1. DON in durum varieties across sites in 2020. Different letters within columns (sites) indicate significant differences. Detection threshold was 0.3 ppm. NS = non-significant. \*Scab rating scores from 1-9, with 1 = resistant and 9 = very susceptible. S\*, MS\* considered susceptible or moderately susceptible to scab but has not been given a rating on the 1-9 scale.

## Resistance of Durum Varieties to Fusarium Head Blight EARC, Sidney, MT

Frankie Crutcher, Michael Giroux, Andrew Hogg, Amber Ferda and Samantha Hoesel

**OBJECTIVE**: Test the resistance of different Durum varieties to Fusarium head blight caused by *F. graminearum*.

## Materials and Methods:

| Irrigated                                                         |                                                                                                                           |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Location: Sidney, MT                                              | Previous Crop: Wheat                                                                                                      |
| Variety: Misc.                                                    | Soil Type: Savage Silty Clay Loam                                                                                         |
| Planted: 5/6/2020                                                 | Harvested: 8/15/2020                                                                                                      |
| Seeding Rate: 90 lbs/A                                            | Plot Size: 2.5' x 10'                                                                                                     |
| Residual Soil N to 3 ft: 37 lbs/A                                 | Applied Fertilizer: 100-30                                                                                                |
| Residual Soil P to 6 in: 21.3 ppm                                 | Chemical Applications: Wolverine Advanced 1.7 pt/A,<br>Proline 5.7 fl oz/A, Stinger 1 1/3 pt/A, Discover NG 16<br>fl oz/A |
| Irrigated (sprinkler) on: 5/12, 5/22, 6/4, 6/13, 6/19, 6/29, 7/15 | Vigor: 5/22/2020                                                                                                          |
| Precipitation April – September: 8.1"                             | Disease assessment(s): 7/29/2020                                                                                          |
|                                                                   |                                                                                                                           |

**COMMENTS:** Corn spawn inoculated with five isolates of *F. graminearum* was applied to the field on 6/3/2020.

**RESULTS**: Severe bird damage was experienced this year, with the taller varieties suffering the greatest damage. This has skewed the results considerably and there is no significant difference between the lines for yield. Yield from this study should not be used for future variety selections. Significant differences were found for all other categories, with Alzada having the highest for severity, incidence and disease index.

## Table 1: Durum Variety Reponses to Fusarium Head Blight

| Variety        | Severity(%) <sup>a</sup> | Incidence(%) <sup>b</sup> | Index <sup>c</sup> | % FDK <sup>d</sup> | Yield (Bu/A) |
|----------------|--------------------------|---------------------------|--------------------|--------------------|--------------|
| Alzada         | 29.4 A                   | 90.0 A                    | 26.6 A             | 20.0 A-D           | 27.6         |
| Carpio         | 9.8 G-J                  | 63.3 B-E                  | 6.3 I-L            | 26.7 A-D           | 6.3          |
| Divide         | 13.7 D-J                 | 70.0 A-E                  | 9.8 D-L            | 23.3 A-D           | 5.8          |
| Dynamic        | 19.1 B-G                 | 82.2 A-C                  | 15.7 B-I           | 28.3 A-D           | 16.2         |
| Grano          | 14.3 D-J                 | 80.0 A-C                  | 11.5 D-L           | 20.0 A-D           | 30.0         |
| Grenora        | 14.6 D-J                 | 80.0 A-C                  | 11.7 D-L           | 18.3 B-D           | 34.5         |
| Joppa          | 16.1 C-I                 | 78.9 A-D                  | 13.4 C-K           | 21.7 A-D           | 26.0         |
| Mountrail      | 22.2 A-D                 | 77.8 A-D                  | 17.3 A-G           | 16.7 CD            | 19.6         |
| Riveland       | 10.0 G-J                 | 70.0 A-E                  | 7.0 I-L            | 18.3 B-D           | 7.5          |
| Silver         | 28.2 AB                  | 87.8 A                    | 24.8 AB            | 41.7 AB            | 24.3         |
| Tioga          | 11.5 F-J                 | 71.1 A-E                  | 8.4 F-L            | 28.3 A-D           | 25.8         |
| Vivid          | 21.1 A-E                 | 81.1 A-C                  | 17.2 A-H           | 15.0 D             | 18.1         |
| MTD16001       | 14.7 D-J                 | 74.4 A-D                  | 10.9 D-L           | 16.7 CD            | 15.9         |
| MTD16002       | 10.8 G-J                 | 68.9 A-E                  | 7.5 H-L            | 23.3 A-D           | 14.9         |
| MTD16005       | 19.2 B-G                 | 77.8 A-D                  | 15.0 C-J           | 25.0 A-D           | 24.5         |
| MTD18067       | 13.1 D-J                 | 74.4 A-D                  | 9.7 D-L            | 43.3 A             | 15.8         |
| MTD18091       | 8.4 H-J                  | 67.8 A-E                  | 5.8 J-L            | 25.0 A-D           | 11.0         |
| MTD18148       | 20.9 A-F                 | 86.7 AB                   | 18.3 A-E           | 30.0 A-D           | 36.5         |
| MTD18155       | 21.4 A-E                 | 87.8 A                    | 18.8 A-D           | 16.7 CD            | 26.9         |
| MTD18172       | 12.4 E-J                 | 70.0 A-E                  | 8.7 E-L            | 43.3 A             | 7.2          |
| MTD18179       | 22.3 A-D                 | 81.1 A-C                  | 18.2 A-F           | 20.0 A-D           | 17.7         |
| MTD18181       | 17.6 C-H                 | 74.4 A-D                  | 13.1 C-K           | 30.0 A-D           | 7.9          |
| MTD18213       | 7.5 IJ                   | 55.6 DE                   | 4.2 KL             | 26.7 A-D           | 5.1          |
| MTD18217       | 8.9 H-J                  | 62.2 C-E                  | 5.7 J-L            | 43.3 A             | 2.1          |
| MTD18256       | 12.8 D-J                 | 67.8 A-E                  | 8.7 E-L            | 38.3 A-D           | 8.2          |
| Continued on r | next page                |                           |                    |                    |              |

| Continued from | Continued from previous page |          |          |          |       |  |  |  |
|----------------|------------------------------|----------|----------|----------|-------|--|--|--|
| MTD18266       | 11.4 G-J                     | 71.1 A-E | 8.2 G-L  | 40.0 A-C | 8.8   |  |  |  |
| MTD18348       | 8.2 H-J                      | 67.8 A-E | 5.6 J-L  | 28.3 A-D | 2.6   |  |  |  |
| MTD18381       | 25.2 A-C                     | 87.8 A   | 22.2 A-C | 21.7 A-D | 24.9  |  |  |  |
| MTD18413       | 13.8 D-J                     | 75.6 A-D | 10.5 D-L | 20.0 A-D | 21.3  |  |  |  |
| MTD18430       | 6.6 J                        | 50.0 E   | 3.2 L    | 31.7 A-D | 8.2   |  |  |  |
| MTD18486       | 8.3 H-J                      | 61.1 C-E | 5.1 KL   | 33.3 A-D | 12.8  |  |  |  |
| Mean           | 15.29                        | 74.01    | 11.90    | 26.94    | 16.58 |  |  |  |
| % CV           | 43.18                        | 15.34    | 55.07    | 39.00    | 81.44 |  |  |  |
| HSD (0.05)     | 9.46                         | 23.82    | 9.74     | 23.34    | 37.58 |  |  |  |

Letters in common did not differ significantly according to a Tukey's HSD test at a significance level of 5%.

<sup>a</sup>Pest Severity: Average percent area of head covered by disease. Thirty heads were evaluated for each plot. <sup>b</sup>Pest Incidence: Percent of thirty plants per plot that had visible FHB symptoms. <sup>c</sup>Index: Severity X Incidence / 100

<sup>d</sup>Fusarium diseased kernels.



May 2020 - EARC summer students Michael Stevens and Zava Zupan

Do your kids a big favor. Don't be afraid to demand they be responsible and capable of work.

## **Cropping System Effects of Planting Scabby Seed**

# Effect of DON and Fungicide Seed Treatment on Durum Establishment and Yield and Disease in Subsequent Pea Crop

Audrey Kalil, Taheni Gargouri Jbir, Ariel Wertheim, Evan Herman, Kaleb Jimison, Kate Pearson, Makenna Girard, Darby Howat and Kyle Dragseth

## Introduction

Fusarium head blight (head scab) of wheat, durum and barley is caused by the fungal pathogens *Fusarium graminearum, F. culmorum, and F. avenaceum.* These fungi infect the seed and, with the exception of *F. avenaceum*, produce a mycotoxin called deoxynivalenol (DON). The result is scabby seed which can potentially contain high levels of both pathogenic *Fusarium* species and DON. Planting such seed can result in poor stands due to low germination rates and seedling blight, however, recommendations on what levels of DON in the seed results in yield loss were not available. The objective of this research was to determine how DON and *Fusarium* contamination in the seed effects establishment and yield and if a seed applied fungicide can improve establishment and yield. Some of these pathogens have been associated with root rot on pea. Thus, pea was planted into the plots of this study to evaluate the effect of planting scabby seed on pea root rot the following year.

## **Experimental Design**

In 2019, we obtained Alkabo durum with different levels of DON: 0.3ppm, 1.5 ppm, 3.1 ppm, 6.2 ppm and 11.2 and 19.5 ppm. Durum lots were split and each received a different fungicide treatment. One lot (control) did not receive fungicide seed treatment for control of *Fusarium*, and the other lot was treated with tebuconazole. Germination was assessed with and without fungicide treatment. Plots were planted 5/2/2019 using a no-till planter at a seeding rate of 1.6 million live seeds/ac. Stand count was performed 5/29/2019. Plots were harvested 8/9/2019.

In 2020, pea was planted onto the plots from 2019 to assess the effect of having planted scabby durum seed the previous year on pea root rot and yield. Mystique pea was planted at a rate of 375,000 PLS/ac on 4/25/20. Stand count was performed 5/18/20. Root rot ratings were conducted on 10-18 plants per plot using a severity scale of 0-5 where 0 is no disease and 5 is a competely rotten root. Above ground wilt (yellowing) was assessed 7/7/20. Plots were harvested 7/30/20.

## Results

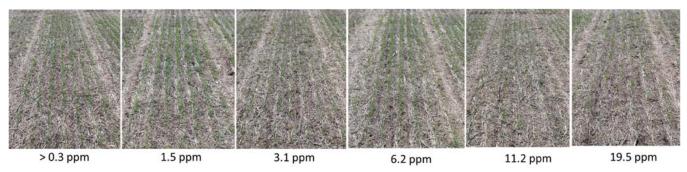



Figure 1. Photos taken on 5/30/19 of durum planted 5/2/2019. Levels of DON in the seed used is indicted below the image. Images are of the plots receiving the tebuconazole seed treatment.

| Treatment | DON<br>(ppm) | Fungicide Seed<br>Treatment <sup>†</sup> | Germination |
|-----------|--------------|------------------------------------------|-------------|
| 1         | 0.3          | Control                                  | 82%         |
| 2         | 0.5          | Tebuconazole                             | 91%         |
| 3         | 1 5          | Control                                  | 80%         |
| 4         | 1.5          | Tebuconazole                             | 90%         |
| 5         | 2.4          | Control                                  | 76%         |
| 6         | 3.1          | Tebuconazole                             | 72%         |
| 7         | 6.0          | Control                                  | 78%         |
| 8         | 6.2          | Tebuconazole                             | 75%         |
| 9         | 11.2         | Control                                  | 82%         |
| 10        | 11.2         | Tebuconazole                             | 89%         |
| 11        | 10 5         | Control                                  | 59%         |
| 12        | 19.5         | Tebuconazole                             | 73%         |

Table 1. Germination rates of DON contaminated seed. <sup>†</sup>Both control and tebuconazole treatments received metalaxyl seed treatment for control of *Pythium*.

| 2019 Durum             |                             |                  |             |         |  |  |
|------------------------|-----------------------------|------------------|-------------|---------|--|--|
| Treatment<br>(DON ppm) | Stand count<br>(plants/ft²) | Yield<br>(bu/ac) | Protein (%) | DON ppm |  |  |
| 0.3                    | 28.5 a                      | 65 a             | 13.3 a      | 0.3 a   |  |  |
| 1.5                    | 25.7 ab                     | 69 a             | 12.8 a      | 0.3 a   |  |  |
| 3.1                    | 15.9 c                      | 69 a             | 12.5 a      | 0.3 a   |  |  |
| 6.2                    | 22.1 b                      | 67 a             | 12.8 a      | 0.3 a   |  |  |
| 11.2                   | 16.2 c                      | 72 a             | 12.0 a      | 0.3 a   |  |  |
| 19.5                   | 13.7 c                      | 71 a             | 12.4 a      | 0.3 a   |  |  |

Table 2. Effect of DON in durum seed on durum stand count, yield, percent protein and DON in the harvested grain. Different letters indicate statistical differences (= 0.05).

|                        | 2020 Pea                     |             |                      |                       |                |                  |  |  |
|------------------------|------------------------------|-------------|----------------------|-----------------------|----------------|------------------|--|--|
| Treatment<br>(DON ppm) | Stand count<br>(plant/sq ft) | Wilt IN (%) | Root Rot<br>Severity | Root Rot<br>Incidence | Protein<br>(%) | Yield<br>(bu/ac) |  |  |
| 0.3 ppm                | 6.3                          | 2.6         | 1.8                  | 90.5                  | 22.9           | 19.6             |  |  |
| 1.5 ppm                | 7.4                          | 1.9         | 1.9                  | 93.4                  | 22.9           | 20.6             |  |  |
| 3.1 ppm                | 6.9                          | 3.3         | 1.8                  | 89.8                  | 22.8           | 20.7             |  |  |
| 6.2 ppm                | 7.5                          | 4.8         | 1.6                  | 88.7                  | 22.9           | 19.4             |  |  |
| 11.2 ppm               | 6.8                          | 3.0         | 1.7                  | 85.9                  | 23.2           | 20.8             |  |  |
| 19.5 ppm               | 6.9                          | 2.6         | 1.5                  | 88.6                  | 23.1           | 20.7             |  |  |
| ANOVA ( = 0.05)        | NS                           | NS          | NS                   | NS                    | NS             | NS               |  |  |

Table 3. Effect of planting scabby durum seed on pea stand count, disease, protein and yield. NS = no significant effect

## Conclusions

As expected, higher levels of *Fusarium*/DON contamination in the seed greatly reduced germination rates (Table 1). Plots were seeded so that all treatments received 1.6 million live seeds/ac to account for the poor germination rates of contaminated seed.

In 2017, 2018 and 2019, the use of tebuconazole seed treatment for control of *Fusarium* did not significantly improve durum establishment or yield. Therefore, it does not seem likely that fungicide seed treatment can act as a rescue for highly contaminated seed.

In 2017, stand count was slightly reduced when seed with 10.2 ppm DON was planted and reduced by half when seed with 19.9 ppm DON was planted. Yield was reduced only when seed with 19.9 ppm DON was planted. In 2018, there was no difference in stand count or yield among the different DON treatments. In 2019, seed contamination with DON above 3.1 ppm reduced stands compared to the 0.3 ppm control but there was no effect on yield (Table 2). In all three years, there was no effect of DON in the seed on protein, test weight or DON in the harvested grain.

The effect of seeding large quantities of DON contaminated seed on Fusarium root rot in peas grown following the durum was evaluated. Pea plots in 2020 were planted directly on top of the 2019 durum plots. There was no effect of having planted scabby durum seed on establishment, disease or yield of pea the following year. There was also no effect of having treated the scabby seed with tebuconazole on root disease in the subsequent pea crop.

These results suggest that scabby durum can be used as a seed source. Given the large reduction in seed germination with higher levels of DON, this will have to be taken into account when determining seeding rates. This practice does not appear to increase root disease in peas the subsequent year.



## **Comparing Chickpea Varieties for Resistance to Ascochyta Blight**

Dr. Audrey Kalil, Taheni Gargouri-Jbir, Ariel Wertheim, Kate Pearson, Evan Herman, and Kaleb Jimison

## Introduction

Ascochyta blight caused by the pathogen *Ascochyta rabiei* is a highly yield limiting disease of chickpea when not properly controlled. Fungicides are typically effective at controlling disease, however, fungicide resistance is a concern and fungicide applications present an additional expense. Chickpea varieties differ in their genetic resistance to this disease, and variety selection is an important tool in disease management. This study was initiated to compare some commercial varieties of large seeded Kabuli types grown in the US for resistance to Ascochyta blight and maintenance of yield under disease pressure.

