

# War Against Weeds in Kansas

### Sarah Lancaster

Assistant Professor & Extension Specialist Kansas State University



# Outline



### **Driver weeds in KS**



### Metabolic herbicide resistance



### **Optimizing herbicide applications**



**Targeted herbicide applications** 



## HERBICIDE RESISTANCE IN PALMER AMARANTH

| Herbicide group (example herbicide)              | Number<br>of cases | Year (and state)<br>of first report | Year of first report in KS    |
|--------------------------------------------------|--------------------|-------------------------------------|-------------------------------|
| 9, EPSPS inhibitor (glyphosate)                  | 44                 | 2005 (GA)                           | 2011                          |
| 2, ALS inhibitors (Beyond, Harmony, Glean, Purse | 25                 | 1993 (KS)                           | 1993                          |
| 5, PSII inhibitors (atrazine, metribuzin)        | 11                 | 1993 (TX)                           | 1995                          |
| 27, HPPD inhibitors (allisto Laudis Impact)      | 7                  | 2009 (KS)                           | 2009                          |
| 14, PPO inhibitors (Reflex, Cobra)               | 5                  | 2011 (AR)                           | 2021                          |
| 4, Growth regulators (2, D, dicamba)             | 3                  | 2015 (KS)                           | 2015 (2,4D)<br>2021 (dicamba) |
| 15, VLCFA inhibitors (Dual, Harness, Outladdkua) | 2                  | 2016 (AR)                           | Not yet                       |
| 10, Glutamine synthetase inhibitor (Liberty)     | 2                  | 2020 (AR)                           | Not yet                       |

## HERBICIDE RESISTANCE IN WATERHEMP

| Herbicide group (example herbicide)              | Number<br>of cases | Year (and state)<br>of first report | Year of first report in KS |
|--------------------------------------------------|--------------------|-------------------------------------|----------------------------|
| 9, EPSPS inhibitor (glyphosate)                  | 27                 | 2005 (MO)                           | 2006                       |
| 2, ALS inhibitors (Beyond, Harmony, Glean, Purs  | 27                 | 1993 (IL, IA)                       | 1995                       |
| 5, PSII inhibitors (atrazine, metribuzin)        | 15                 | 1994 (MO)                           | 1995                       |
| 14, PPO inhibitors (Reflex, Cobra)               | 12                 | 2001 (KS)                           | 2001                       |
| 27, HPPD inhibitors (allisto Laudis Impact)      | 6                  | 2009 (IL)                           | Not yet                    |
| 4, Growth regulators (2, D, dicamba)             | 3                  | 2009 (NE)                           | Not yet                    |
| 15, VLCFA inhibitors (Dual, Harness, Outladdkua) | 1                  | 2016 (IL)                           | Not yet                    |
| 10, Glutamine synthetase inhibitor (Liberty)     |                    |                                     | 2023                       |

## HERBICIDE RESISTANCE IN KOCHIA

|                                                | Number   |                 | Year of first report in |
|------------------------------------------------|----------|-----------------|-------------------------|
| Herbicide group (example herbicide)            | of cases | of first report | KS                      |
| 2, ALS inhibitors (Glean)                      | 20       | 1987 (KS)       | 1987                    |
| 9, EPSPS inhibitor (glyphosate)                | 13       | 2007 (KS)       | 2007                    |
| 5, PSII inhibitors (atrazine)                  | 13       | 1976 (KS)       | 1976                    |
| 4, Growth regulators (dicamba)                 | 7        | 1994 (MT)       | 2013                    |
| 14, PPO inhibitors (Valor, Sharpen, Authority) |          | 2023 (ND)       | Not yet                 |

## Herbicide resistance

### Target-site

- One gene
- Develops faster

- Changed genetic code at one or more nucleotides
- Increased gene expression

### Nontarget-site

- > 1 gene
- Creeping resistance
- Cross-resistance

- Altered absorption, translocation, sequestration
- Phoenix phenomenon
- Enhanced herbicide metabolism



## Metabolic resistance

- Herbicide converted to inactive forms before plant is killed
  - Cytochrome P450s
    - Step 1: Add or remove small molecules
  - Glutathione S-transfersase
    - Step 2: Add large molecules
- Affected MOA Groups:
  - ACCase (1)
  - ALS (2)
  - PS II (5)
  - Glyphosate (9)
  - DXS (13)
  - PPO (14)
  - VLCFA (15)
  - HPPD (27)



Shyam et al. 2019; \*metabolic resistance

## **Metabolic resistance**

We *must* rethink assumptions regarding herbicide resistance

- A single resistance mechanism can cause resistance to multiple herbicide group
- Reduces effectiveness of mixing and rotating herbicides



## **BMP: Mix and rotate herbicides**



Comont et al. 2020

# Mixing herbicides does NOT slow metabolic resistance



# Response to metabolic resistance

Minimize weed seed bank

 Adopt alternative management strategies





# Harvest weed seed control

- Chaff lining
- Windrow burning
- Impact mills





Harvest weed seed control can <u>complement</u> herbicides if used <u>over time</u>