## **Study Description**

The study was a randomized complete block design with 5 ft x 19 ft plots, 4 replicates per treatment. The trial was planted May 5th. The seeding rate was 5 plants per square foot adjusted based on seed germination. The trial was not inoculated so disease pressure was from the enviornment. No fungicides were applied. Ascochyta disease assessments were made July 1st, July 17th and July 29th. The first disease assessment was made based the amount of disease symptoms on 10 plants per plot. For the second two assessments, disease was determined based on the amount of the crop canopy with disease symptoms in the first, middle and third portions of the plot. Examples of Ascochyta blight symptoms are below.



The trial was harvested August 24th. Rainfall from April to August was approximately 4 inches.

### Study Treatments

The varieties evaluated in this study are listed below. The breeding program which produced these varieties is described. The seed source for this study is listed.

| Variety      | Breeding Program                                       | Study Seed Source                 |  |  |
|--------------|--------------------------------------------------------|-----------------------------------|--|--|
| CDC Orion    | Crop Dovelopment Contro                                | Meridian Seed                     |  |  |
| CDC Leader   | Crop Development Centre,<br>University of Saskatchewan | Great Northern Ag                 |  |  |
| CDC Frontier | Oniversity of Saskatchewart                            | Meridian Seed                     |  |  |
| ND Crown     | North Dakota State University                          | WREC Foundation Seed              |  |  |
| Royal        |                                                        | WREC Foundation Seed              |  |  |
| Sierra       | USDA-ARS, Pullman, WA                                  | Washington State Crop Improvement |  |  |
| Sawyer       |                                                        | Washington State Crop Improvement |  |  |

## Results

Mean disease severity and yield are presented in the table below. Means are an average of the five replicated plots.

| Ascochyta<br>Severity (%)<br>7/1/2020 | Ascochyta<br>Severity (%)<br>7/17/2020                                          | Ascochyta<br>Severity (%)<br>7/19/2020                                                                               | Yield<br>(lb/ac)                                                                                                                                                                     |
|---------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 b                                 | 4.9 c                                                                           | 23.7 b                                                                                                               | 1823 a                                                                                                                                                                               |
| 1.1 b                                 | 9.7 bc                                                                          | 22.8 b                                                                                                               | 1710 a                                                                                                                                                                               |
| 2.1 ab                                | 4.3 c                                                                           | 23.0 b                                                                                                               | 1605 a                                                                                                                                                                               |
| 1.2 b                                 | 17.1 abc                                                                        | 27.0 ab                                                                                                              | 1468 a                                                                                                                                                                               |
| 1.5 b                                 | 8.3 bc                                                                          | 30.8 ab                                                                                                              | 1432 ab                                                                                                                                                                              |
| 1.1 b                                 | 27.1 a                                                                          | 34.4 ab                                                                                                              | 898 bc                                                                                                                                                                               |
| 4.7 a                                 | 24.2 ab                                                                         | 39.6 a                                                                                                               | 839 c                                                                                                                                                                                |
|                                       | Severity (%)<br>7/1/2020<br>1.0 b<br>1.1 b<br>2.1 ab<br>1.2 b<br>1.5 b<br>1.1 b | Severity (%)<br>7/1/2020Severity (%)<br>7/17/20201.0 b4.9 c1.1 b9.7 bc2.1 ab4.3 c1.2 b17.1 abc1.5 b8.3 bc1.1 b27.1 a | Severity (%)<br>7/1/2020Severity (%)<br>7/17/2020Severity (%)<br>7/19/20201.0 b4.9 c23.7 b1.1 b9.7 bc22.8 b2.1 ab4.3 c23.0 b1.2 b17.1 abc27.0 ab1.5 b8.3 bc30.8 ab1.1 b27.1 a34.4 ab |

Table 1. Treatment means

Differences among treatments are indicated by different letters ( 0.05).

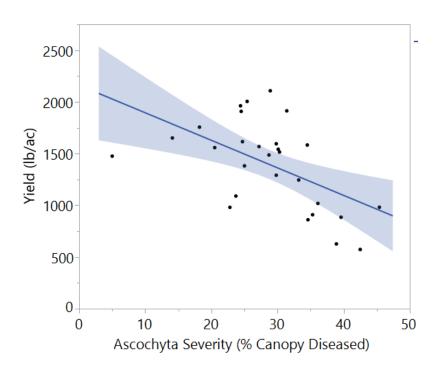



Figure 1. Relationship between Ascochyta blight severity and yield. An increase in disease is associated with a reduction in yield. Fit line (blue)  $R^2$ = 0.292, p = 0.003. Black dots are plot level data.

### Conclusions

CDC Orion, CDC Frontier and ND Crown have comparable levels of disease resistance to Ascochyta blight and yield (Table 1). CDC Leader was comparable in terms of yield but appears to have slightly less disease resistance under these conditions. Sawyer was intermediate in disease susceptibility and yield. Sierra and Royal were highly susceptible with the highest levels of disease and lowest yield. Disease was yield limiting under these study conditions despite very low rainfall/disease suppressive conditions (Figure 1). While fungicides were not applied in this study to maximize disease pressure, that is not a recommended practice. Selection of the more resistant varieties will help protect yield under high levels of disease pressure, however.

## Fungicide Programs for Ascochyta Blight Management in Chickpea

Dr. Audrey Kalil, Taheni Gargouri-Jbir, and Ariel Wertheim

## Introduction

A study was initiated at the Nesson Valley Irrigated Research Site to evaluate fungicides within a fourspray program for control of Ascochyta Blight in chickpea. Previous research has found tank mixing Proline with chlorothalonil to be beneficial for the control of Ascochyta blight. Thus, some fungicides were applied with and without the addition of chlorothalonil (Bravo WS) to the tank mix.

## **Study Description**

The study was a randomized complete block design with 5 ft x 18 ft plots, 5 replicates per treatment. Registered Sierra chickpea seed was purchased for this study. The trial was planted April 29th. Outside border plots were inocluated June 10th with one handful each of overwintered chickpea residue. Foliar fungicide applications were made on the following dates (20 gal/ac water, Induce NIS @ 0.25% v/v):

- (A) June 19th at V11 to R1 growth stage
- (B) July 2nd at R1-R2 growth stage
- (C) July 16th at R3-R4 growth stage
- (D) July 30th at R5-R6 growth stage

Ascochyta disease assessments were made July 2nd, July 16th and July 30th on 10 plants per plot. The trial was harvested August 30th.

## **Study Treatments**

| Timing and Fungicide Program                          |
|-------------------------------------------------------|
| Untreated                                             |
| A Provysol @ 3.75 fl oz/A + Bravo WS 24 oz/A + NIS    |
| B Priaxor 6 fl oz/A + NIS                             |
| C Provysol @ 3.75 fl oz/A + Bravo WS 24 oz/A + NIS    |
| D Priaxor 6 fl oz/A + NIS                             |
| A Propulse @ 10.3 fl oz/A + Bravo WS 24 oz/A + NIS    |
| B Proline @ 5.7 fl oz/A + NIS                         |
| C Propulse @ 10.3 fl oz/A + Bravo WS 24 oz/A + NIS    |
| D Proline @ 5.7 fl oz/A + NIS                         |
| A Miravis Neo @ 13.7 fl oz/A + Bravo WS 24 oz/A + NIS |
| B Miravis Neo @ 13.7 fl oz/A + NIS                    |
| C Miravis Neo @ 13.7 fl oz/A + Bravo WS 24 oz/A + NIS |
| D Miravis Neo @ 13.7 fl oz/A + NIS                    |
| A Miravis Top @ 13.7 fl oz/A + Bravo WS 24 oz/A + NIS |
| B Miravis Top @ 13.7 fl oz/A + NIS                    |
| C Miravis Top @ 13.7 fl oz/A + Bravo WS 24 oz/A + NIS |
| D Miravis Top @ 13.7 fl oz/A + NIS                    |

## Results

Mean disease severity and yield are presented in the table below. Means are an average of the five replicated plots.

| Treatment           | Ascochyta<br>Severity (%)<br>7/2/2020 | Ascochyta<br>Severity (%)<br>7/16/2020 | Ascochyta<br>Severity (%)<br>7/30/2020 | Yield<br>(lb/ac) |
|---------------------|---------------------------------------|----------------------------------------|----------------------------------------|------------------|
| Untreated           | 11 a                                  | 67 a                                   | 82 a                                   | 89 c             |
| Provysol/Priaxor    | 8 a                                   | 21 b                                   | 36 b                                   | 1124 b           |
| Propulse/Proline    | 3 a                                   | 11 b                                   | 19 c                                   | 1511 ab          |
| Miravis Neo + Bravo | 3 a                                   | 7 b                                    | 20 bc                                  | 1676 ab          |
| Miravis Top + Bravo | 6 a                                   | 8 b                                    | 16 c                                   | 1797 a           |

Differences among treatments are indicated by different letters ( 0.05).

## Conclusions

As expected, the untreated treatment had the highest levels of disease as well as the lowest yield. The Miravis Top + Bravo WS, Miravis Neo + Bravo WS and the Propulse/Proline fungicide programs resulted in the lowest level of disease and the highest yield. The Provysol/Priaxor fungicide program had intermediate disease control and yield. I used a spray volume of 20 gal/ac and it should be noted that spray volume can impact fungicide performance.

The Ascochyta blight pathogen can rapidly develop fungicide resistance, so it is imperative that growers alternate fungicide modes of action. The use of chlorothalonil in a tank mix can also help manage fungicide resistance as it has broad spectrum activity. The table below shows the FRAC group and active ingredients in the fungicides evaluated. <u>Please note that the FRAC 11 group has no activity on Ascochyta blight of chickpea in North Dakota as the pathogen has developed resistance.</u>

| Product Name | Active ingredients (FRAC Group)                            |
|--------------|------------------------------------------------------------|
| Bravo WS     | Chlorothalonil (M5)                                        |
| Miravis Top  | Pydiflumetofen (7) + Difenoconazole (3)                    |
| Miravis Neo  | Pydiflumetofen (7) + Azoxystrobin (11) + Propiconazole (3) |
| Propulse     | Fluopyram (7) + Prothioconazole (3)                        |
| Proline      | Prothioconazole(3)                                         |
| Provysol     | Mefentrifluconazole (3)                                    |
| Priaxor      | Fluxapyroxad (7) + Pyraclostrobin (11)                     |

### **COWBOY LOGIC**

IF THE GATE'S OPEN, CLOSE IT. JUST MAKE SURE YOU'RE ON THE RIGHT SIDE OF IT BEFORE YOU DO.

## **Resistance of Chickpea Varieties to Rhizoctonia Root Rot**

Frankie Crutcher, Amber Ferda and Kevin McPhee

EARC, Sidney, MT

## OBJECTIVE: Test the resistance of different chickpea varieties to R. solani.

| Materials and Methods:<br>Not Irrigated |                                                                                  |
|-----------------------------------------|----------------------------------------------------------------------------------|
| Location: Sidney, MT                    | Previous Crop: Wheat                                                             |
| Variety: Misc.                          | Soil Type: Savage Silty Clay Loam                                                |
| Planted: 4/30/2020                      | Harvested: 9/4/2020                                                              |
| Seeding Rate: 4 LS/ft <sup>2</sup>      | Plot Size: 5' x 20'                                                              |
| Residual Soil N to 3 ft: 30.2 lbs/A     | Applied Fertilizer: None                                                         |
| Residual Soil P to 6 in: 20 ppm         | Chemical Applications: Outlook 20 fl oz/A, Roundup 20 fl oz/A, Tough 5 EC 1 pt/A |
| Irrigated (sprinkler): None             | Vigor and stand counts: 5/19/2020, 6/1/2020, 6/19/2020                           |
| Precipitation April – September: 8.1"   | Root disease assessment: 6/15/2020                                               |

**COMMENTS:** Seeds were inoculated with peat-based commercial Rhizobium N-Charge<sup>®</sup> (Verdesian Life Sciences, Cary, NC). *R. solani* AG 2-2 isolate R9 grown on barley was used to inoculate plots at planting. Seed was treated with Cruiser 5FS (1.28 fl oz/cwt) + Apron XL (0.64 fl oz/cwt). Root assessments were done on 6/15/2020. Foliar height and biomass were taken during this time as well. Trial was desiccated with Gramoxone (32 fl oz/A) on 08/24/2020.

**RESULTS**: Significant differences were found for root severity, with the susceptible control variety Sierra having the highest root severity for both treatments. There were also significant differences for plants/m<sup>2</sup> for all of the varieties compared to each treatment. The treatments without *Rhizoctonia* had a higher plants/m<sup>2</sup> than their counterparts with *Rhizoctonia*. Yield also showed significant differences. The treatments without *Rhizoctonia* yielded better than those with *Rhizoctonia*. Sierra had the lowest yield for both treatments, while Frontier yielded the best.

#### Table 1: Chickpea Variety Responses to Rhizoctonia Root Rot

| Variety        | Treatment   | % Root<br>Severity <sup>a</sup> | % Root<br>Incidence <sup>ь</sup> | Plants/m <sup>2 c</sup> | Wet Weight (g) | Dry Weight (g) | Foliar<br>Height (cm) | Yield<br>(Bu/A) |
|----------------|-------------|---------------------------------|----------------------------------|-------------------------|----------------|----------------|-----------------------|-----------------|
| CDC Frontier   | None        | 9.13 C-F                        | 100.00 A                         | 38.00 A-D               | 103.38 FG      | 17.18 E-G      | 27.36 G-J             | 72.47 A         |
|                | Rhizoctonia | 9.63 C-F                        | 90.00 A                          | 17.00 G-I               | 156.80 A-C     | 26.78 A-C      | 28.82 B-G             | 47.77 D-F       |
| Sierra         | None        | 9.50 C-F                        | 95.00 A                          | 36.50 B-D               | 108.13 D-G     | 18.18 D-G      | 27.87 E-J             | 33.00 HI        |
|                | Rhizoctonia | 21.72 A                         | 100.00 A                         | 7.37 J                  | 135.28 A-F     | 23.50 A-E      | 30.02 B-E             | 15.74 J         |
| N 4. J         | None        | 7.97 C-F                        | 97.22 A                          | 27.83 EF                | 125.95 B-G     | 21.65 B-G      | 26.15 I-K             | 48.41 D-F       |
| Myles          | Rhizoctonia | 13.18 B-D                       | 100.00 A                         | 9.45 IJ                 | 126.10 B-G     | 21.45 B-G      | 24.82 K               | 27.14 l         |
| Black Butte    | None        | 6.38 D-F                        | 97.50 A                          | 43.00 AB                | 157.43 A-C     | 27.38 AB       | 27.93 D-J             | 59.52 BC        |
|                | Rhizoctonia | 10.67 C-F                       | 95.22 A                          | 16.61 G-I               | 138.22 A-F     | 22.45 A-F      | 27.02 G-J             | 39.62 F-H       |
|                | None        | 8.11 C-F                        | 92.17 A                          | 39.50 A-D               | 112.53 D-G     | 18.43 D-G      | 28.21 C-I             | 62.21 BC        |
| CDC Orion      | Rhizoctonia | 15.38 A-C                       | 100.00 A                         | 18.00 GH                | 149.40 A-D     | 25.45 A-D      | 28.89 B-G             | 37.53 GH        |
|                | None        | 8.50 C-F                        | 90.00 A                          | 32.50 DE                | 133.60 A-G     | 23.13 A-E      | 33.69 A               | 60.16 BC        |
| ND Crown       | Rhizoctonia | 12.00 B-E                       | 92.50 A                          | 20.00 F-H               | 140.38 A-F     | 23.55 A-E      | 33.91 A               | 36.47 G-I       |
| CDC Leader     | None        | 5.00 EF                         | 80.00 A                          | 38.00 A-D               | 133.20 A-G     | 21.85 A-G      | 28.51 B-G             | 56.63 CD        |
|                | Rhizoctonia | 19.38 AB                        | 100.00 A                         | 20.00 F-H               | 141.35 A-F     | 23.88 A-E      | 28.35 C-H             | 34.11 HI        |
| CDC Palmer     | None        | 8.52 C-F                        | 100.00 A                         | 42.50 A-C               | 135.38 A-F     | 22.45 A-F      | 30.64 B               | 63.12 A-C       |
| CDC Paimer     | Rhizoctonia | 12.88 B-D                       | 95.00 A                          | 22.50 FG                | 147.15 A-E     | 24.48 A-E      | 30.25 BC              | 41.59 F-H       |
|                | None        | 7.09 D-F                        | 90.22 A                          | 34.50 C-E               | 122.83 C-G     | 21.10 B-G      | 26.27 H-K             | 54.75 C-E       |
| CDC Alma       | Rhizoctonia | 12.75 B-D                       | 97.50 A                          | 12.50 H-J               | 168.35 A       | 28.90 AB       | 27.91 E-J             | 32.04 HI        |
| Dlack Civilian | None        | 5.90 D-F                        | 90.90 A                          | 41.00 A-C               | 148.68 A-D     | 24.53 A-E      | 28.17 C-I             | 63.49 A-C       |
| Black Sicilian | Rhizoctonia | 10.68 C-F                       | 100.00 A                         | 14.50 G-J               | 167.13 AB      | 29.55 A        | 27.69 F-J             | 39.32 F-H       |
| CDC Anna       | None        | 4.13 F                          | 77.50 A                          | 35.50 B-E               | 102.85 FG      | 14.55 G        | 25.91 JK              | 67.21 AB        |
| CDC Anna       | Rhizoctonia | 8.68 C-F                        | 100.00 A                         | 13.01 H-J               | 127.90 A-G     | 19.13 C-G      | 27.45 G-J             | 39.74 F-H       |
| Golden         | None        | 6.03 D-F                        | 85.00 A                          | 45.00 A                 | 91.83 G        | 15.03 FG       | 29.82 B-F             | 45.54 E-G       |
| Dragon         | Rhizoctonia | 10.00 C-F                       | 85.00 A                          | 20.40 F-H               | 105.30 E-G     | 18.45 D-G      | 30.11 B-D             | 33.60 HI        |
| Mean           |             | 10.13                           | 93.78                            | 26.88                   | 132.46         | 22.21          | 28.57                 | 46.29           |
| % CV           |             | 28.18                           | 13.34                            | 48.33                   | 24.92          | 28.18          | 8.82                  | 33.56           |
| LSD (0.05)     |             | 7.57                            | NS                               | 8.40                    | 41.92          | 7.89           | 2.18                  | 9.96            |
| Prob > F       |             | .0032                           | .2925                            | <.0001                  | .0163          | .0119          | <.0001                | <.0001          |

Letters in common did not differ significantly according to a t-test at a significance level of 5%.

<sup>a</sup>Severity: Average percent area of root covered by disease. Ten roots were evaluated for each plot.

<sup>b</sup>Incidence: Percent of ten plants per plot that had visible root necrosis.

<sup>c</sup>Number of plants per m<sup>2</sup> calculated by stand counts.

## Effect of starter fertilizer and inoculation on chickpea nodulation and yield

Audrey Kalil, Taheni Gargouri Jbir, Ariel Wertheim, Evan Herman, Kate Pearson, Kaleb Jimison

### Introduction

Chickpea, like many legumes, derives the majority of its nitrogen needs from biological nitrogen fixation by rhizobia bacteria housed in root nodules. Achieving good nodulation through inoculation is therefore crucial to maximizing chickpea yield. Fertilization with phosphorous and sulfur at planting can improve chickpea yield and nitrogen fixation where they are deficient, however, sulfur soil tests are not considered reliable. Studies in other leguminous crops have shown sulfur fertilization can improve nodulation and nitrogen fixation, but the improvement plateaus at higher rates. The effect of fertilization at planting both with and without additional sulfur were evaluated to determine necessary rates to improve nodulation and yield in chickpea.

## Methods

The trial was set up in a randomized complete block design, with 5 x 25 ft. plots and six replicates. Soil tests down to two feet found adequate levels of N (10 lbs/ac), P (42 ppm) and K (257 ppm). Soil pH was 5.4 and organic matter was 2.8%. The trial was planted May 5<sup>th</sup> and fertilizer was placed with the seed at a 2-inch depth. The chickpea variety was CDC Leader and seed was treated with Vibrance Maxx (1.54 fl oz/cwt). Uninoculated plots were planted first. Inoculated plots received 8.6 g each of Primo GX2 chickpea, lentil, pea and vetch granular inoculant (effective rhizobial species: *Mesorhizobium ciceri*). Starter fertilizer treatments were monoammonium phosphate (11-52-0-0) and Micro-Essentials S10 (MES) (12-40-0-10) at three rates: 20, 40 and 60 lbs. Nodulation was assessed June 23<sup>rd</sup> by digging plants, washing roots and counting nodules (growth stage V7-V13). The trial was harvested August 24<sup>th</sup>.

## Results

Uninoculated treatments had little to no nodulation and yield was reduced by 600-800 lbs/ac. There was no yield response to starter fertilizer treatments as the inoculated, unfertilized treatment yielded similarly to the treatments where starter fertilizer was applied (Table 1). The lowest level of 11-52 (20 lbs/ac) resulted in the highest level of nodulation and nodulation decreased with higher rates. Nodulation levels were similar across levels of MES fertilization, thus there did not appear to be a nodulation response to sulfur fertilization. This trial will be repeated in 2021 to confirm these results.

| Description                 | Nodule<br>Number | Nodule Dry<br>Weight (mg) | Yield<br>(bu/ac) |
|-----------------------------|------------------|---------------------------|------------------|
| Inoculated, Unfertilized    | 10.0 abc         | 23 ab                     | 1694 a           |
| MES @ 20 lbs/ac             | 7.6 abc          | 15 ab                     | 1717 a           |
| MES @ 40 lbs/ac             | 10.7 ab          | 21.7 ab                   | 1660 a           |
| MES @ 60 lbs/ac             | 11.6 ab          | 23.3 ab                   | 1604 a           |
| 11-52 @ 20 lbs/ac           | 14.1 a           | 33.3 a                    | 1739 a           |
| 11-52 @ 40 lbs/ac           | 4.9 abc          | 6.0 ab                    | 1890 a           |
| 11-52 @ 60 lbs/ac           | 6.8 abc          | 15.0 ab                   | 1728 a           |
| Uninoculated, MES 40 lbs/ac | 0.2 c            | 0.0 b                     | 1123 b           |
| Uninoculated, Unfertilized  | 1.3 c            | 0.3 b                     | 1003 b           |
| p-value (α < 0.05)          | 0.0007           | 0.0043                    | < 0.0001         |

Table 1. Nodule number, nodule dry weight and yield of fertilizer and inoculant treatments. Different letters within columns (sites) indicate significant differences.

## Resistance of Lentil Varieties to Rhizoctonia Root Rot EA

EARC, Sidney, MT

Frankie Crutcher, Amber Ferda and Kevin McPhee

**OBJECTIVE**: Test the resistance of different lentil varieties to *R. solani*.

| Materials and Methods:<br>Not Irrigated |                                                               |
|-----------------------------------------|---------------------------------------------------------------|
| Location: Sidney, MT                    | Previous Crop: Wheat                                          |
| Variety: Misc.                          | Soil Type: Savage Silty Clay Loam                             |
| Planted: 4/30/2020                      | Harvested: 8/5/2020                                           |
| Seeding Rate: 12 LS/ft <sup>2</sup>     | Plot Size: 5' x 20'                                           |
| Residual Soil N to 3 ft: 30.2 lbs/A     | Applied Fertilizer: None                                      |
| Residual Soil P to 6 in: 20 ppm         | Chemical Applications: Outlook 20 fl oz/A, Roundup 20 fl oz/A |
| Irrigated (sprinkler): None             | Vigor and stand counts: 5/19/2020, 6/1/2020, 6/19/2020        |
| Precipitation April – September: 8.1"   | Root disease assessment: 6/15/2020                            |

**COMMENTS:** Seeds were inoculated with peat-based commercial Rhizobium N-Charge<sup>®</sup> (Verdesian Life Sciences, Cary, NC). *R. solani* AG 2-2 isolate R9 grown on barley was used to inoculate plots at planting. Seed was treated with Cruiser 5FS (1.28 fl oz/cwt) + Apron XL (0.64 fl oz/cwt). Root assessments were done on 6/15/2020. Foliar height and biomass were taken during this time as well.

**RESULTS**: Significant differences were found for both root severity and root incidence, with the *Rhizoctonia* treatments showing more root rot than their counterparts without *Rhizoctonia*. Significant differences were also found for plants/m<sup>2</sup>. The treatments that contained no *Rhizoctonia* had higher counts than the treatments with *Rhizoctonia*. The varieties Richlea, Viceroy, Avondale and Pennell had early pod shattering, which resulted in yield loss and were excluded from analysis for this reason.

| Variety    | Treatment   | % Root                       | % Root                 | Plants/m <sup>2 c</sup> | Wet        | Dry Weight | Foliar      | Yield    |
|------------|-------------|------------------------------|------------------------|-------------------------|------------|------------|-------------|----------|
| -          |             | <b>Severity</b> <sup>a</sup> | Incidence <sup>b</sup> |                         | Weight (g) | (g)        | Height (cm) | (Bu/A)   |
| Richlea    | None        | 0.00 E                       | 0.00 E                 | 192.00 A                | 48.85 AB   | 5.28 A     | 23.53 AB    | -        |
|            | Rhizoctonia | 11.38 A-C                    | 40.68 AB               | 109.50 EF               | 61.75 A    | 7.03 A     | 20.77 C-F   | -        |
| Viceroy    | None        | 0.75 E                       | 5.28 DE                | 205.50 A                | 42.48 B    | 4.40 A     | 21.50 CD    | -        |
|            | Rhizoctonia | 9.59 A-D                     | 47.41 AB               | 141.00 CD               | 53.15 AB   | 4.85 A     | 19.68 D-G   | -        |
| Maxim      | None        | 0.25 E                       | 5.56 DE                | 181.50 AB               | 42.85 B    | 4.13 A     | 21.38 C-E   | 32.51 AB |
|            | Rhizoctonia | 13.94 AB                     | 48.75 AB               | 92.00 FG                | 54.43 AB   | 6.13 A     | 19.47 E-G   | 27.40 BC |
| Avondale   | None        | 0.13 E                       | 2.50 E                 | 181.00 AB               | 54.30 AB   | 5.85 A     | 24.28 A     | -        |
|            | Rhizoctonia | 4.14 DE                      | 47.58 AB               | 114.50 D-F              | 58.03 AB   | 6.35 A     | 22.10 BC    | -        |
| ND Eagle   | None        | 0.30 E                       | 8.06 DE                | 137.00 C-E              | 57.60 AB   | 6.33 A     | 21.20 C-E   | 32.61 AB |
|            | Rhizoctonia | 5.80 C-E                     | 37.07 A-C              | 72.00 FG                | 66.30 A    | 8.08 A     | 20.74 C-F   | 26.88 BC |
| <b>D</b> " | None        | 1.13 E                       | 12.50 C-E              | 155.00 BC               | 58.78 AB   | 6.58 A     | 20.05 D-G   | -        |
| Pennell    | Rhizoctonia | 6.13 C-E                     | 46.94 AB               | 94.00 FG                | 61.45 A    | 7.18 A     | 19.77 D-G   | -        |
| CDC        | None        | 3.94 DE                      | 29.14 B-D              | 118.00 D-F              | 50.55 AB   | 5.68 A     | 19.71 D-G   | 29.19 BC |
| Redberry   | Rhizoctonia | 15.29 A                      | 61.88 A                | 97.00 FG                | 55.15 AB   | 6.50 A     | 19.21 FG    | 27.82 BC |
| CDC        | None        | 0.13 E                       | 2.78 DE                | 150.00 C                | 57.73 AB   | 6.10 A     | 18.96 FG    | 40.96 A  |
| Rosetown   | Rhizoctonia | 6.83 B-E                     | 24.07 B-E              | 100.00 FG               | 56.93 AB   | 6.38 A     | 18.26 G     | 35.96 AB |
| Mean       |             | 4.94                         | 26.30                  | 133.75                  | 55.02      | 6.05       | 20.66       | 23.81    |
| % CV       |             | 136.51                       | 100.07                 | 32.56                   | 15.82      | 28.90      | 9.72        | 47.59    |
| LSD (0.05) |             | 7.24                         | 26.56                  | 29.58                   | 17.62      | NS         | 1.98        | 11.41    |
| Prob > F   |             | <.0001                       | <.0001                 | <.0001                  | .0005      | 0.1248     | <.0001      | <.0001   |

#### Table 1: Lentil Variety Responses to Rhizoctonia Root Rot

Letters in common did not differ significantly according to a t-test at a significance level of 5%.

<sup>a</sup>Severity: Average percent area of root covered by disease. Ten roots were evaluated for each plot.

<sup>b</sup>Incidence: Percent of ten plants per plot that had visible root necrosis.

<sup>c</sup>Number of plants per m<sup>2</sup> calculated by stand counts.

## **Resistance of Pea Varieties to Rhizoctonia Root Rot**

Frankie Crutcher, Amber Ferda and Kevin McPhee

**OBJECTIVE**: Test the resistance of different pea varieties to *R. solani*.

## Materials and Methods:

Irrigated (sprinkler): None

Not Irrigated Location: Sidney, MT Variety: Misc. Planted: 4/30/2020 Seeding Rate: 8 LS/ft<sup>2</sup> Residual Soil N to 3 ft: 30.2 lbs/A Residual Soil P to 6 in: 20 ppm

Precipitation April - September: 8.1"

Previous Crop: Wheat Soil Type: Savage Silty Clay Loam Harvested: 8/3/2020 Plot Size: 5' x 20' Applied Fertilizer: None Chemical Applications: Outlook 20 fl oz/A, Roundup 20 fl oz/A, Varisto 18 fl oz/A Vigor and stand counts: 5/19/2020, 6/1/2020, 6/19/2020 Root disease assessment: 6/15/2020

**COMMENTS:** Seeds were inoculated with peat-based commercial Rhizobium N-Charge<sup>®</sup> (Verdesian Life Sciences, Cary, NC). *R. solani* AG 2-2 isolate R9 grown on barley was used to inoculate plots at planting. Seed was treated with Cruiser 5FS (1.28 fl oz/cwt) + Apron XL (0.64 fl oz/cwt). Powdery mildew was observed on some varieties close to harvest. Root assessments were done on 6/15/2020. Foliar height and biomass were taken during this time as well.

**RESULTS**: Significant differences were found for root severity, with the treatments containing *Rhizoctonia* having higher numbers than their counterparts without *Rhizoctonia*. Significant differences were also found for all other categories except root severity. Aragorn and Greenwood were excluded from the yield analysis, due to lodging and shattering before harvest.