### Weed seed loss

~20 to 40% shatters at header (platform)

### ~ 50 to 80% to impact mill



### Inter-row mowing

Row Shaver

### **Greenfield Robotics**



### Thermal weed control

### Electrocution

47% control of Palmer amaranth 30% reduction in viable seeds

19% control of giant foxtail

Lasers

### Directed energy



# Optimizing herbicide applications

BEYING NA

## What about layered residuals?

Pigweed control 8-12 weeks after POST treatment Weed control and soybean yield satistically similar within location





Residual herbicide 🚍 Acetochlor 🚍 Dimethenamid-p 🚍 Pyroxasulfone 🚍 S-metolachlor 💳 Non-treated

60

Palmer amaranth height as influenced by residual herbicide 2 to 8 weeks after application



### Probability of successful Palmer amaranth control



Meyeres 2024

21



Application timing at planting 14 days pre-plant  Pigweed control 21 DAP with residual herbicides applied 14 days before soybean planting or at planting

 Data averaged over 3 sites (Arkansas, Missouri, Wisconsin)

### What is the best metribuzin rate?



| Trt | Trade name           | ingredient        | Rate/A                            |
|-----|----------------------|-------------------|-----------------------------------|
| -13 | Tricor DF or similar | metribuzin        | 4 to 16 oz<br>(0.1875 to 0.75 lb) |
| 14  | Spartan®             | sulfentrazone     | 10 fl oz                          |
| 15  | Dual II Magnum®      | S-metolachlor     | 1.67 pt                           |
| 16  |                      | Non-treated check |                                   |
| 17  |                      | Weed-free check   |                                   |

# Pigweed control and soybean response



# How much metribuzin is required to achieve excellent control 42 DAT?

| Low clay/OM; ideal precipitation                     |                   |                    |                  |  |  |
|------------------------------------------------------|-------------------|--------------------|------------------|--|--|
| ControlFair<br>(80%)Good<br>(90%)Excellent<br>(100%) |                   |                    |                  |  |  |
| MTZ/A                                                | 13.8 oz<br>0.9 lb | 15.9 oz<br>0.75 lb | 18 oz<br>0.85 lb |  |  |

| Low clay/OM; late precipitation |         |         |           |  |  |
|---------------------------------|---------|---------|-----------|--|--|
| Control                         | Fair    | Good    | Excellent |  |  |
|                                 | (80%)   | (90%)   | (100%)    |  |  |
| MTZ rate                        | 14.7 oz | 17.1 oz | 19.5 oz   |  |  |
|                                 | 0.7 lb  | 0.8 lb  | 0.9 lb    |  |  |

| Medium   | clay/OM;      | ideal pre     | cipitation          |   |
|----------|---------------|---------------|---------------------|---|
| Control  | Fair<br>(80%) | Good<br>(90%) | Excellent<br>(100%) | ( |
| MTZ rate | 14.3<br>0.67  | 15.8<br>0.74  | 18.1<br>0.85        | N |

| High clay/OM; ideal precipitation |       |       |           |  |  |  |
|-----------------------------------|-------|-------|-----------|--|--|--|
| Control                           | Fair  | Good  | Excellent |  |  |  |
|                                   | (80%) | (90%) | (100%)    |  |  |  |
| MTZ rate                          | 10.7  | 12.5  | 14.4      |  |  |  |
|                                   | 0.5   | 0.59  | 0.67      |  |  |  |

# Variable importance to predict pigweed control 42 DAT



# Variable importance to predict control of waterhemp, morningglory species, and giant foxtail with glufosinate 7 to 21 DAT

|                                                | Amaranthus tuberculatus |                                                | lpomoea spp.         |                                                | Setaria faberi       |
|------------------------------------------------|-------------------------|------------------------------------------------|----------------------|------------------------------------------------|----------------------|
|                                                |                         |                                                |                      |                                                |                      |
| Total<br>rainfall<br>5 DAA                     |                         | Total solar<br>radiation day<br>of application | y                    | Total solar<br>radiation day<br>of application |                      |
| Average<br>temperature<br>5 DAA                | ·····•                  | Average<br>temperature<br>5 DBA                |                      | Average<br>temperature<br>5 DAA                | ••••••               |
| Average<br>temperature<br>5 DBA                |                         | Total<br>rainfall<br>5 DBA                     | all                  | Average<br>humidity day<br>of application      | 0                    |
| Total solar<br>radiation day<br>of application | 0                       | Average<br>temperature<br>5 DAA                | re                   | Average<br>temperature<br>5 DBA                | 0                    |
| Average<br>humidity day<br>of application      |                         | Average<br>humidity day<br>of application      | ayo                  | Total<br>rainfall<br>5 DBA                     | <b>0</b>             |
| Total<br>rainfall<br>5 DBA                     | 0                       | Total<br>rainfall<br>5 DAA                     | °                    | Total<br>rainfall<br>5 DAA                     | 0                    |
| Location                                       | - 0                     | Location                                       | on o                 | Location                                       | 0                    |
|                                                | 30 35 40 45 50 55       |                                                | 30 35 40 45 50       |                                                | 30 35 40 45 50 55    |
|                                                | MeanDecreaseAccuracy    |                                                | MeanDecreaseAccuracy |                                                | MeanDecreaseAccuracy |