Pea Rhizoctonia PM plot photo

Continued on next page

| vious page |
|------------|
| iou        |
| ē          |
| from p     |
| continued  |

|                                                                          |                                                                                                                                                                                                                                                         |                                                     |                                                   |                                                       | ,                                                                                                                       |                                |                       |           |                 |              |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|-----------|-----------------|--------------|
| variety                                                                  | I reatment                                                                                                                                                                                                                                              | % коот<br>Severity <sup>a</sup>                     | % коот<br>Severity <sup>b</sup>                   | Plants/m <sup>2</sup> °                               | wer<br>Weight (g)                                                                                                       | Ury weight<br>(g)              | rollar<br>Height (cm) | % Protein | rleid<br>(Bu/A) | y<br>Mildour |
| (                                                                        | None                                                                                                                                                                                                                                                    | 3.13 C-E                                            | 92.92 A                                           | 94.50 A-C                                             | 108.43 A-C                                                                                                              | 20.63 AB                       | 34.01 AB              | 20.45 JK  | 68.58 A         | No           |
| Carver                                                                   | Rhizoctonia                                                                                                                                                                                                                                             | 9.65 A-E                                            | 97.50 A                                           | 88.50 B-D                                             | 107.30 A-C                                                                                                              | 20.35 AB                       | 35.86 A               | 19.58 K   | 64.92 AB        | No           |
|                                                                          | None                                                                                                                                                                                                                                                    | 2.31 DE                                             | 82.50 A                                           | 84.00 C-E                                             | 93.05 C-E                                                                                                               | 17.78 B-F                      | 31.87 B-D             | 22.90 E-H | 59.11 BC        | No           |
| Uo Admirai                                                               | Rhizoctonia                                                                                                                                                                                                                                             | 8.33 B-E                                            | 92.72 A                                           | 84.00 C-E                                             | 91.25 C-E                                                                                                               | 17.45 B-F                      | 29.98 C-F             | 22.18 GH  | 54.63 C-E       | No           |
| Moiorot                                                                  | None                                                                                                                                                                                                                                                    | 4.68 C-E                                            | 100.00 A                                          | 94.50 A-C                                             | 102.98 A-D                                                                                                              | 19.55 A-C                      | 30.05 C-F             | 24.13 C   | 50.56 D-F       | Yes          |
| Majorer                                                                  | Rhizoctonia                                                                                                                                                                                                                                             | 12.70 A-C                                           | 96.15 A                                           | 93.00 A-C                                             | 103.23 A-D                                                                                                              | 19.28 A-D                      | 26.31 G               | 23.35 C-F | 45.57 F         | Yes          |
| Chomo do                                                                 | None                                                                                                                                                                                                                                                    | 5.63 B-E                                            | 92.95 A                                           | 72.00 EF                                              | 101.20 A-D                                                                                                              | 17.83 B-F                      | 26.99 FG              | 23.05 D-G | 51.62 C-F       | Yes          |
| Sharmock                                                                 | Rhizoctonia                                                                                                                                                                                                                                             | 12.43 A-C                                           | 100.00 A                                          | 61.50 F                                               | 119.40 AB                                                                                                               | 18.50 B-E                      | 27.56 E-G             | 22.60 F-H | 47.28 EF        | Yes          |
|                                                                          | None                                                                                                                                                                                                                                                    | 3.86 C-E                                            | 95.00 A                                           | 88.50 B-D                                             | 87.88 C-E                                                                                                               | 22.78 AB                       | 34.15 AB              | 24.50 BC  | ı               | Yes          |
| Alaguii                                                                  | Rhizoctonia                                                                                                                                                                                                                                             | 12.01 A-D                                           | 100.00 A                                          | 88.00 B-D                                             | 96.90 A-E                                                                                                               | 18.55 B-E                      | 29.86 C-F             | 23.85 C-E | ı               | Yes          |
|                                                                          | None                                                                                                                                                                                                                                                    | 3.73 C-E                                            | 82.50 A                                           | 104.00 A                                              | 86.03 C-E                                                                                                               | 14.05 FG                       | 25.95 G               | 22.33 GH  | 57.54 B-D       | Yes          |
| Паприл                                                                   | Rhizoctonia                                                                                                                                                                                                                                             | 18.44 A                                             | 97.50 A                                           | 81.50 C-E                                             | 74.98 E                                                                                                                 | 12.55 G                        | 21.17 H               | 22.68 E-H | 49.94 D-F       | Yes          |
|                                                                          | None                                                                                                                                                                                                                                                    | 3.78 C-E                                            | 85.68 A                                           | 93.50 A-C                                             | 102.58 A-D                                                                                                              | 17.90 B-E                      | 30.46 C-E             | 21.08 IJ  |                 | Yes          |
| DUCUE                                                                    | Rhizoctonia                                                                                                                                                                                                                                             | 11.44 A-E                                           | 100.00 A                                          | 87.50 B-D                                             | 85.53 C-E                                                                                                               | 15.93 C-G                      | 27.00 FG              | 20.00 K   | ı               | Yes          |
|                                                                          | None                                                                                                                                                                                                                                                    | 2.20 E                                              | 92.17 A                                           | 100.00 AB                                             | 103.20 A-D                                                                                                              | 19.33 A-C                      | 35.36 A               | 24.18 C   | 49.26 D-F       | Yes          |
| Jeiser                                                                   | Rhizoctonia                                                                                                                                                                                                                                             | 15.38 AB                                            | 95.00 A                                           | 85.50 C-E                                             | 78.30 DE                                                                                                                | 15.43 E-G                      | 33.22 A-C             | 24.28 C   | 49.30 D-F       | Yes          |
| Dridaor                                                                  | None                                                                                                                                                                                                                                                    | 7.45 B-E                                            | 92.50 A                                           | 86.00 CD                                              | 83.60 C-E                                                                                                               | 15.45 D-G                      | 28.27 E-G             | 23.43 C-F | 49.44 D-F       | Yes          |
| DIUDEI                                                                   | Rhizoctonia                                                                                                                                                                                                                                             | 9.93 A-E                                            | 92.72 A                                           | 83.00 C-E                                             | 86.63 C-E                                                                                                               | 15.98 C-G                      | 27.81 E-G             | 21.98 HI  | 49.16 D-F       | Yes          |
|                                                                          | None                                                                                                                                                                                                                                                    | 3.55 C-E                                            | 97.50 A                                           | 76.00 DE                                              | 95.05 B-E                                                                                                               | 17.38 B-F                      | 28.91 D-G             | 26.65 A   | 50.13 D-F       | Yes          |
| Oldresing                                                                | Rhizoctonia                                                                                                                                                                                                                                             | 9.98 A-E                                            | 95.45 A                                           | 75.50 DE                                              | 121.50 A                                                                                                                | 22.53 A                        | 30.23 C-F             | 25.93 AB  | 45.13 F         | Yes          |
| Mean                                                                     |                                                                                                                                                                                                                                                         | 8.03                                                | 94.04                                             | 86.05                                                 | 96.45                                                                                                                   | 17.86                          | 29.75                 | 22.87     | 44.14           |              |
| % CV                                                                     |                                                                                                                                                                                                                                                         | 94.69                                               | 10.30                                             | 14.98                                                 | 20.87                                                                                                                   | 18.89                          | 13.94                 | 8.34      | 34.25           |              |
| LSD (0.05)                                                               |                                                                                                                                                                                                                                                         | 9.79                                                | NS                                                | 13.90                                                 | 25.82                                                                                                                   | 3.84                           | 3.45                  | 0.99      | 8.44            |              |
| Prob > F                                                                 |                                                                                                                                                                                                                                                         | 0.2309                                              | .2309                                             | <.0001                                                | .0315                                                                                                                   | .0003                          | <.0001                | <.0001    | <.0001          |              |
| Letters in cor<br><sup>a</sup> Severity: Av<br><sup>b</sup> Incidence: F | Letters in common did not differ significantly according to a t-test at a<br><sup>a</sup> Severity: Average percent area of root covered by disease. Ten roots<br><sup>b</sup> Incidence: Percent of ten plants per plot that had visible root necrosis | differ significa<br>area of root c<br>ants per plot | intly accordin<br>sovered by dis<br>that had visi | g to a t-test at<br>sease. Ten roc<br>ble root necros | ng to a t-test at a significance level of 5%.<br>isease. Ten roots were evaluated for each plot.<br>ible root necrosis. | evel of 5%.<br>ited for each p | lot.                  |           |                 |              |
| °Number of p                                                             | °Number of plants per m <sup>2</sup> calculated by stand counts.                                                                                                                                                                                        | alculated by s                                      | stand counts.                                     |                                                       |                                                                                                                         |                                |                       |           |                 |              |

Table 1: Pea Variety Responses to Rhizoctonia Root Rot

STAND UP FOR WHAT YOU BELIEVE IN EVEN IF YOU'RE STANDING ALONE.

## **Resistance of Spring Wheat Varieties to Fusarium Head Blight**

## EARC, Sidney, MT

Frankie Crutcher, Phil Bruckner, Jason Cook, Amber Ferda and Samantha Hoesel

**OBJECTIVE**: Test the resistance of different spring wheat varieties to Fusarium head blight caused by *F. graminearum*.

## Materials and Methods:

| irrigated                                                            |                                                                                                                           |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Location: Sidney, MT                                                 | Previous Crops: Wheat                                                                                                     |
| Variety: Misc.                                                       | Soil Type: Savage Silty Clay Loam                                                                                         |
| Planted: 5/6/2020                                                    | Harvested: 8/15/2020                                                                                                      |
| Seeding Rate: 90 lbs/A                                               | Plot Size: 2.5' x 10'                                                                                                     |
| Residual Soil N to 3 ft: 37 lb/A                                     | Applied Fertilizer: 100-30                                                                                                |
| Residual Soil P to 6 in: 21.3 ppm                                    | Chemical Applications: Wolverine Advanced 1.7 pt/A,<br>Proline 5.7 fl oz/A, Stinger 1 1/3 pt/A, Discover NG 16 fl<br>oz/A |
| Irrigated (sprinkler) on: 5/12, 5/22, 6/4,<br>6/13, 6/19, 6/29, 7/15 | Vigor: 5/22/2020                                                                                                          |
| Precipitation April – September: 8.1"                                | Disease assessment(s): 7/28/2020                                                                                          |
|                                                                      |                                                                                                                           |

**COMMENTS:** Corn spawn inoculated with five isolates of *F. graminearum* was applied to the field on 6/3/2020.

**RESULTS**: Both experimental and popular lines had lower severity, incidence, FDK and disease index compared to the susceptible control McNeal and were also significantly different.

#### Table 1 Spring Wheat Variety Reponses to Fusarium Head Blight

| Variety      | Severity(%) <sup>a</sup> | Incidence(%) <sup>b</sup> | % FDK <sup>c</sup> | Index <sup>d</sup> | Yield (Bu/A) |
|--------------|--------------------------|---------------------------|--------------------|--------------------|--------------|
| MT 1716      | 1.2 G                    | 15.6 GH                   | 3.3 BC             | 0.2 DE             | 69.4 AB      |
| MT 1743      | 21.4 A-C                 | 65.6 AB                   | 5.3 A-C            | 14.2 BC            | 63.5 A-D     |
| MT 1750      | 6.9 D-G                  | 35.6 B-H                  | 6.0 A-C            | 2.5 DE             | 48.4 A-D     |
| MT 1775      | 11.3 C-G                 | 36.7 B-H                  | 17.0 AB            | 4.4 DE             | 56.7 A-D     |
| MT 1809      | 1.7 G                    | 18.9 E-H                  | 3.3 BC             | 0.4 DE             | 64.4 A-D     |
| MT 1815      | 15.2 B-E                 | 56.7 A-D                  | 15.0 A-C           | 9.0 B-D            | 45.2 A-D     |
| MT 1824      | 3.1 E-G                  | 20.0 D-H                  | 3.3 BC             | 0.8 DE             | 49.0 A-D     |
| MT 1853      | 7.2 D-G                  | 44.4 A-G                  | 6.0 A-C            | 3.2 DE             | 54.1 A-D     |
| MT 1855      | 5.2 D-G                  | 30.0 B-H                  | 6.0 A-C            | 1.7 DE             | 54.7 A-D     |
| MT 1857      | 14.9 B-F                 | 53.3 A-F                  | 6.0 A-C            | 8.3 B-E            | 41.8 CD      |
| MT 1862      | 12.2 B-G                 | 41.1 B-H                  | 16.7 AB            | 4.9 DE             | 52.3 A-D     |
| MT 1866      | 3.0 E-G                  | 21.1 C-H                  | 5.3 A-C            | 0.8 DE             | 62.6 A-D     |
| MT 1868      | 12.1 B-G                 | 47.8 A-G                  | 8.0 A-C            | 5.9 C-E            | 56.8 A-D     |
| MT 1871      | 17.4 B-D                 | 50.0 A-G                  | 8.7 A-C            | 9.0 B-D            | 43.6 A-D     |
| MT 1872      | 11.6 C-G                 | 33.3 B-H                  | 7.3 A-C            | 4.2 DE             | 50.3 A-D     |
| MT 1902      | 12.6 B-G                 | 42.2 A-H                  | 8.0 A-C            | 5.6 C-E            | 63.6 A-D     |
| MT 1904      | 12.2 B-G                 | 54.4 A-F                  | 8.7 A-C            | 7.2 B-E            | 55.7 A-D     |
| MT 1905      | 9.9 C-G                  | 47.8 A-G                  | 12.7 A-C           | 4.4 DE             | 53.6 A-D     |
| MT 1906      | 8.0 D-G                  | 45.6 A-G                  | 6.7 A-C            | 3.8 DE             | 56.7 A-D     |
| MT 1922      | 11.9 C-G                 | 45.6 A-G                  | 4.7 A-C            | 5.4 DE             | 53.9 A-D     |
| MT 1927      | 11.2 C-G                 | 43.3 A-H                  | 14.7 A-C           | 4.9 DE             | 53.6 A-D     |
| MT 1931      | 4.2 E-G                  | 22.2 C-H                  | 9.7 A-C            | 0.9 DE             | 56.9 A-D     |
| MT 1932      | 2.2 F-G                  | 17.8 F-H                  | 4.0 BC             | 1.0 DE             | 56.8 A-D     |
| MT 1934      | 6.9 D-G                  | 36.7 B-H                  | 6.7 A-C            | 2.9 DE             | 65.7 A-D     |
| Continued on | next page                |                           |                    |                    |              |

| Continued from previous page |          |          |          |         |          |  |  |  |
|------------------------------|----------|----------|----------|---------|----------|--|--|--|
| MT 1935                      | 3.4 E-G  | 28.9 B-H | 6.0 A-C  | 1.0 DE  | 46.1 A-D |  |  |  |
| MT 1936                      | 2.7 E-G  | 18.9 E-H | 2.7 C    | 0.5 DE  | 50.6 A-D |  |  |  |
| MT 1938                      | 5.9 D-G  | 33.3 B-H | 10.0 A-C | 2.9 DE  | 54.3 A-D |  |  |  |
| MT 1939                      | 10.2 C-G | 38.9 B-H | 14.3 A-C | 4.1 DE  | 60.5 A-D |  |  |  |
| MT 1943                      | 7.8 D-G  | 41.1 B-H | 8.0 A-C  | 3.4 DE  | 55.2 A-D |  |  |  |
| MT 1951                      | 7.6 D-G  | 36.7 B-H | 12.0 A-C | 2.8 DE  | 64.3 A-D |  |  |  |
| MT 1959                      | 4.4 E-G  | 23.3 C-H | 2.7 C    | 1.0 DE  | 62.9 A-D |  |  |  |
| MT 1961                      | 5.8 D-G  | 30.0 B-H | 4.7 A-C  | 1.9 DE  | 63.3 A-D |  |  |  |
| MT 2015                      | 5.6 D-G  | 31.1 B-H | 3.3 BC   | 1.7 DE  | 70.2 A   |  |  |  |
| MT 2016                      | 5.2 D-G  | 34.4 B-H | 5.3 A-C  | 2.0 DE  | 58.3 A-D |  |  |  |
| MT 2017                      | 6.9 D-G  | 38.9 B-H | 3.3 BC   | 2.9 DE  | 63.2 A-D |  |  |  |
| MT 2065                      | 2.3 E-G  | 20.0 D-H | 3.3 BC   | 0.6 DE  | 52.6 A-D |  |  |  |
| MT 2066                      | 5.1 D-G  | 31.1 B-H | 4.0 BC   | 1.8 DE  | 68.6 A-C |  |  |  |
| MT 2067                      | 7.2 D-G  | 55.6 A-E | 13.3 A-C | 4.2 DE  | 70.0 A   |  |  |  |
| MT 2068                      | 4.9 D-G  | 46.7 A-G | 7.3 A-C  | 2.3 DE  | 62.9 A-D |  |  |  |
| MT 2071                      | 10.7 C-G | 43.3 A-H | 10.0 A-C | 4.7 DE  | 47.3 A-D |  |  |  |
| MT 2072                      | 4.6 D-G  | 36.7 B-H | 10.7 A-C | 1.8 DE  | 45.0 A-D |  |  |  |
| MT 2073                      | 7.7 D-G  | 33.3 B-H | 10.7 A-C | 2.8 DE  | 54.7 A-D |  |  |  |
| MT 2074                      | 25.0 AB  | 57.8 A-C | 10.3 A-C | 14.9 B  | 40.3 D   |  |  |  |
| MT 2075                      | 11.8 C-G | 46.7 A-G | 6.0 A-C  | 5.7 C-E | 54.3 A-D |  |  |  |
| MT 2076                      | 3.6 E-G  | 31.1 B-H | 6.7 A-C  | 1.2 DE  | 50.6 A-D |  |  |  |
| Dagmar                       | 7.9 D-G  | 50.0 A-G | 5.3 A-C  | 4.0 DE  | 64.1 A-D |  |  |  |
| Lanning                      | 7.4 D-G  | 51.1 A-G | 7.3 A-C  | 4.2 DE  | 65.2 A-D |  |  |  |
| McNeal                       | 33.9 A   | 78.9 A   | 18.3 A   | 26.9 A  | 42.4 B-C |  |  |  |
| Reeder                       | 3.2 E-G  | 25.6 C-H | 4.7 A-C  | 0.8 DE  | 44.2 A-D |  |  |  |
| Ingmar                       | 1.1 G    | 6.7 H    | 4.0 BC   | 0.1 E   | 62.0 A-D |  |  |  |
| Vida                         | 5.2 D-G  | 34.4 B-H | 6.0 A-C  | 2.0 DE  | 47.8 A-D |  |  |  |
| Mean                         | 8.44     | 37.84    | 7.71     | 4.07    | 55.89    |  |  |  |
| Prob>F                       | <0.0001  | <0.0001  | <0.0001  | <0.0001 | <0.0001  |  |  |  |
| % CV                         | 81.6     | 43.62    | 68.23    | 122.49  | 18.53    |  |  |  |
| HSD (0.05)                   | 12.9     | 37.2     | 13.95    | 8.85    | 27.35    |  |  |  |

Letters in common did not differ significantly according to a Tukey's test at a significance level of 5%.

<sup>a</sup>Pest Severity: Average percent area of head covered by disease. Thirty heads were evaluated for each plot.

<sup>b</sup>Pest Incidence: Percent of thirty plants per plot that had visible FHB symptoms.

°Fusarium diseased kernels.

<sup>d</sup>Disease index is calculated as (Severity X Incidence) / 100



New Sample Grain Cleaner purchased 2020.

## Industrial Hemp – Planting Date Study of Two Selected Varieties EARC, Sidney, MT

Apurba Sutradhar, Chengci Chen, Bill Frank, Rebecca Garza, Calla Kowatch-Carlson, Thomas Gross, Ronald Brown, W. Tanner Stevens, and Sooyoung Frank

**Objectives:** To determine optimal seeding date of two selected industrial hemp varieties in eastern Montana.

#### **Materials and Methods**

| Location:            | EARC Irrigated Farm                                                                   | Previous crop:                            | Sugarbeet                     |
|----------------------|---------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|
| Planted:             | Early Planting: 04/30/2020<br>Late Planting: 05/19/2020                               | Soil type:                                | Savage Silty Clay Loam        |
| Tillage:             | Conventional                                                                          | Sampled for<br>biomass and seed<br>yield: | 08/24/2020                    |
| Experimental design: | Randomized Complete Block                                                             | Plot size:                                | 12' width $\times$ 30' length |
| Varieties:           | CRS-1 and Katani                                                                      | Replications:                             | 4                             |
| Pesticide:           | None                                                                                  | Herbicide:                                | None                          |
| Fertilizers:         | 100 lb N/ac and 30 lb P <sub>2</sub> O <sub>5</sub> /ac blend applied before planting | Rainfall:<br>Irrigation:                  | 5.81"<br>6.95"                |
|                      |                                                                                       |                                           |                               |

**Comments:** The plots were hand hoed and cultivated to control weeds. Significant bird damage.

# Table 1. Initial soil test results. A composite soil sample was collected prior to planting industrial hemp.

| in a dott at homp |     |     |                    |         |     |
|-------------------|-----|-----|--------------------|---------|-----|
| Depth             | рН  | ОМ  | NO <sub>3</sub> -N | P-Olsen | K   |
| Inch              |     | %   |                    | ppm     |     |
| 0-12              | 8.4 | 1.8 | 10.5               | 15      | 186 |

# Table 2: Main effect of planting date and variety on industrial hemp height, biomass yield, and seed yield.

| Effect               | Treatments | Plant Height | Biomass | Seed Yield |
|----------------------|------------|--------------|---------|------------|
|                      |            | (inch)       | (lb/ac) | (lb/ac)    |
| Planting date        | Early      | 61.4         | 6258    | 400 B      |
| -                    | Late       | 63.5         | 6229    | 1037 A     |
| Variety              | CRS-1      | 73.9 a       | 6902 a  | 770        |
| -                    | Katani     | 51.0 b       | 5584 b  | 667        |
| Sources of variation |            |              |         |            |
| Planting date (D)    |            | 0.07         | 0.96    | 0.002      |
| Variety (V)          |            | <0.0001      | 0.04    | 0.51       |
| D×V                  |            | 0.0002       | 0.07    | 0.11       |

† Wheat variety Elgin was planted.



Cole Roberts, Abbey Ries & Becky Garza hoeing a hemp field at EARC.

## Industrial Hemp – Performance of Experimental Lines and Varieties for Eastern Montana EARC, Sidney, MT

Apurba Sutradhar, Chengci Chen, Bill Frank, Rebecca Garza, Calla Kowatch-Carlson, Thomas Gross, Ronald Brown, W. Tanner Stevens, and Sooyoung Frank

**Objectives:** To evaluate the performance of experimental lines and varieties of industrial hemp across eastern Montana.

#### **Materials and Methods**

| Location:            | EARC Irrigated Farm                                       | Previous crop:                      | Sugarbeet                            |
|----------------------|-----------------------------------------------------------|-------------------------------------|--------------------------------------|
| Planted:             | Early Planting: 06/03/2020                                | Soil type:                          | Savage Silty Clay Loam               |
|                      | 20 lb./ac                                                 | 51                                  |                                      |
| Seeding rate         | 2010./ac                                                  | Sampled for biomass and seed yield: | Varied depending on the<br>maturity. |
| Tillage:             | Conventional                                              | Plot size:                          | 6' width $	imes$ 30' length          |
| Experimental design: | Randomized Complete Block                                 | Replications:                       | 4                                    |
| # of varieties:      | 12                                                        | Herbicide:                          | PowerMax @ 24 oz/ac<br>preplant.     |
| Fertilizers:         | 100 lb. N/ac and 30 lb. P <sub>2</sub> O <sub>5</sub> /ac | Rainfall:                           | 5.81"                                |
|                      | blend applied before planting                             | Irrigation:                         | 6.95"                                |
| Pesticide:           | None                                                      | 0                                   |                                      |

**Comments:** The plots were hand hoed and cultivated to control weeds. Significant bird damage.

| Table 1. Initial soil test results. A | A composite soil sample was collected | prior to planting industrial hemp. |
|---------------------------------------|---------------------------------------|------------------------------------|
|                                       |                                       |                                    |

| Depth | рН  | OM  | NO <sub>3</sub> -N | P-Olsen | K   |
|-------|-----|-----|--------------------|---------|-----|
| Inch  |     | %   |                    | ppm     |     |
| 0-12  | 8.4 | 1.8 | 10.5               | 15      | 186 |

#### Table 2: Summary of Agronomic Data of Industrial Hemp Varieties Tested.

|                    |                       | Pre-flowering          | Post-<br>flowering     | Stem<br>Diameter |                    |                       |
|--------------------|-----------------------|------------------------|------------------------|------------------|--------------------|-----------------------|
| Cultivar           | Plant Stand<br>(acre) | Plant Height<br>(inch) | Plant Height<br>(inch) | (mm)             | Biomass<br>(lb/ac) | Seed Yield<br>(lb/ac) |
| Altair             | 97390                 | 73.8                   | 74.0                   | 11.8             | 7925               | 1892                  |
| Anka               | 133912                | 74.8                   | 84.0                   | 11.5             | 7291               | 1166                  |
| Bialobrzeskie      | 47588                 | 85.0                   | 94.5                   | 12.5             | 6033               | 277                   |
| CFX-1              | 87983                 | 55.8                   | 52.8                   | 10.3             | 6648               | 2285                  |
| Henola             | 120078                | 66.8                   | 64.3                   | 10.0             | 6586               | 1582                  |
| Hlesia (Glesia)    | 130592                | 79.8                   | 83.5                   | 10.5             | 5755               | 596                   |
| Hliana (Giliana)   | 56995                 | 76.0                   | 79.8                   | 10.8             | 5371               | 399                   |
| Hlukhovskii 51     | 128931                | 76.5                   | 81.3                   | 10.3             | 5460               | 327                   |
| Katani             | 96837                 | 49.8                   | 43.0                   | 10.0             | 4271               | 1743                  |
| NWG-2730           | 100710                | 72.8                   | 83.5                   | 13.3             | 8874               | 1054                  |
| NWG-452            | 148299                | 82.5                   | 80.0                   | 11.0             | 6563               | 953                   |
| X-59               | 74703                 | 65.3                   | 57.8                   | 10.3             | 6697               | 2359                  |
| Mean               | 102001                | 71.5                   | 73.2                   | 11.0             | 6518               | 1219                  |
| P > <i>F</i>       | 0.0001                | <0.0001                | <0.0001                | 0.02             | 0.04               | <0.0001               |
| LSD ( $P = 0.05$ ) | 40444                 | 7.14                   | 10.2                   | 1.90             | 2280               | 802                   |
| CV (%)             | 27.6                  | 6.9                    | 9.7                    | 12.0             | 22.4               | 45.7                  |

**Note:** CRS-1 was not included in this variety trial. CRS-1 was used in a separate planting date study. Average plant height, biomass, and seed yield were 73.9 inch, 6902 lb/ac, and 770 lb/ac, respectively. There was a severe bird damage in this trial, and lower yields in some of the varieties were likely due to bird damage and seed shattering.

## Kernza<sup>®</sup> Variety Trials

## Clair Keene

Kernza<sup>®</sup> variety trials continued at the WREC in 2020. The fall planted trial was seeded on Sept. 7, 2018 and the spring planted trial was seeded May 10, 2019. This year was the second grain harvest of the fall seeded trial and the first of the spring seeded trial. Both trials included the same 9 varieties: 2 old forage types (Rush and Oahe), 2 from The Land Institute (TLI), and 5 from the University of Minnesota (MN).

## **Forage guality**

Forage guality samples were taken from all plots on June 1, oven dried, and sent to Minnesota Valley Testing Labs (New Ulm, MN) for analysis. At the time of sampling, the fall seeded trial was starting to head and the spring seeded trial was in the boot. Crude protein of all samples ranged from 9.1-15.7% with an over-all average of 10.8%. ADF ranged from 26.9-32.6% with an over-all average of 29.9%. Based on CP and ADF values, these Kernza samples would be considered good quality grass hay.

| Quality analysis | s of the fall-seed | ded trial |                    |                    |       |
|------------------|--------------------|-----------|--------------------|--------------------|-------|
| Variety          | % Ca               | % P       | % ADF <sup>†</sup> | % NDF <sup>‡</sup> | % CP§ |
| Rush             | 0.23               | 0.21      | 30.7               | 53.9               | 11.2  |
| Oahe             | 0.21               | 0.20      | 31.8               | 55.2               | 10.7  |
| TLI-C3           | 0.28               | 0.19      | 29.4               | 51.4               | 10.1  |
| TLI-C5           | 0.23               | 0.22      | 29.8               | 52.9               | 10.5  |
| MN-1501          | 0.24               | 0.20      | 30.0               | 52.3               | 10.3  |
| MN-1502          | 0.22               | 0.20      | 28.6               | 50.9               | 12.0  |
| MN-1503          | 0.26               | 0.22      | 29.1               | 49.7               | 11.2  |
| MN-1504          | 0.24               | 0.22      | 29.6               | 52.4               | 11.4  |
| MN-1505          | 0.22               | 0.20      | 28.8               | 51.5               | 11.9  |
| Mean             | 0.24               | 0.21      | 29.8               | 52.2               | 11.0  |
| LSD 5%           | NS                 | NS        | 1.3                | 2.1                | 1.1   |
| LSD 10%          | NS                 | NS        | 1.0                | 1.6                | 0.9   |

<sup>†</sup>ADF = Acid Detergent Fiber. ADF measures the least digestible plant cell components including cellulose and lignin. Forages with low ADF are usually higher in energy.

<sup>‡</sup>NDF = Neutral Detergent Fiber. Generally low NDF values are desired because NDF increases as forages mature and higher values indicate more mature plants; also, as % NDF increases, dry matter intake generally decreases.

<sup>§</sup>CP = Crude Protein. Higher protein feeds have higher energy values.

## Flowering, height, and lodging

The fall-seeded (older) plots flowered about one week earlier than the spring-seeded plots. Fallseeded plots flowered the last week of June and were done flowering by July 6, whereas springseeded plots flowered the first week of July and finished flowering by July 10. MN-1501 and MN-1502 were the latest flowering varieties in both the fall and spring trials.

Height was measured in mid-July after flowering. No significant differences in height were observed in the fall-seeded trial while a significant difference in height was observed in the spring-seeded trial. In the spring trial, the forage types Rush and Oahe were significantly taller than any of the Kernza grain types and MN-1504 was the shortest variety.

Very little lodging was observed in any of the plots. The forage types exhibited a little more lodging than grain types but not enough to interfere with harvest.

#### Yield

The fall-seeded trial was combined on July 31 and the spring-seeded trial on August 5. The fall trial dried down a little earlier than the spring trial, which was expected following its earlier flowering. Plots were cut high to minimize the amount of straw passing through the small-plot combine. After harvest of the spring trial, a full size combine was used to cut the remaining residue short, about 5" tall, pulverize the straw, and spread the chaff evenly over the field. In Kernza grain production, residue needs to be removed from the field to promote heading the following year.

| Fall-seeded trial |        |         |                    |        |        | Spring-seeded trial |                    |  |
|-------------------|--------|---------|--------------------|--------|--------|---------------------|--------------------|--|
|                   | Height | Lodging | Yield <sup>†</sup> | lbs/ac | Height | Lodging             | Yield <sup>†</sup> |  |
| Variety           | in     | 0-10    | 2020               | 2019   | in     | 0-10                | lbs/ac             |  |
| Rush              | 47     | 2       | 289                | 228    | 49     | 1                   | 253                |  |
| Oahe              | 46     | 1       | 276                | 216    | 49     | 2                   | 207                |  |
| TLI-C3            | 45     | 0       | 402                | 372    | 45     | 1                   | 396                |  |
| TLI-C5            | 46     | 1       | 536                | 375    | 44     | 0                   | 419                |  |
| MN-1501           | 46     | 1       | 383                | 309    | 45     | 1                   | 351                |  |
| MN-1502           | 46     | 0       | 347                | 270    | 46     | 1                   | 400                |  |
| MN-1503           | 45     | 1       | 343                | 272    | 44     | 0                   | 319                |  |
| MN-1504           | 44     | 0       | 370                | 302    | 43     | 1                   | 324                |  |
| MN-1505           | 44     | 1       | 387                | 393    | 46     | 0                   | 348                |  |
| Mean              | 45     |         | 370                | 308    | 46     |                     | 335                |  |
| LSD 5%            | NS     |         | 100                | 125    | 3      |                     | 55                 |  |
| LSD 10%           | 3      |         | 77                 | 80     | 2      |                     | 42                 |  |

<sup>†</sup>Yield data presented is for hulled grain. Hulls are estimated to account for approximately 30% of harvested weight.

The fall-seeded trial had higher yields than the spring-seeded trial. It is too soon to say whether this reflects an increase in grain production in the 2<sup>nd</sup> year of a stand, however it is an interesting observation. It could also reflect the older (fall) stand being more productive during the severely dry conditions of the 2020 growing season. TLI-C5 was the highest yielding variety in both the 2020 fall and spring trials and was the second-highest yielding variety in 2019 as well. Interestingly, collaborators in Minnesota have seen MN-1504 do better than TLI-C5 while here in Williston, TLI-C5 is establishing itself as the highest-yielding variety. As a reminder, the yields in the table above are hulled yields. Cleaned, de-hulled Kernza grain yields will be lower. Hull weight varies by variety, but hulls are roughly estimated to account for 30% of harvested weight.

Funding for this work provided by The Land Institute and ND-APUC project # BDAPUC19-24

## Herbicide Safety in Kernza®

## Clair Keene

Kernza<sup>®</sup> is intermediate wheatgrass (*Thinopyrum intermedium*), a cool-season perennial grass that has been bred intensively for the last 15 years for increased seed size and yield by The Land Institute of Salina, Kansas. Kernza is a new perennial grain crop with approximately 2,000 acres in production in the US in 2020. The Land Institute and the University of Minnesota have a goal of doubling the number of Kernza acres in production each year for the next 10 years. As Kernza acres expand, more management options are needed for this crop. At this time, there are no herbicides labeled for use in Kernza destined for the human food-grade market. This study was conducted in collaboration with the University of Minnesota, the University of Wisconsin-Madison, and Cornell University to generate data needed for IR4 registration of broadleaf herbicides in food-use Kernza.