Landau et al. 2025



Effects of total precipitation and average air temperature 5 days before and 5 days after glufosinate application as well as solar radiation and relative humidity 1 day after application on the probability of successful weed control (≥85% weed control)

#### Enhancing Palmer Amaranth Control in Soybean: Effective Strategies for Glufosinate and 2,4-D Applications – Delta T

Indicator of droplet evaporation

Function of temperature & humidity

Ideal is 2 to 8







#### Mohan et al. 2024

## **TARGETED SPRAYING**

Technically, not "spot spraying" Directed spray application, typically labor intensive

Also not a "prescription" application Based on map derived from pre-existing information





# **Targeted Spraying Systems**















### FACTORS INFLUENCING FARMER ADOPTION OF TARGETED SPRAYERS

Collaborators: Haag, Falk Jones, Hock

### **STUDY METHODS**

Qualitative study based on theory of planned behavior and technology acceptance model<sup>1</sup>

#### Initially identified 7 farmers

Added 10 potential participants based on conversations

### Interviewed 11 farmers between May and August

- 9 were the primary person making the decision to purchase the sprayer
- 2 initiated the purchase of the sprayer



### **Farmer Demographics**

- Age: 26 to 51 years
  - Average: 44 years
- Acres sprayed total: 7,000 to 350,000
  - Average: 72,000
- Acres sprayed with site-specific technology: 20 to 70%
  Average: 44%
- 7 of 11 participants also own a 'broadcast only' sprayer
- 6 of 11 use a QuickDraw system for tendering, others use similar
  - 2 See & Spray<sup>™</sup> Ultimate owners purchased QuickDraw with the sprayer

# What are the greatest benefits of a targeted sprayer?

### See & Spray $^{TM}$ Ultimate owner

The **money savings** initially is what it'll be long term, I think it's reducing that weed bank and reducing weed pressure and reducing herbicide expense, not just because you're doing see and spray, but because you have less weed pressure.

### **See & Spray**<sup>TM</sup> **Premium owner**

I think number one is the **environmental impact** 

I think guys are going to be **more apt to go out and spray stuff earlier**.

### See & Spray<sup>TM</sup> Select owner

Overall efficiencies of your time

# What are the greatest limitations of a targeted sprayer?

#### **See & Spray**<sup>TM</sup> **Ultimate & Premium owners**

Well, **coverage** was one we've talked about that a little bit. It's not bad, it's just it's not as good as being able to shoot it from both sides.

**Speed** for some guys is probably a limitation

**Sometimes the only time we can spray is at night**, so that's probably one of the biggest *limitations*.

**Dust and shading** a little bit certain times of the day, if the sun's over here on this side, this sides run kind of in the dark, in the shade, and then it gets a little dust, and it makes those cameras not want to read.

Cost is the biggest barrier, or because you gotta buy [the subscription fee].

It's like **going over a terrace**. When it comes up [over the required height], it sprays that. And so you're going to spray more [of a terraced field]

#### See & Spray<sup>TM</sup> Select and WEED-IT owners

I think **we have to cover it at least twice more in a year** than we do [with broadcast sprays]

## Other considerations

More complicated tendering in dual-tank systems

What portion of acres are suited for targeted application??

Regulatory questions What rate is legal? Can you get around tank-mix restrictions? Mitigation points

# **On-Farm demonstration**



### See & Spray treated 55% of area covered



Used 350 gallons less spray solution

- Reduced herbicide use by
- 5.9 gallons Liberty
- 1.1 gallons NIS
- 70 lbs AMS

# Variable-rate residual herbicide application based on weed distribution and soil texture



Based residual herbicide applications on: Soil properties (little variation) Previous as-applied map

Three rates for each herbicide: high (green) medium (orange) low (yellow)

# Variable-rate residual herbicide application based on weed distribution and soil texture

Leno Caldieraro, Sarah Lancaster, Deepak Joshi





Rep2

Control

Rep1

# Take away



Zero tolerance for seed production and non-chemical tactics needed to address metabolic resistance



Consider environment when planning applications



Acres suitable for targeted application is a key factor when considering adopting the technology



Herbicide resistance updates:S8E10, S5E2, S3E13, S1E4 Metabolic herbicide resistance: S5E14 Harvest weed seed control: S6E4, S2E1 Thermal weeding: S8E8, S4E13 Residual herbicides: S8E11, S6E11, S4E4 Targeted herbicide applications: S6E8, S2E12

## Let's Connect!



slancaster@ksu.edu

@KStateWeedSci



K-State Weed Science



kstateweedsci



- War Against Weeds podcast
- eUpdate.agronomy.ksu.edu



## CCA credits



ΓE

OBEYING NAT