The Kernza stand used in this study was seeded August 26, 2019 with a John Deere 750 15 foot notill drill on the WREC dryland farm. Kernza was seeded at 10 lbs pure live seed per acre along with 25 lbs of barley per acre as a nurse crop and to facilitate Kernza seed flow through the drill. In September 2019, the site received approximately 8" of rainfall, a record-high for the month. First frost occurred October 2, less than 6 weeks after planting. October 2019 was fairly cold so limited growth occurred before winter. Fall herbicide application was made on October 17, 2019 and spring application occurred on May 29, 2020. Kernza over-wintered with 3-4 leaves and 0 or 1 tiller on most plants. Spring 2020 warmed up slowly and started with good soil moisture after the wet fall, but almost all moisture was gone by late May. Very little rain fell in May and June and the 2020 growing season was the 4<sup>th</sup> driest on record for Williams County. Despite these challenges, the Kernza stand survived and produced grain.

Overall, very little injury was observed from 2,4-D and clopyralid. Lodging was minimal in all treatments and no differences were observed in maturity. There were no significant differences in either whole plant biomass or head weight sampled at harvest among the treatments. These data suggest that 2,4-D and clopyralid have low injury potential for Kernza and support their registration for broadleaf weed control in this new crop. 2,4-D is expected to be labeled for use in Kernza grain crops in 2021 but the label for clopyralid will likely be later, possibly in 2022.

|             |       |        | Fa                | all application | n                 | Spring a | pplication |        |
|-------------|-------|--------|-------------------|-----------------|-------------------|----------|------------|--------|
| Product     | Rate  | Timing | Injury            | Injury          | Injury            | Injury   | Injury     | Injury |
|             | oz/ac |        | 2WAA <sup>†</sup> | 4WAA            | 7MAA <sup>‡</sup> | 2WAA     | 4WAA       | Hrvst  |
| Untreated   |       | None   | 1                 | 0.3             | 0                 | 0        | 0          | 0      |
| 2,4-D amine | 32    | Fall   | 1                 | 1               | 0                 |          |            | 0      |
| 2,4-D amine | 64    | Fall   | 2.7               | 2               | 0.3               |          |            | 0      |
| Clopyralid  | 3.8   | Fall   | 1                 | 1.3             | 0.3               |          |            | 0      |
| Clopyralid  | 7.6   | Fall   | 1.3               | 1.3             | 0.3               |          |            | 0      |
| 2,4-D amine | 32    | Spring |                   |                 |                   | 0        | 0          | 0      |
| 2,4-D amine | 64    | Spring |                   |                 |                   | 0.3      | 0          | 0      |
| Clopyralid  | 3.8   | Spring |                   |                 |                   | 0        | 0          | 0      |
| Clopyralid  | 7.6   | Spring |                   |                 |                   | 0        | 0          | 0      |

#### Visual assessment of injury (scale 0-10) at different times following fall or spring application.

<sup>†</sup>WAA = weeks after application

<sup>‡</sup>MAA = months after application

Injury Hrvst = injury observed 3 weeks prior to harvest

## Effect of Nitrogen Rate on Kernza® in the MonDak

## Clair Keene

Kernza<sup>®</sup> is intermediate wheatgrass (*Thinopyrum intermedium*), a cool-season perennial grass that has been bred intensively for the last 15 years for increased seed size and yield by The Land Institute of Salina, Kansas. Old forage types of intermediate wheatgrass have been grown in the western United States for over 50 years and have done well in our semi-arid, short season conditions. Most agronomic trials to date with Kernza have been conducted in Kansas, Minnesota, and Wisconsin, but no work has been done on best production practices in the semi-arid Northern Great Plains. This trial is one of a series at the Williston REC to inform management strategies for Kernza in our region.

The Kernza stand used in this study was seeded August 26, 2019 with a John Deere 750 15 foot notill drill on the WREC dryland farm. Kernza was seeded at 10 lbs pure live seed per acre along with 25 lbs of barley per acre as a nurse crop and to facilitate Kernza seed flow through the drill. Kernza seed is hulled and can bridge or clog in seed cups and hoses so it is important to monitor equipment while seeding. It should be noted that in September 2019, the site received approximately 8" of rainfall, a record-high for the month. First frost occurred October 2, less than 6 weeks after planting. Kernza over-wintered with 3-4 leaves and 0 or 1 tiller on most plants. Spring 2020 warmed up slowly and started with good soil moisture after the wet fall, but almost all moisture was gone by late May. Hardly any rain fell in May and less than 1.5" fell in June with most of it at the very end of the month. The 2020 growing season was the 4<sup>th</sup> driest on record for Williams County. Despite these challenges, the Kernza stand survived and produced grain. Tillering was limited by the dry conditions and the rows did not fully close.

## Nitrogen study

Soil sampling in April 2020 found that nitrate nitrogen in the field ranged from 7-9 lbs per acre in the top 0-6" and from 6-27 lbs per acre at the 6-24" depth. A randomized complete block design with 4 replications was used to investigate the effects of nitrogen application on Kernza biomass production, lodging, and yield. Plots were 30 feet wide by 120 feet long and established by spreading urea at rates equivalent to 0, 25, 50, and 75 lbs of nitrogen with a Barber pull-type drop spreader. Urea was broadcast on May 14. It is likely that much of the nitrogen was lost to volatilization as the first 24-hour period with more than 0.5" of precipitation after application was June 28, 6 weeks later.

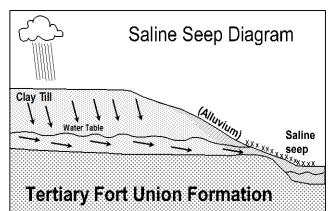
Data collected included height at flowering, lodging, and whole plant biomass at harvest. There was no significant difference in height or biomass at harvest among the treatments. Very little lodging was observed. A small amount of lodging was seen in the 75 lb N treatment but it did not affect harvest. Nitrogen was likely lost due to lack of moisture and drought conditions stressed the stand, regardless of N rate. This study will be repeated in 2021 to determine how Kernza responds to broadcast urea application in our region.

| lbs N applied | Height (inches) | Biomass (lbs/ac) |
|---------------|-----------------|------------------|
| 0             | 36              | 1968             |
| 25            | 36              | 2199             |
| 50            | 36              | 2170             |
| 75            | 36              | 2030             |
| Mean          | 36              | 2092             |

## Saline Seep Formation and Background of the Seep at WREC

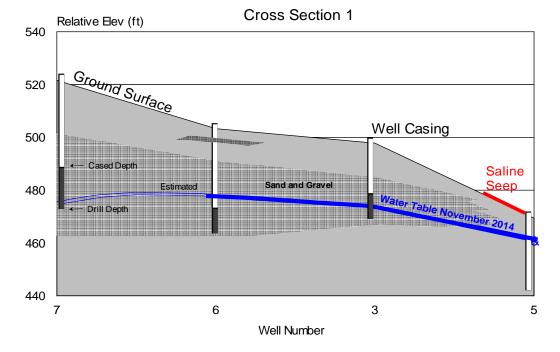
Clair Keene, Jim Staricka, Kyle Dragseth, Jerry Bergman, and Jane Holzer, Montana Salinity Control Association

## Background


The WREC and Montana Salinity Control Association (MSCA) partnered to monitor and reclaim a saline seep at the WREC dryland research farm. The project is located in T154N R102W Section 36 of the Fifth Principle Meridian Public Land Survey System (PLSS).

The saline seep started forming in the 1990's and was characterized by a depression in the south west corner of the field that lay wet in the spring, struggled to produce crops, and had a weedy cover of foxtail barley and kochia. In dry years, ground water and salts wicked upwards from the shallow water table to evaporate and form a white, salt crust on the soil surface. At the study outset, the seep was approximately one acre in size, however, a larger area of the field exhibited reduced production.

## Investigation


- **Fieldwork:** On August 18, 2014, ten shallow ground water monitoring wells were installed nine recharge identification wells and one discharge area well. All of the wells were cased at the time of drilling with 2" PVC well casing, backfilled with pea gravel in the saturated zone and sealed with bentonite within the top five feet of the ground surface. Each well was surveyed for surface elevation in relation to the other wells. Ground surface elevations and well measurements to the water table are used to determine the direction of ground water flow and the location of the recharge area.
  - **Soils:** In the investigated area, the soil texture in the upper 0- to 5-foot soil profile is predominantly Clay or Sandy Clay Loam derived from Glacial Till left behind from the previous glacial periods. Glacial till in this area is mainly clay and clay loam soils.

Clay and Sandy Clay Loam have a water holding capacity of 2.0-2.2 inches of Plant Available Water (PAW) per foot



of soil. Cereal grains and other annual crops typically root four feet deep or shallower. The total PAW can be estimated based on the soil type in the recharge area by using the average of 2.0 in. PAW/foot of moist soil for Clay soil multiplied by the four feet of rooting depth. Therefore, the top four feet of soil can store about 8 inches of water that is available to plants. When the soil profile is recharged or at moisture capacity, any excess soil moisture will leach below the rooting zone and recharge the water table. The sand and gravel layers hold less than one inch of PAW.

- **Geology:** In this area, bedrock is the Bullion Creek Formation, also known as the Fort Union Formation in Montana. It is a clay shale, siltstone, and sandstone formation with numerous lignite layers. This formation extends hundreds of feet deep and is the semi-impermeable layer that perches, or holds, shallow ground water from local recharge and contributes salt to the ground water system (See Saline Seep Diagram). Bedrock was not encountered in any of the shallow wells installed at this site, but it would be present at a deeper depth. Lignite was also not found in the soil profile at this site.
- **Ground Water:** The ground water flow direction at this site is north to south. Cropland north of the saline seep is contributing to the elevated water table causing the saline seeps. The difference in water table elevation from one well to another indicates the pressure-gradient influencing ground water flow (See Cross Section 1).



## Williston Research and Extension Center

#### Perennial plants:

In order to reclaim saline seeps, land-use changes must be made in the recharge area. In June 2016, an area of approximately 40 acres was planted to perennial forages in an attempt to lower the water table and reclaim the saline seep.

To assist area producers with future forage variety selection and evaluate currently available alfalfa varieties side-by-side in northwestern North Dakota, WREC partnered with forage seed company Alforex Seeds to establish a salt-tolerant forage variety trial in the area of the saline seep. One June 9, 2016, four varieties of alfalfa and two perennial grasses were seeded in a replicated trial in the most intense part of the saline seep. Check strips were planted to the north of the variety trial in non-saline conditions. Alfalfa varieties planted were Rugged, Magnum Salt, AFX 457, and PGI 427. Perennial grasses planted were AC Saltlander mix (50% AC Saltlander green wheatgrass, 24% slender wheatgrass, and 26% tall fescue) and Garrison creeping foxtail, a flood-tolerant species.

## Saline Seep Reclamation with Salt-Tolerant Perennial Forages Update

#### Clair Keene, Jim Staricka, and Kyle Dragseth

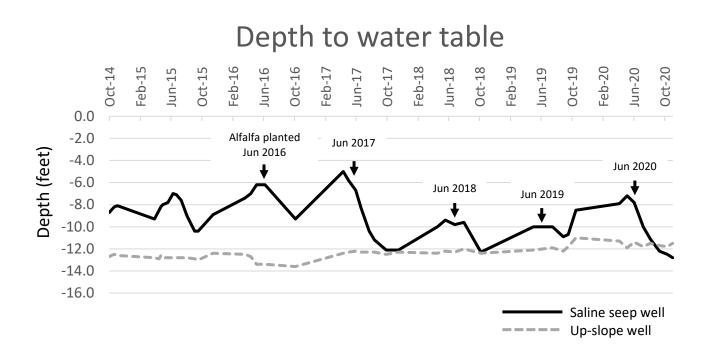
This on-going research and extension project is reclaiming acres lost to a saline seep on the dryland farm at the Williston Research Extension Center. In 2014, shallow ground water monitoring wells were installed to identify the recharge and discharge areas associated with a saline seep that had been growing for approximately 15 years. In June 2016, an area of approximately 40 acres was planted to salt-tolerant alfalfa varieties and perennial grasses to lower the water table and allow salts concentrated at the soil surface to be washed down into the soil profile and, eventually, deeper than the plant rooting zone. Over the worst part of the saline seep, we planted a variety trial to evaluate the salt tolerance of four alfalfa varieties and two perennial grasses: alfalfa varieties AFX 457, PGI 427, Magnum Salt, and Rugged; perennial grasses Garrison creeping foxtail and AC Saltlander.

Stand evaluations in May 2017 estimated all alfalfa varieties at 80-90% ground cover with the stand in good to very good condition. The perennial grasses did not establish as well as the alfalfa and had poor to fair stands due to difficulty establishing in the no-till, heavy-residue conditions. In May 2018, all alfalfa varieties had very good stands and 90-95% ground cover, demonstrating good winter hardiness in Northwest North Dakota. In early June 2019, alfalfa stands were rated as good to very good and the perennial grasses were starting to fill in, though they still had not achieved consistent ground cover in all the plots. The site received 8" of rain in September 2019, a record-high for the month, and went into winter with saturated soils. The wet soil and quick, hard freeze that occurred in October 2019 was hard on many perennials in the region. Jane Holzer of the Montana Salinity Control Association noted that there was a lot of winter kill of shrubs and trees across central and eastern Montana for the same reason. In spring 2020, winter kill was observed in the lowest and wettest part of the seep. Unfortunately, these low-lying plots tended to be the highest yielding in previous years, so over-all alfalfa biomass production from the seep is expected to decline. In 2020, alfalfa biomass was sampled from areas with surviving alfalfa plants in plots exhibiting winter kill; care was taken to approximate biomass production representative of the whole plot.

The variety trial plots were cut once in the seeding year and twice each year since. With the exception of spots that winter-killed, the plots were in good to very good condition in early June 2020 following the wet fall of 2019. However, the stand matured quickly and regrew slowly after first cutting as less than 1" of total rainfall occurred April through late June. Less than 2" of rain occurred in July and the field looked drought stressed by late July. By the end of the growing season, Williams County was designated as being in a severe drought.

Saline seep alfalfa yields 2016 – 2020 in Tons/ acre. Note, tons per acre were calculated from oven dry biomass samples.

|                 | 2016    |         | 2017    |       |         | 2018    |       |         | 2019    |       |         | 2020    |       |
|-----------------|---------|---------|---------|-------|---------|---------|-------|---------|---------|-------|---------|---------|-------|
|                 | 12 WAP+ | 1st cut | 2nd cut | Total |
| Alfalfa variety |         |         |         |       |         |         |       |         |         |       |         |         |       |
| AFX 457         | 0.7     | 2.0     | 1.7     | 3.7   | 2.2     | 2.0     | 4.2   | 1.1     | 1.3     | 2.4   | 0.9     | 1.3     | 2.2   |
| PGI 427         | 0.6     | 1.9     | 1.2     | 3.1   | 2.7     | 2.1     | 4.8   | 2.3     | 1.2     | 3.5   | 1.7     | 1.2     | 2.9   |
| Rugged          | 0.7     | 1.7     | 1.9     | 3.6   | 2.3     | 2.2     | 4.5   | 1.4     | 0.7     | 2.1   | 1.0     | 1.0     | 2.0   |
| Magnum Salt     | 0.7     | 1.7     | 1.3     | 3.0   | 2.0     | 1.8     | 3.8   | 1.7     | 1.1     | 2.8   | 1.3     | 1.1     | 2.4   |
| Mean            | 0.7     |         |         | 3.4   |         |         | 4.3   |         |         | 2.7   |         |         | 2.4   |


<sup>†</sup>WAP = Weeks after planting

#### **Soil Salinity Monitoring**

Fall soil sampling was conducted 2016-2019 and documented a decrease in electrical conductivity (EC) in the top 0-3" of the soil profile. Unfortunately, in fall of 2020, we were unable to take soil cores for EC sampling due to the extremely dry conditions. We plan to soil sample and measure EC in the saline seep in 2021 if environmental conditions allow. As in the past two years, we also took a series of deep soil cores with a truck-mounted hydraulic soil sampler to check salinity in deeper layers of the soil profile. However, at the time of writing this report, lab results were not available to report. These results will be provided in the next project update.

#### Water Table Management

Planting 40 acres of alfalfa in the recharge area of the seep has been critical to managing the water table at this site. Depth to water table has been monitored using shallow ground water wells since 2014. Below is a figure of measurements taken at two wells at the site from 2014-2020. The black line is from the well closest to the saline seep and the gray dotted line is from a well at a higher elevation up-slope from the seep. The peaks in the black line show the water table rising under the seep, i.e. ground water recharge, after spring snow melt. We see a strong drawdown in the water table during the dry 2017 growing season when the alfalfa used soil water without additions from precipitation. The truncated peak in 2018 shows that the alfalfa successfully limited recharge during a growing season with above-normal precipitation. In 2019, another truncated peak shows the alfalfa prevented a spike in the groundwater after a snowy 2018-2019 winter. The sharp increase in the water table observed in October 2019 is a result of the 8" of rain received the month before. The water table under the seep rose to its shallowest depth in three years in May 2020, but began receding in June. The alfalfa drew down the water table during the severely dry 2020 growing season to its lowest-ever reading in November 2020. These observations show that the alfalfa used enough water to prevent the water table from rising to levels observed before it was established in spring of 2017. These data also suggest that even though the ground water at this site is very responsive to changes in precipitation. the alfalfa is able to keep a rising water table in check and draw it down by the end of the growing season.



Acknowledgements: Jane Holzer, Montana Salinity Control Association and Don Miller, Alforex Seeds

## Irrigation Research at Nesson Valley 2020

Justin Jacobs, NDSU – Williston Research Extension Center

| Weather Summary - Nesson Valley, ND <sup>+</sup>                    |        |          |      |            |                                  |
|---------------------------------------------------------------------|--------|----------|------|------------|----------------------------------|
|                                                                     | Precip | oitation | ,    | ire        |                                  |
| Month                                                               | 2020   | Avg‡     | 2020 | Avg        | Days<br>above<br>89 <sup>0</sup> |
|                                                                     | -inc   | hes-     |      | -degrees F | 0                                |
| Oct-Dec. 2018                                                       | 0.59   | 1.18     |      |            |                                  |
| April                                                               | 0.13   | .73      | 36.5 | 40.7       | 0                                |
| May                                                                 | 0.45   | 2.10     | 52.5 | 53.7       | 0                                |
| June                                                                | 2.22   | 2.9      | 64.0 | 63.5       | 1                                |
| July                                                                | 1.73   | 2.18     | 68.5 | 69.4       | 3                                |
| August                                                              | 0.76   | 1.45     | 69.5 | 67.4       | 11                               |
| September                                                           | .21    | 2.19     | 56.5 | 57.6       | 0                                |
| April-July                                                          | 4.53   | 7.92     | 55.4 | 56.8       | 4                                |
| April-Sept                                                          | 5.5    | 11.56    | 57.9 | 58.7       | 15                               |
| Total- (Oct 2019 -<br>September 2020)                               | 6.09   | 12.75    |      |            |                                  |
| Last spring frost = May 15, 2020 ( $28.5^{\circ}$ )                 |        |          |      |            |                                  |
| First fall frost = September 7, 2020 $(31.5^{\circ})$               |        |          |      |            |                                  |
| <sup>+</sup> NDAWN Hofflund site<br>‡ Average since January 1, 2006 |        |          |      |            |                                  |

Different. The word doesn't even begin to encompass what the year two-thousand and twenty felt like. To start, we were not certain what lay ahead as far as field work was concerned in the spring. The potential for a shut-down loomed over the spring as we prepared to start the new field season. The late season moisture from 2019 also looked to make an early start impossible. However, neither factor delayed planting like was previously feared. Instead, we were able to get our first trials planted on the 27<sup>th</sup> of April.

To begin the year, we hired a new Research Specialist, Andrina Turnquist, to help with field and trial maintenance. She graduated in 2020 with a Bachelor's in Crop and Weed Science from NDSU. She was a great help to the Nesson Valley team as she assisted in everything from seed increase work to variety trial maintenance.

A total of 17 variety trials in 14 different crop were planted in 2020. The yields were lower in winter wheat and spring wheat than in previous years and were higher in all other crops than on average. As a

result of no rainfall, nearly 12 inches of water were applied to the small grain crops. Several new and experimental varieties were tested in the spring wheat trial, thus bringing the average down compared to previous years. Testing newly released lines allows for the opportunity to see what varieties have the potential to perform well in an irrigated environment and which varieties will not. Long term data is being analyzed to determine variety performance over time. The early-season broadleaf crops; canola, field pea, flax, canola, and safflower received nearly 10 inches of irrigation. The corn and late-season broadleafs crops; dry bean, soybean, and sunflower received nearly 18 inches of irrigation. An early killing frost in September effectively ended the growth of corn, sunflower, dry bean, and soybean before reaching full maturity. The averages for each crop/trial are listed below. As a result of the early frost, the soybean trial was severly impacted and therefore will not be reported for 2020. The crop variety information can be found throughout this Ag Research Update.

| Crop (# of varieties) | 2020 Average | Сгор           | 2020 Average |
|-----------------------|--------------|----------------|--------------|
| Winter Wheat (24)     | 95 bu/a      | Field Pea (7)  | 67 bu/a      |
| Spring Wheat (48)     | 76 bu/a      | Flax (15)      | 43 bu/a      |
| Durum Wheat (21)      | 74 bu/a      | Safflower (22) | 1,371 lb/a   |
| Barley (12)           | 132 bu/a     | Canola (11)    | 2,408 lb/a   |
| Oat (12)              | 196 bu/a     | Sunflower (16) | 2,798 lb/a   |
| Corn (15)             | 160 bu/a     | Dry Bean (18)  | 3,031 lb/a   |

One of the major projects at Nesson this year was a trial looking at optimal planting population and fertilization for canola under irrigation. Four planting rates were planted with six fertilizer rate treatments. Canola has not traditionally been a crop grown under irrigation. However, variety trial results have shown a significant increase in canola yield when grown under irrigation. While research and data exists for dryland canola production practices in North Dakota, there is no research for irrigated canola production. The highest yield results were observed in the 780,000 population when fertilized with 150 pounds of Nitrogen and 30 pounds of Sulfur. The report can be read in this Ag Research Update.

We look forward to what 2021 holds. If there are any projects that you think we need to look at, please let us know. We will strive to continue to provide you with the best possible data for variety selection and producton management in an irrigated system.

Justin Jacobs and James Staricka, NDSU - Williston Research Extension Center

#### Introduction

Farmers have sometimes previously utilized companion crops to give an advantage or benefit to the cash crop being grown. Similarly, cattle producers have been growing multiple crops together as a source of hay or forage. However, the idea of "intercropping", of growing two cash crops together to be separated as individual cash crops, is a relatively new and emerging idea. Very few management recommendations are available for intercropping in general. Intercropping presents the ability to increase our land use efficiency by growing two cash crops in one season. The ability to harvest two crops in one field allows the farmer a potential source of extra income.

In order for intercropping to work to the best of its potential, it should be thought out in all aspects from planting, harvest, post-harvest separation, and crop sales. One of the key concepts of intercropping is to have varying seed sizes to allow the two crops to be separated easily after harvest. Another important factor is to make sure the crops have similar maturities. As with all farm production, the overall economic impact should be considered first. What are the markets currently doing for each individual crop? Is one crop outperforming the other at the market? In intercropping it is important to have a targeted crop in mind. Choose a crop that can be catered to with management practices favoring economic and infrastructure suitability.

With these strategies in place, what management practices need to happen? For example, in a field pea and canola system, if canola is your target crop, then fertilizer with nitrogen and sulfur is recommended. In a chickpea and flax system, if chickpea is your target crop, then nitrogen fertilizer may not be necessary. With these goals in mind, intercropping decisions become easier to make.

This was the third year of intercropping research conducted at Nesson Valley. Two systems have been tested: field pea and canola, and flax and chickpea. While in 2019 excellent yields were obtained for both pea and canola, 2020 presented new challenges.

#### **Materials and Methods**

| Table 1. Planting ratios in a field pea and canola intercrop |                      |                            |  |  |
|--------------------------------------------------------------|----------------------|----------------------------|--|--|
| Ratio                                                        | <b>Planting Rate</b> | <b>Planting Population</b> |  |  |
| (Field Pea: Canola)                                          | ( <b>lb/a</b> )      | (seeds/a)                  |  |  |
| 100:0                                                        | 180:0                | 352,000:0                  |  |  |
| 0:100                                                        | 0:4                  | 0:304,000                  |  |  |
| 66:66                                                        | 120:2.6              | 239,000:203,000            |  |  |
| 66:33                                                        | 120:1.3              | 239,000:101,000            |  |  |
| 50:50                                                        | 90:2                 | 176,000:159,000            |  |  |
| 33:66                                                        | 60:2.6               | 112,000:203,000            |  |  |

| Table 2. Nitrogen fertilizer rates in a field pea and |                          |  |  |  |
|-------------------------------------------------------|--------------------------|--|--|--|
| canola intercrop                                      |                          |  |  |  |
| Fertilizer Percentage                                 | Nitrogen Fertilizer Rate |  |  |  |
| %                                                     | ( <b>lb/a</b> )          |  |  |  |
| 100                                                   | 120                      |  |  |  |
| 50                                                    | 60                       |  |  |  |
| 0                                                     | 0                        |  |  |  |
| 30 lb/a of Sulfur was applied using Potassium         |                          |  |  |  |
| Sulfate                                               |                          |  |  |  |

A field pea and canola trial was planted with the goal of looking at the potential to reduce field pea lodging when intercropped with canola. The trial focused on six planting ratios (Table 1) in alternating rows with peas and canola across three fertilizer rates (Table 2). The nitrogen (N) fertilizer rates were adjusted according to the soil test results obtained the previous fall. A potassium sulfate fertilizer (0-0-53-17S) was applied to the entire trial in order to achieve a 30-lb/a rate of sulfur for the canola. Each planting ratio was planted in each of the fertilizer rates being tested. These combinations were replicated four times. Additionally the trial was replicated as an irrigated and a non-irrigated trial.

The trial was planted on May 20, 2020. Each crop was planted separately, with field pea being planted first followed by canola. The field pea variety used was

AC Agassiz and the canola variety was CS2200 CL. The use of a Clearfield canola allowed the use of Imazamox to be applied for a wider control of broadleaf weeds that would be tougher to control with a conventional canola variety. Cornerstone Plus was used as a pre-plant burn-down for any existing weeds. Sonolan HFP was used as a pre-emergent herbicide, Section 3EC was applied for grass control, and Beyond was used at a reduced rate for broadleaf control. The rate was reduced to minimize the damage potential for field pea. In-season observations on lodging in field pea, flowering dates, plant height, and maturity dates were recorded during the growing season. Harvest occurred on August 26, 2020. After harvest, yield, oil content, and protein content were measured on the harvested grain.

A chickpea and flax trial were planted with the goal of looking at disease reduction in chickpea. The trial was seeded on May 21, 2020. However, the chickpeas did not emerge uniformly, so the trial was abandoned in early July. The chickpea and flax combination will be examined again in 2021.

#### **Results and Discussion**

The results from 2020 were less favorable than hoped. One management strategy in a pea/canola intercrop is the use of a Clearfield canola variety. The active ingredient, Imazamox is registered for field pea and canola application. However, it is recommended to have a solution, such as Bentazon, in the tank mix when applying on peas. In 2019 an application of 4 ounces per acre of Imazamox was made and no visual injury seen on the field pea. In 2020 a 3-ounce per acre application of Imazamox was made, and visual injury and stunting were apparent in the field pea. As a result, the harvested field pea had a significantly reduced yield compared to 2019. The injury was seen in both the irrigated and non-irrigated trials.

The addition of canola to a field pea system did not result in a reduction of lodging as has been seen in previous years. This appears to be a result of the field pea injury as the plants were stunted in height. The canola did not act a natural trellis system for the field pea in 2020. Additionally, the field pea was shaded out in the plant ratios that had higher concentration of canola. As a result of the plant competition in 2020, the field pea yields were reduced. The canola suffered as a result of low emergence, reduced plant establishment, and high temperatures.

| Table 3. Irrigated Peaola yield and LER values |                  |               |      |  |
|------------------------------------------------|------------------|---------------|------|--|
| (Field Pea:Canola)                             | Field Pea (Lb/a) | Canola (Lb/a) | LER  |  |
| 0:100                                          | -                | 1,935         | 1.00 |  |
| 100:0                                          | 2,187            | -             | 1.00 |  |
| 33:66                                          | 663              | 1,349         | 1.00 |  |
| 50:50                                          | 811              | 1,137         | 0.96 |  |
| 66:33                                          | 893              | 1,143         | 1.00 |  |
| 66:66                                          | 1,052            | 955           | 0.97 |  |

| Table 4. Non-Irrigated Peaola yield and LER values |                  |               |      |  |
|----------------------------------------------------|------------------|---------------|------|--|
| (Field Pea: Canola)                                | Field Pea (lb/a) | Canola (lb/a) | LER  |  |
| 0:100                                              | -                | 1,762         | 1.00 |  |
| 100:0                                              | 1,948            | -             | 1.00 |  |
| 33:66                                              | 409              | 1,203         | 0.89 |  |
| 50:50                                              | 536              | 1,113         | 0.91 |  |
| 66:33                                              | 753              | 878           | 0.88 |  |
| 66:66                                              | 652              | 861           | 0.82 |  |

Despite the poor appearance and results of the trial, several important observations were made. One observation was the continued interaction of fertilizer rate on pea and canola yield. As the nitrogen fertilizer rate was increased the field pea yield decreased, while the canola yield increased. This trend was noticed in both the irrigated and non-irrigated trials.

Most intercropped ratios did not achieve a Land Efficiency Ratio (LER) above 1.0 in 2020. However, three treatments in the irrigated trial had LER values equal to or greater than 1.0 (Tables 3 and 4). LER values above 1.0 indicate a greater land use efficiency. A high land use efficiency occurs when the combination of the

two crops on one field out-yields what the potential of a monocrop on that field would yield. The plant ratios that resulted in the best LER value for irrigated pea/canola intercrop was the 33:66 and 66:33 treatments across fertilizer treatments. While over-yielding did not occur the majority of the time, the combined yields maintained near a 1.0 LER value. While yield was lost in some of the crops, in those cases the other crop compensated for the loss of yield, the combined yield helped maintain the overall yield and production of the field.

#### Summary

While herbicide injury hampered the overall potential of the trial, several key observations were gleaned. For a second straight year, field pea yield decreased as the fertilizer rate increased. Meanwhile, the canola behaved inversely, the yield increased as the fertilizer rate increased. While yields were significantly decreased in 2020, the LER values remained near 1.0 indicating little loss in overall field efficiency. Work will continue in 2021 to provide a better set of data to understand interactions seen in field pea intercropped with canola.

# Fall and Spring Nitrogen Application and Foliar Application of Magnesiumand Zinc to Improve Sugarbeet Yield and Sugar Content in ConventionalTilled and No-Till ManagementsEARC, Sidney, MT

Apurba Sutradhar, Chengci Chen, Bill Frank, Sooyoung Frank, Rebecca Garza, Calla Kowatch-Carlson, Thomas Gross, Ronald Brown, and W. Tanner Stevens,

#### Material and Methods: Irrigated

| <b>J</b>                                      |                                                         |
|-----------------------------------------------|---------------------------------------------------------|
| Location: EARC                                | Previous crop: Spring Wheat                             |
| Planting date: 4-22-2020; replanted: 5-11-202 | 20 due to Harvested: 9-21-2020                          |
| frost damage                                  |                                                         |
| Tillage: Conventional and no-till             | Soil type: Savage Silty Clay Loam                       |
| Plot size: 24'W x 30'L                        | Row spacing: 2 ft.                                      |
| Variety: Crystal S696 GEM 100                 | Replications: 4                                         |
| Experimental design: Randomized Complete      | Block N rates: 0, 120, 160, and 200 lb. N/ac applied in |
|                                               | fall 2019 and in spring 2020                            |
| Mg and Zn rates: Mg @ 1.0 lb/ac and Zn @ (    | D.8 lb/ac Herbicide: Powermax @ 24 oz/ac on 5/29/2020,  |
| foliar applied once                           | 6/07/2020, and 6/11/2020.                               |
| Rainfall: 5.81 inch                           | Irrigation: 13.2"                                       |
|                                               |                                                         |

# Table 1. Sugarbeet stand, root yield, sugar concentration, and extractable sugar yield as affected by tillage, N application time, and fertilizer treatments.

| Sources of Variation  | Treatments               | Stand          | Root yield   | Sugar        | IV             | SLM    | Extractable sugar |
|-----------------------|--------------------------|----------------|--------------|--------------|----------------|--------|-------------------|
|                       |                          | (ac)           | (T/ac)       | (%)          |                |        | (T/ac)            |
| <b>T</b> 10           |                          | 44077          | 04.0         | 40.4         | 0.54           | 0.00   | 0.40              |
| Tillage               | Conventional             | 44277          | 34.9         | 19.4         | 0.54           | 0.80   | 6.43              |
|                       | No-till                  | 43996          | 29.3         | 19.4         | 0.49           | 0.74   | 5.46              |
| N application Time    | Fall                     | 44186          | 31.4         | 19.4         | 0.51           | 0.77   | 5.82              |
|                       | Spring                   | 44086          | 32.8         | 19.4         | 0.51           | 0.77   | 6.07              |
| Fert. Treatment       | Check                    | 42290          | 26.0         | 19.7         | 0.47           | 0.69   | 4.89              |
| ren. meannenn         | 120 N                    | 44377          | 30.4         | 19.6         | 0.47           | 0.03   | 5.73              |
|                       | 120 N + Mg               | 43016          | 30.4         | 19.0         | 0.48           | 0.75   | 5.71              |
|                       | 120 N + Mg<br>120 N + Zn | 43010          | 32.9         | 19.7         | 0.50           | 0.76   | 6.17              |
|                       | 160 N                    | 45103          | 33.1         | 19.3         | 0.53           | 0.70   | 6.11              |
|                       |                          | 43103          | 33.5         | 19.3         | 0.53           | 0.80   |                   |
|                       | 160 N + Mg<br>160 N + Zn | 44195          | 33.5<br>34.4 | 19.2         | 0.52           | 0.79   | 6.11<br>6.30      |
|                       | 200 N                    |                | 33.5         | 19.3         | 0.52           | 0.79   | 6.15              |
|                       |                          | 45375<br>41654 | 32.2         | 19.2<br>19.0 | 0.55           | 0.83   | 5.91              |
|                       | 200 N + Mg<br>200 N + Zn | 46419          | 32.2<br>34.6 | 19.0<br>19.2 | 0.54           | 0.81   | 6.40              |
| Statistics            |                          |                |              |              | - <i>P</i> > F |        |                   |
| Tillage               |                          | 0.71           | <0.0001      | 0.90         | 0.0005         | 0.0005 | <0.0001           |
| Time                  |                          | 0.89           | 0.01         | 0.70         | 0.95           | 0.95   | 0.02              |
| Treatment             |                          | 0.07           | <0.0001      | 0.002        | 0.004          | 0.004  | <0.0001           |
| Tillage*Time          |                          | 0.36           | 0.85         | 0.59         | 0.13           | 0.13   | 0.93              |
| Tillage*Treatment     |                          | 0.28           | 0.87         | 0.24         | 0.09           | 0.09   | 0.98              |
| Time*Treatment        |                          | 0.47           | 0.54         | 0.83         | 0.06           | 0.06   | 0.57              |
| Tillage*Time*Treatmen | t                        | 0.93           | 0.62         | 0.98         | 0.99           | 0.99   | 0.78              |

## **Horticulture Program**

## Rojee Chipalu Pradhan

# "Gardening is the art that uses flowers and plants as paint, and the soil and the sky as canvas." - Elizabeth Murray

This year the Horticulture program experienced a decline in manpower. However, we could able to keep the WREC horticulture garden and landscapes at their absolute best. We appreciate the volunteers (two 4-H kid groups and one individual) to transplant flowers and vegetable seedlings in the display garden. When it comes to the weather, the pattern is different than last year. We had severe drought with seasonal total rainfall of 4.56 inches only. The last spring frost was on May 11 and the first fall killing frost occurred on September 8, 2020.

## **All-America Selection Display Garden**

I started stem cuttings of Begonia and different varieties of Geranium from the beginning of November 2019 and seeded flower and vegetable seeds in the Horticulture lab under the light shelves from the beginning of March to the first week of May 2020. The seeding date was based on the growing requirements of a variety given in a seed packet. Some varieties require at least 10 weeks before they become suitable for planting outside. This year, we planted 28 All-America Selection flower varieties and 15 vegetable varieties mostly tomatoes and peppers. There were one variety of beans, cucumber, peas, potato, and strawberry. Besides the All-America Selection variety, there were 18 varieties of pollinator-friendly annual flowers. We harvested around 311 lbs. of produce from the garden including small fruits. WREC All-America Selection garden has been a public display garden for more than a decade. Every year we are receiving previous and recent award winners of flower and vegetable seeds from All-America Selections around September/ October and live plants (flower) in April. People who are interested in gardening can visit their website (https://allamericaselections.org) for cultivar information, gardening tips, latest winners as well as recipes and landscape ideas.



All-America Selection flowers Petunia Tidal Wave Red Velour, Nasturtium Baby Rose, 'and 'Big Duck Orange' Marigold. Photo taken by Rojee Chipalu Pradhan.

## Haskap

Haskap or Honeyberry (*Lonicera caerulea* L.) belongs to the Honeysuckle family. The haskap trial was established in 2017 at the Williston REC dryland station in collaboration with Dr. Harlene Hatterman-Valenti, Professor, High-Value Crop Production, NDSU, Fargo. There are 12 different varieties with four replications and each plot has four plants. The information on cultivars used in the WREC trial is listed in

Table 1. Some of the plants did not survive, so we replanted them in September 2018. This year we just evaluated the survival and maintained the growth of shrubs by regular drip irrigation, hand weeding, and spraying preen (a weed preventer) during summer. This year, some varieties started producing fruits but we did not harvest them.

## Garlic

Three different varieties of garlic were planted last fall on September 27, 2019. The garlic was harvested on July 17<sup>th</sup>, 2020. The total harvested weight was 9 lbs. including tops.

| Variety       | # of cloves planted | Total Production (lb) |
|---------------|---------------------|-----------------------|
| Cheshok Red   | 35                  | 4.6                   |
| Silver Rose   | 30                  | 2.2                   |
| Inchelium Red | 34                  | 2.2                   |

## Master Gardener Pollinator Garden

The objectives of Master Gardener Pollinator Garden is to provide Master Gardeners with volunteering opportunities, build a habitat that will nourish pollinators, and create a public teaching garden that can be jointly utilized by Master Gardeners and Extension Agents. It is believed that the activities will encourage members of the general public to build home pollinator gardens. Like every year, this year also we planted a lot of pollinator-friendly annual flowers in the pollinator garden. During the growing season, the garden was maintained by regular hand weeding and watering.



Master Gardener Certified Pollinator Garden sign on display at the WREC gardens. Photo taken by Rojee Chipalu Pradhan.

## **Daylily Collection**

The WREC dryland station established The World Collection of Daylilies bed in 2004. Over the years different cultivars of Daylilies have been added to the collection bed. The Daylilies cultivars have grown vigorously and started encroaching each other and also there were a lot of weeds in the beds. Therefore, we started relocating the Daylily plants in 2018 to another area to maintain plant distance and used landscape fabric to reduce weed infestation. We received some varieties of Daylily from Fargo in the fall

of 2019 and transplanted them from May 4 to 8, 2020, and relocated some Daylilies from the old bed in June 2020. The relocation was completed this year. The Daylily area has been maintained by watering once a week and hand weeding. There are around 125 different cultivars of Daylily in our collection.



Daylily collection bed. Photo taken by Rojee Chipalu Pradhan.

#### **Collaboration and Outreach Activities**

2020 North Dakota Exotic Woodboring/Bark Beetle Survey:

Every year the North Dakota Department of Agriculture conducts a North Dakota Exotic Woodboring/Bark Beetle Survey in the Trees of WREC dryland station. There were seven different traps on seven trees (four/five different cultivar). The traps were installed on May 29, 2020, and removed on September 28, 2020. Every two weeks we collected insects, changed the lure according to schedule instruction, and shipped the collection to the ND Department of Agriculture.

Spring Tree and Garden Workshop:

Williston Research Extension Center, in collaboration with the City of Williston, hosted a Spring Tree and Garden Workshop on March 14, 2020. The objective of the workshop was to help gardeners, homeowners, and horticulture professionals to better understand and troubleshoot problems on trees, common lawns, and gardens. There were six presentations, and three hands-on sessions: Floral display design, Composting Q and A and Demo, and Tree pruning. Around 50 people participated in this workshop. We appreciate the City of Williston for the collaboration and financial supports and all the presenters from different organizations for giving their valuable time and sharing their expertise with the participants.

- This year we gave away around 150 seedlings of flowers, tomatoes, and peppers (sweet and hot) to the community members.
- Participants of the Leadership Williston Ag Day group took a garden tour on September 16, 2020.

| Table 1. | Williston | haskap | cultivar | information. |
|----------|-----------|--------|----------|--------------|
|----------|-----------|--------|----------|--------------|

| Cultivar                  | Avg.<br>berry<br>size | Flavor          | Bloom<br>time | Ancestry/<br>Country of<br>origin | Breeder                | Pollination<br>information                                 |
|---------------------------|-----------------------|-----------------|---------------|-----------------------------------|------------------------|------------------------------------------------------------|
|                           | g                     |                 |               |                                   |                        |                                                            |
| Aurora                    | 2.2                   | Sweet           | Early-<br>mid | Japan/Russia                      | BB <sup>1</sup>        | Pollinator for<br>Borealis, Tundra,<br>Indigo varieties    |
| Berry Smart Blue          | 0.8                   | Sweet/<br>Tart  | Mid-<br>Late  | Russia                            | Jim Gilbert            | Pollinates "Indigo"<br>varieties                           |
| Boreal Beauty             | 2.6                   | Sweet           | Mid-<br>Late  | Japan/Russia/<br>Kurile           | BB                     | Pairs with other<br>"Boreal" varieties                     |
| Boreal Blizzard           | 2.8                   | Sweet           | Mid-<br>Late  | Japan/Russia                      | BB                     | Pairs with other<br>"Boreal" varieties                     |
| Indigo Gem                | 1.3                   | Sweet/<br>Tangy | Early         | Japan/Russia/<br>Kurile           | BB                     | Needs a pollinator<br>like Berry Smart<br>Blue or Honeybee |
| Indigo Treat              | 1.4                   | Sweet           | Early         | Japan/Russia/<br>Kurile           | BB                     | Needs a pollinator<br>like Berry Smart<br>Blue or Honeybee |
| Sugar Mountain® Blue      |                       | Sweet           | Early         | Czech<br>Republic                 | Frantisek Krejci       | Pairs with Sugar<br>Mountain®Eisbar                        |
| Sugar Mountain®<br>Eisbar |                       | Sweet/<br>Tangy | Early         | Czech<br>Republic                 | Kordes<br>Jungpflanzen | Pairs with Sugar<br>Mountain®Blue                          |
| Yesberry®Solo             | 1.8                   | Sweet/<br>Tangy | Late          | Japan                             | MT <sup>2</sup>        | Pairs with Maxie or other Yezberry® variety                |
| YezBerry®Honey<br>Bunch   | 1.6                   | Sweet           | Late          | Japan                             | MT                     | Pairs with other<br>Yezberry® variety                      |
| Yezberry® Maxie           | 2.0                   | Sweet/<br>Tangy | Late          | Japan                             | MT                     | Pairs with Solo or other Yezberry® variety                 |
| Yezberry® Sugar Pie       | 1.8                   | Sweet           | Late          | Japan                             | MT                     | Pairs with other<br>Yezberry® variety                      |

 $^{1}\text{BB}$  = Dr. Bob Bors - University of Saskatchewan breeding program.  $^{2}\text{MT}$  = Dr. Maxine Thompson - Oregon State University.



## WREC Foundation Seed Increase Update

Kyle Dragseth, David Weltikol, Kelly Stehr, NDSU Williston Research Extension Center

Well another year came and went and the best way to describe this year at the WREC was dry We only had 4.02 inches of rain during the growing season and no shortage of wind. With the future outlook for agriculture shaky at best, with input prices rising and commodity prices hanging at the lowest prices in decades, there isn t a lot of optimism in the industry. However, we can help here at the Williston Research Extension Center. NDSU prides itself on truly caring about the state Ag economy and individual producers profitability. The NDSU plant breeders are being very progressive to produce varieties to help the bottom line. We also increased spring wheat and winter wheat varieties from the Montana State university breeding program and also will be offering some Canadian genetics of durum, oats, and barley.

A new NDSU chickpea (Crown) is on the horizon for availability in 2021.

Listed below are the varieties available for sale.

| HRSW        | Durum        | Lentil   | <u>Soybean</u> |
|-------------|--------------|----------|----------------|
| Bolles      | ND Riveland  | Avondale | ND17009GT      |
| ND Vit-pro  | AAC Spitfire |          |                |
| ND Frohberg | Lebsock      |          |                |
| ND Mott     |              |          |                |
| ND Lanning  |              |          |                |

| <u>Oat</u>         | Barley            | Winter Wheat   | Pea              |
|--------------------|-------------------|----------------|------------------|
| Paul (hulless oat) | CDC Maverick      | MT Ray         | ND Dawn (yellow) |
|                    | (forage and feed) | (grain or hay) |                  |
| CDC Haymaker       |                   | ND Noreen      | Hampton (green)  |
| (forage)           |                   |                |                  |

Please contact either the WREC at 701-774-4315 or Kyle Dragseth at 701-770-1652, with any questions, availability, and prices.

Today we give thanks, for the food on our tables and the clothes on our backs and the farmers who make it all possible. Amen

## The Capital Campaign Invest in the Future of Agriculture

Jerald Bergman and Tom Wheeler

A capital fundraising campaign authorized by the North Dakota Legislative Assembly and currently underway will fund construction of a new larger capacity seed conditioning facility with modern seed cleaning technology. A larger capacity horizontal handling and seed cleaning system with optical sorting technology is needed to condition and distribute pure seed of new value-added small grain, pulse crop, oilseed, and other specialty crop varieties for our North Dakota and Montana producers.

The current antiquated 5 floor seed conditioning facility at WREC, built in 1954, is the oldest and most outdated seed cleaning facility at the Research Extension Centers. This seed conditioning plant cleans only 35 bushels per hour, and is not suitable for cleaning pulse crops and other fragile seeds that require gentle handling and horizontal seed cleaning equipment and lines. Cropping patterns in the region have exploded in the last 10-15 years with a phenomenal increase in pulse crops and oilseed crops. New and improved varieties offer producers opportunities to increase profitability and enhance soil health.

A new seed conditioning facility with 200 bushel per hour capacity, optical sorter technology, and horizontal equipment layout is currently under construction and is paramount to enable WREC to provide ample quality seed of new crop varieties to ag producers on a timely basis and transfer the economic and environmental benefits to our producers in North Dakota and Montana.

Your gift to the seed conditioning plant facility is an investment in the economic improvement of agricultural crop for western North Dakota and eastern Montana.



Anyone wishing to contribute is invited to contact the Williston Research Extension Center.

Checks should be made payable to the NDSU Development Foundation with the memo WREC Capital Campaign . Contributions to the Development Foundation are deductible under Sections 170 (c) and 501 (c) (3) of the Internal Revenue Code.

| A Capital Campaign Wall of Honor will<br>be displayed in the entrance of the<br>Ernie French Center |                |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------------|--|--|--|
| Leadership                                                                                          | 25,000+        |  |  |  |
| Major                                                                                               | 15,000- 24,999 |  |  |  |
| Special                                                                                             | 10,000- 14,999 |  |  |  |
| Patron                                                                                              | 5,000- 9,999   |  |  |  |
| Contributor                                                                                         | 1,000- 4,999   |  |  |  |
| Supporter                                                                                           | 100- 999       |  |  |  |



## NOTES

## **MSU-EARC FACULTY & STAFF—2020**



Dr. Chengci Chen Superintendent/Professor

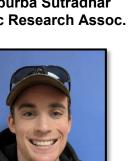


**Dr. Frankie Crutcher** Assistant Professor



Cherie' Gatzke **Administrative Assistant** 




Ron Brown Farm Manager Foundation Seedstock



**Dr. William Franck Research Scientist** 



Dr. Apurba Sutradhar **Postdoc Research Assoc.** 



**Casey Griffis Research Associate** 



Samantha Hoesel **Research Assistant** 



Dr. Fatemeh Etemadi Postdoc Research Assoc.



**Becky Garza Research Assistant** 



**Tanner Stevens** Ag Field Technician



Amber Ferda **Research Associate** 



**Calla Kowatch-Carlson Research Assistant** 

**Employees** Not **Pictured:** Maggie Brazier and Yi Zhou Graduate Research Assistants



Sooyoung Franck

**Research Associate** 

**Thomas Gross Research Assistant** 

Thank you to our 2020 Agricultural Research **Update Sponsors** 



